Search International and National Patent Collections
Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (WO1998053407) PREDICTION OF RELATIVE BINDING MOTIFS OF BIOLOGICALLY ACTIVE PEPTIDES AND PEPTIDE MIMETICS
Latest bibliographic data on file with the International Bureau

Pub. No.: WO/1998/053407 International Application No.: PCT/US1998/010411
Publication Date: 26.11.1998 International Filing Date: 20.05.1998
Chapter 2 Demand Filed: 23.12.1998
IPC:
C07K 1/00 (2006.01)
C CHEMISTRY; METALLURGY
07
ORGANIC CHEMISTRY
K
PEPTIDES
1
General processes for the preparation of peptides
Applicants:
THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10666 North Torrey Pines Road La Jolla, CA 92037, US
Inventors:
SKOLNICK, Jeffrey; US
MILIK, Mariusz; US
KOLINSKI, Andrzej; PL
Agent:
LAND, John; Fish & Richardson P.C. Suite 1400 4225 Executive Square La Jolla, CA 92037, US
Priority Data:
08/862,19223.05.1997US
Title (EN) PREDICTION OF RELATIVE BINDING MOTIFS OF BIOLOGICALLY ACTIVE PEPTIDES AND PEPTIDE MIMETICS
(FR) PREDICTION DE MOTIFS DE LIAISON RELATIFS DE PEPTIDES BIOLOGIQUEMENT ACTIFS ET DE MIMETIQUES DE PEPTIDES
Abstract:
(EN) A general neural network based method and system for identifying peptide binding motifs from limited experimental data. In particular, an artificial neural network (1) is trained with peptide with known sequence and function (i.e., bindings strength) identified from a phase display library. The artificial neural network (1) is then challenged with unknown peptide, and predicts relative binding motifs. Analysis of the unknown peptide validate the predictive capability of the artificial neural network (1).
(FR) La présente invention concerne un système et un procédé à réseau neuronal pour identifier des motifs de liaison de peptides à partir de données expérimentales limitées. On éduque, en particulier, un réseau neuronal artificiel (1) en utilisant des peptides à séquence connue, puis on identifie une fonction (c'est-à-dire, une force de liaison) à partir d'une bibliothèque d'affiche de phase. On compare ensuite le réseau neuronal artificiel (1) à des peptides inconnus, puis on prédit des motifs de liaison relatifs. L'analyse des peptides inconnus valide la capacité prédictive du réseau neuronal artificiel (1).
Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW
African Regional Intellectual Property Organization (ARIPO) (GH, GM, KE, LS, MW, SD, SZ, UG, ZW)
Eurasian Patent Organization (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)
European Patent Office (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)
Also published as:
EP1021771JP2002502522 CA2290977AU1998075875