Processing

Please wait...

Settings

Settings

1. WO1996004410 - INDUSTRIAL VAPOR CONVEYANCE AND SEPARATION

Publication Number WO/1996/004410
Publication Date 15.02.1996
International Application No. PCT/EP1995/003076
International Filing Date 31.07.1995
Chapter 2 Demand Filed 22.02.1996
IPC
C23C 14/14 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
06characterised by the coating material
14Metallic material, boron or silicon
C23C 14/22 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
CPC
C23C 14/14
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
06characterised by the coating material
14Metallic material, boron or silicon
C23C 14/22
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
Y02T 50/67
YSECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
50Aeronautics or air transport
60Efficient propulsion technologies
67Relevant aircraft propulsion technologies
Y10T 137/85938
YSECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
10TECHNICAL SUBJECTS COVERED BY FORMER USPC
TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
137Fluid handling
8593Systems
85938Non-valved flow dividers
Applicants
  • HEHMANN, Franz [DE/DE]; DE
Inventors
  • HEHMANN, Franz; DE
Agents
  • FUNKE, Justus, E.; Gramm, Lins & Partner Theodor-Heuss-Strasse 1 D-38122 Braunschweig, DE
  • LINS, Edgar; Gramm, Lins & Partner Theodor-Heuss-Strasse 1 D-38122 Braunschweig, DE
Priority Data
94111991.901.08.1994EP
Publication Language German (DE)
Filing Language German (DE)
Designated States
Title
(DE) INDUSTRIELLER DAMPFTRANSPORT UND -ABSCHEIDUNG
(EN) INDUSTRIAL VAPOR CONVEYANCE AND SEPARATION
(FR) TRANSPORT ET SEPARATION INDUSTRIELS DE VAPEUR
Abstract
(DE)
Porenmembrangesteuerte, physikalische und chemische Dampfförderung und Dampfabscheidung mit Kondensator- und Membrantechnik bei einer transmembranen Selektivität SK = 1 oder nahe bei 1, und mit einer durch die Pumpgeschwindigkeit an dem Eingang des Pumpstandes in der Vakuumkammer der Dampfabscheideebene und durch die resultierende, i.e. erzwungene Konvektion angetriebenen Förderleistung. Die erweiterte Membrantechnik zur Sogstrom-betriebenen globalen Dampfförderung und -abscheidung wird auch für lokal durch den Dampfdruck angetriebene Förderströme eingesetzt. Es werden neue Membranfunktionen und neue Verfahrenskonfigurationen und Operationsebenen beschrieben, deren Triebkraft für Massentransport zwischen Dampfquelle und Abscheidefläche und resultierende Produktivität von einem durch ein externes Pumpensystem erzeugten Gas/Dampf-Sogstrom vorgegeben und limitiert ist, wobei der Gesamtgas-Sogstrom lokal sehr hohe Strömungsgeschwindigkeiten insbesondere vor Abscheidung annehmen kann, und deshalb neue Manipulationen zur Produktgestaltung und Produktqualität erlaubt. Nach Durchgang durch die Dampfabscheidekammer kann bei durch Nichtabscheidung gefördertem Impulstransfer (einschließlich des Einsatzes einer inerten Trägergaskomponente) neben dem externen Pumpensystem wahlweise ein externer Zyklon und/oder ein externer Dampfabscheider und/oder Gaswäscher eingesetzt werden. Bei Einsatz eines Trägergases wird das Gas zum Gas-Versorgungssystem zurückgeführt und wiederverwendet.
(EN)
The invention pertains to porous diaphragm-controlled physical and chemical vapor conveyance and separation using condenser and diaphragm technology with a transdiaphragm selectivity SK = 1 or practically 1 and with a flow rate driven by the pump speed at the input of the pump station in the vacuum chamber of the vapor separation level and by the resulting, i.e. forced, convection. The expanded diaphragm technique for suction-flow global vapor conveyance and separation is also used for flows driven locally by the vapor pressure. Novel diaphragm functions and novel process configurations and operational levels are described, the motive force for massive conveyance between vapor source and separation surface and resulting productivity being set and limited by a gas/vapor flow produced by an external pump system, where the total gas-suction flow can locally assume very high flow speeds, especially before separation, and thus permits new manipulations for product design and product quality. In the case of non-separation pulse transfer (including the use of an inert carrier gas component), an external cyclone and/or an external vapor separator and/or gas scrubbers can optionally be used in addition to the external pump system following passage through the vapor separation chamber. When a carrier gas is used, the gas is recycled into the gas supply system and reused.
(FR)
L'invention concerne l'acheminement et la séparation physiques et chimiques de vapeur commandés par membrane poreuse, à l'aide de la technique des condenseurs et des membranes, avec une sélectivité transmembranaire SK = 1 ou proche de 1, et avec un débit entraîné par la vitesse de la pompe à l'entrée du bloc pompe dans la chambre à vide du plan de séparation de la vapeur et la convection forcée qui en résulte. La technique membranaire élargie à l'ensemble du transport et de la séparation de vapeur qui s'effectuent par courant à remous, est également utilisée pour les courants entraînés localement par la pression de la vapeur. L'invention concerne de nouvelles fonctions membranaires, de nouvelles configurations et de nouveaux plans d'opération. La force motrice du transport en masse entre la source de vapeur et la surface de séparation et la productivité qui en résulte est déterminée et limitée par un courant à remous de gaz/vapeur produit par un système de pompage externe. Le courant à remous de gaz global peut présenter localement des vitesses d'écoulement extrêmement élevées, notamment avant le processus de séparation, ce qui permet de procéder à de nouvelles manipulations concernant la structure et la qualité de produits. Après passage à travers la chambre de séparation de vapeur, en cas de transfert d'impulsions induit par non-séparation (y compris l'utilisation d'un constituant gazeux porteur inerte), il est possible d'utiliser au choix, en sus du système de pompage externe, un séparateur à cyclone externe et/ou un séparateur de vapeur externe et/ou un épurateur de gaz. En cas d'utilisation d'un gaz porteur, le gaz est recyclé dans le système d'alimentation et réutilisé.
Also published as
Latest bibliographic data on file with the International Bureau