Search International and National Patent Collections
Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (WO1998050944) METHOD AND APPARATUS FOR SELF-DOPING NEGATIVE AND POSITIVE ELECTRODES FOR SILICON SOLAR CELLS AND OTHER DEVICES
Latest bibliographic data on file with the International Bureau

Pub. No.: WO/1998/050944 International Application No.: PCT/US1998/009190
Publication Date: 12.11.1998 International Filing Date: 05.05.1998
Chapter 2 Demand Filed: 24.11.1998
IPC:
H01L 21/228 (2006.01) ,H01L 21/28 (2006.01) ,H01L 31/04 (2006.01) ,H01L 31/068 (2006.01) ,H01L 31/18 (2006.01) ,H01L 33/00 (2006.01)
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21
Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02
Manufacture or treatment of semiconductor devices or of parts thereof
04
the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
18
the devices having semiconductor bodies comprising elements of the fourth group of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
22
Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regions; Redistribution of impurity materials, e.g. without introduction or removal of further dopant
228
using diffusion into, or out of, a solid from or into a liquid phase, e.g. alloy diffusion processes
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21
Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02
Manufacture or treatment of semiconductor devices or of parts thereof
04
the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
18
the devices having semiconductor bodies comprising elements of the fourth group of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
28
Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20-H01L21/268158
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
31
Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
04
adapted as conversion devices
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
31
Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
04
adapted as conversion devices
06
characterised by at least one potential-jump barrier or surface barrier
068
the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
31
Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
18
Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
L
SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
33
Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
Applicants:
EBARA SOLAR, INC. [US/US]; 811 Route 51 South Large, PA 15025, US
Inventors:
MEIER, Daniel, L.; US
DAVIS, Hubert, P.; US
Agent:
GRANATELLI, Lawrence, W. ; Graham & James LLP 600 Hansen Way Palto Alto, CA 94304-1043, US
Priority Data:
09/072,41104.05.1998US
60/045,67306.05.1997US
Title (EN) METHOD AND APPARATUS FOR SELF-DOPING NEGATIVE AND POSITIVE ELECTRODES FOR SILICON SOLAR CELLS AND OTHER DEVICES
(FR) PROCEDE ET APPAREIL POUR LA FABRICATION D'ELECTRODES NEGATIVES ET POSITIVES AUTODOPANTES DESTINEES A DES PHOTOPILES AU SILICIUM ET A D'AUTRES DISPOSITIFS
Abstract:
(EN) A self-doping electrode to silicon is formed primarily from a metal (major component) which forms a eutectic with silicon. A p-type dopant (for a positive electrode) or an n-type dopant (for a negative electrode) is alloyed with the major component. The alloy of major component and dopant is applied to a silicon substrate. Once applied, the alloy and substrate are heated to a temperature above the major component-silicon eutectic temperature such that the major component liquefies more than a eutectic proportion of the silicon substrate. The temperature is then decreased towards the eutectic temperature permitting molten silicon to reform through liquid-phase epitaxy and while so doing incorporate dopant atoms into its regrown lattice. Once the temperature drops below the major component-silicon eutectic temperature the silicon, which has not already regrown into the lattice, forms a solid-phase alloy with the major component and the remaining unused dopant. This allow of major component, silicon and unused dopant is the final contact material. Alternatively, a self-doping electrode may be formed from an unalloyed metal applied to a silicon substrate. The metal and substrate are heated to a temperature above the metal-silicon eutectic temperature in an ambient gas into which a source of vaporized dopant atoms has been introduced. Dopant atoms in the ambient gas are absorbed by the molten mixture of metal-silicon to a much greater extent than they are absorbed by the solid silicon substrate surfaces. The temperature is then decreased to below the metal-silicon eutectic temperature. During this temperature decrease, the doped regrown silicon layer and the metal-silicon alloy final contact material are created in the same process as described above.
(FR) Selon l'invention, une électrode autodopante au silicium est formée en premier lieu d'un métal (composant principal) qui forme un eutectique avec le silicium. Un dopant du type p, destiné à une électrode positive, et un dopant du type n (destiné à une électrode négative), est allié au composant principal. L'alliage constitué du composant principal et du dopant est appliqué sur un substrat de silicium. Le substrat et l'alliage qui y est appliqué sont ensuite chauffés à une température supérieure à la température eutectique de l'ensemble composant principal-silicium, de sorte que le composant principal se liquéfie plus qu'une proportion eutectique du substrat de silicium. La température est ensuite abaissée dans le sens de la température eutectique pour permettre au silicium fondu de se reformer par épitaxie de la phase liquide et ce faisant, d'incorporer des atomes de dopant dans son réseau redéveloppé. Lorsque la température est tombée en dessous de la température eutectique de l'ensemble composant principal-silicium, le silicium, qui ne s'est pas encore reformé en réseau, constitue un alliage en phase solide avec le composant principal et le dopant non utilisé restant. Cet alliage formé par le composant principal, le silicium et le dopant inutilisé constitue le matériau de contact final. Selon une variante, une électrode autodopante peut être formée à partir d'un métal non allié appliqué sur un substrat de silicium. Le métal et le substrat sont chauffés à une température supérieure à la température eutectique de l'ensemble métal-silicium, dans un gaz ambiant, dans lequel une source d'atomes de dopant vaporisés a été introduite. Les atomes de dopant se trouvant dans le gaz ambiant sont absorbés par le mélange métal-silicium en fusion dans une bien plus grande mesure qu'ils ne le sont par les surfaces du substrat de silicium solide. La température est ensuite ramenée à une valeur inférieure à celle de la température eutectique de l'ensemble métal-silicium. Pendant cette réduction de température, la couche de silicium redeveloppée dopée et le matériau de contact final formé par l'alliage métal-silicium sont créés selon le procédé décrit ci-dessus.
Designated States: AU, BR, CA, CN, JP, KR, MX
European Patent Office (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)
Publication Language: English (EN)
Filing Language: English (EN)
Also published as:
MXPA/a/1999/010119KR1020010012327EP2149916EP2149917EP0980590JP2002511190
CN1272226CA2287834AU1998072884