Processing

Please wait...

Settings

Settings

1. WO1996004602 - ELLIPTIC CURVE ENCRYPTION SYSTEMS

Publication Number WO/1996/004602
Publication Date 15.02.1996
International Application No. PCT/CA1995/000452
International Filing Date 31.07.1995
Chapter 2 Demand Filed 29.02.1996
IPC
G06F 7/72 2006.01
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
7Methods or arrangements for processing data by operating upon the order or content of the data handled
60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations
72using residue arithmetic
H04L 9/30 2006.01
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
9Arrangements for secret or secure communication
28using particular encryption algorithm
30Public key, i.e. encryption algorithm being computationally infeasible to invert and users' encryption keys not requiring secrecy
CPC
G06F 7/725
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
FELECTRIC DIGITAL DATA PROCESSING
7Methods or arrangements for processing data by operating upon the order or content of the data handled
60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations ; , e.g. using difunction pulse trains, STEELE computers, phase computers
72using residue arithmetic
724Finite field arithmetic
725over elliptic curves
G06F 7/726
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
FELECTRIC DIGITAL DATA PROCESSING
7Methods or arrangements for processing data by operating upon the order or content of the data handled
60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations ; , e.g. using difunction pulse trains, STEELE computers, phase computers
72using residue arithmetic
724Finite field arithmetic
726Inversion; Reciprocal calculation; Division of elements of a finite field
H04L 2209/125
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
2209Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
12Details relating to cryptographic hardware or logic circuitry
125Parallelization or pipelining, e.g. for accelerating processing of cryptographic operations
H04L 9/3066
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
9Cryptographic mechanisms or cryptographic; arrangements for secret or secure communication
30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
3066involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
Applicants
  • CERTICOM CORP. [CA/CA]; 200 Matheson Boulevard West, Suite 103 Mississauga, Ontario L5R 3L7, CA (AllExceptUS)
  • MULLIN, Ronald, C. [CA/CA]; CA (UsOnly)
  • VANSTONE, Scott, A. [CA/CA]; CA (UsOnly)
  • AGNEW, Gordon, B. [CA/CA]; CA (UsOnly)
Inventors
  • MULLIN, Ronald, C.; CA
  • VANSTONE, Scott, A.; CA
  • AGNEW, Gordon, B.; CA
Agents
  • ORANGE, John, R., S.; Suite 3600, P.O.Box 190 Toronto-Dominion Bank Tower Toronto-Dominion Centre Toronto, Ontario M5K 1R6, CA
Priority Data
08/282,26329.07.1994US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) ELLIPTIC CURVE ENCRYPTION SYSTEMS
(FR) SYSTEMES DE CHIFFREMENT A COURBE ELLIPTIQUE
Abstract
(EN)
An elliptic curve encryption system represents coordinates of a point on the curve as a vector of binary digits in a normal basis representation in $i(F)2$i(m). A key is generated from multiple additions of one or more points in a finite field. Inverses of values are computed using a finite field multiplier and successive exponentiations. A key is represented as the coordinates of a point on the curve and key transfer may be accomplished with the transmission of only one coordinate and identifying information of the second. An encryption protocol using one of the coordinates and a further function of that coordinate is also described.
(FR)
Un système de chiffrement à courbe élliptique représente les coordonnées d'un point sur la courbe sous forme d'un vecteur de chiffres binaires dans une représentation de base normale dans $i(F)2$i(m). Une clé est générée à partir d'additions multiples d'un ou de plusieurs points dans un champ fini. Les inverses de valeurs sont calculés à l'aide d'un multiplicateur de champ fini et d'élévations à une puissance successives. Une clé est représentée comme étant les coordonnées d'un point sur la courbe et un transfert de clé peut être effectué par la transmission uniquement d'une coordonnée et d'informations d'identification de la seconde. L'invention concerne également un protocole de chiffrement utilisant une des coordonnées et une autre fonction de cette coordonnée.
Latest bibliographic data on file with the International Bureau