Processing

Please wait...

PATENTSCOPE will be unavailable a few hours for maintenance reason on Sunday 05.04.2020 at 10:00 AM CEST
Settings

Settings

1. WO1991000592 - METHOD AND APPARATUS FOR STORING DIGITAL INFORMATION IN THE FORM OF STORED CHARGES

Publication Number WO/1991/000592
Publication Date 10.01.1991
International Application No. PCT/US1990/003274
International Filing Date 14.06.1990
Chapter 2 Demand Filed 14.12.1990
IPC
G11B 9/00 2006.01
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method or means not covered by one of the main groups G11B3/-G11B7/139; Record carriers therefor
G11B 9/08 2006.01
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method or means not covered by one of the main groups G11B3/-G11B7/139; Record carriers therefor
08using electrostatic charge injection; Record carriers therefor
CPC
B82Y 10/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
10Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
G11B 9/08
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
08using electrostatic charge injection; Record carriers therefor
G11B 9/14
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
12using near-field interactions; Record carriers therefor
14using microscopic probe means ; , i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
G11B 9/1445
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
12using near-field interactions; Record carriers therefor
14using microscopic probe means ; , i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
1418Disposition or mounting of heads or record carriers
1427with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
1436with provision for moving the heads or record carriers relatively to each other
1445switching at least one head in operating function; Controlling the relative spacing to keep the head operative, e.g. for allowing a tunnel current flow
G11B 9/1472
GPHYSICS
11INFORMATION STORAGE
BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
9Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
12using near-field interactions; Record carriers therefor
14using microscopic probe means ; , i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
1463Record carriers for recording or reproduction involving the use of microscopic probe means
1472characterised by the form
Y10S 977/947
YSECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
10TECHNICAL SUBJECTS COVERED BY FORMER USPC
STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
977Nanotechnology
902Specified use of nanostructure
932for electronic or optoelectronic application
943Information storage or retrieval using nanostructure
947with scanning probe instrument
Applicants
  • THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY [US/US]; Stanford, CA 94305, US
Inventors
  • QUATE, Calvin, F.; US
  • BARRETT, Robert, C.; US
Agents
  • KEIICHI, Nishimura ; Flehr, Hohbach, Test, Albritton & Herbert Four Embarcadero Center Suite 3400 San Francisco, CA 94111-4187, US
Priority Data
370,62523.06.1989US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) METHOD AND APPARATUS FOR STORING DIGITAL INFORMATION IN THE FORM OF STORED CHARGES
(FR) METHODE ET APPAREIL POUR LE STOCKAGE D'INFORMATIONS NUMERIQUES SOUS FORME DE CHARGES MEMORISEES
Abstract
(EN)
Method and apparatus (10) for storing digital information in a dense memory structure. A semiconductor substrate (12) has a thin insulating layer (14) formed thereon. Over the thin insulating layer (14) is formed a dielectric charge-storage layer (16). A piezoelectric bimorph cantilever arm (30) has a tip (32) formed at its free end to access certain memory sites defined by charge-storage regions (40, 42, 44) in the charge-storage layer (16). To write information in the form of charges into a memory site tip (32) contacts or is in close proximity to the surface of the charge-storage layer (16) and an electric field is applied between the tip (32) and the substrate (12) to induce charges to tunnel through the thin insulating layer (14) into the charge-storage layer (16) where the charges are stored as trapped charges. Information is read from a storage-site by spacing the tip (32) of the cantilever arm (30) a distance (d) from the surface of the charge storage layer (16) and applying an electric field between the tip (32) and the substrate (12). The capacitive force on the tip (32) is then measured to determine the amount of charge stored in that memory site. Alternatively charge is deposited directly on the surface of a single insulating layer. Charge sites are arranged in circular tracks on a rotating substrate (52) to provide a high density memory array (50). Charge sites are also arranged in linear tracks by forming alternating layers of conductive (62) and non-conductive (64) substrate layers over which are formed thin insulating layers (68) and charge-storage layers (70). This produces a number of spaced-apart charge-storage tracks. Tracks are also provided by depositing metal strips (70) or scribing grooves (80) on the surface of a device.
(FR)
Méthode et appareil (10) pour le stockage d'informations numériques dans une structure de mémoire dense. Un substrat semi-conducteur (12) est doté d'une couche mince d'isolation (14). Une couche de stockage de charges diélectrique (16) est réalisée sur ladite couche d'isolation (14). Un bras en porte-à-faux piézoélectrique bimorphe (30) présente un bout (32) à son extrémité libre permettant d'accéder à certains emplacements de mémoire définis par des zones de stockage de charges (40, 42, 44) et disposées dans la couche de stockage de charges (16). Afin d'introduire des informations sous forme de charges dans un emplacement de mémoire, le bout (32) se met en contact avec la surface de ladite couche de stockage de charges (16) ou à proximité de celle-ci. Un champ électrique est appliqué entre ledit bout (32) et le substrat (12) de manière à inciter des charges à tunneler à travers la couche d'isolation mince (14) vers la couche de stockage de charges (16) où les charges sont stockées en tant que charges captées. On fait sortir les informations d'un emplacement de stockage en écartant le bout (32) du bras en porte-à-faux (30) à une distance (d) de la surface de la couche de stockage de charges (16), et en appliquant un champ électrique entre ledit bout (32) et le substrat (12). On mesure ensuite la force capacitive se manifestant audit bout (32) de manière à déterminer la quantité de charge stockée dans ledit emplacement de mémoire. Dans une autre réalisation, on dépose une charge directement sur la surface d'une seule couche d'isolation. Des emplacements de charges sont placés dans des pistes circulaires disposées dans un substrat rotatif (52) de manière à créer un réseau de mémoire de haute densité (50). Des emplacements de charges sont également aménagés dans des pistes linéaires en réalisant des couches alternantes de couches de substrat conductrices (62) et nn conductrices (64) sur lesquelles sont réalisées des couches d'isolation minces (68) et des couches de stockage de charges (70). On obtient ainsi une pluralité de pistes de stockage de charges espacées. Des pistes sont également obtenues en déposant des bandes métalliques (70) ou des rainures de traçage (80) sur la surface d'un dispositif.
Also published as
Latest bibliographic data on file with the International Bureau