Processing

Please wait...

Settings

Settings

Goto Application

1. US20130085082 - METHODS FOR HAPLOTYPING SINGLE CELLS

Office United States of America
Application Number 13704050
Application Date 20.06.2011
Publication Number 20130085082
Publication Date 04.04.2013
Publication Kind A1
IPC
C12Q 1/68
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
CPC
C12Q 1/6874
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms
68involving nucleic acids
6869Methods for sequencing
6874involving nucleic acid arrays, e.g. sequencing by hybridisation
Applicants Vermeesch Joris
KATHOLIEKE UNIVERSITEIT LEUVEN
Voet Thierry
Zamani Esteki Masoud
Inventors Vermeesch Joris
Voet Thierry
Zamani Esteki Masoud
Priority Data 1010232.5 18.06.2010 GB
Title
(EN) METHODS FOR HAPLOTYPING SINGLE CELLS
Abstract
(EN)

We developed a generic approach to type genome-wide single nucleotide polymorphisms in single human cells and to reconstruct for the first time genome-wide haplotypes of single- or dual-cell derived genotypes. Proof-of-principle is delivered for EBV-transformed lymphoblastoid cells as well as human blastomeres. To this end, multiple displacement amplified DNA samples of single cells were hybridized to Affymetrix 250K SNP-arrays. Different algorithmic designs were subsequently developed to assess from the single-cell derived SNP-probe intensities the sequence of syntenic alleles and to pinpoint accurately the majority of parental homologous recombination sites across the entire genome using a linkage-based approach. This included the development of algorithms that rectify a large part of the discrepant allelic assignments in raw single or dual-cell derived haplotypes. This method to infer genome-wide haplotypes from the analysis of only one or two cells has tremendous applicative value. It has the capacity to revolutionize not only genetic diagnosis of preimplantation in vitro fertilized human embryos in the clinic, but also animal breeding programs by enabling genome-wide quantitative trait loci selection at the embryonic level. In addition, it allows to further scrutinize drivers of haplotype diversity, mainly meiotic homologous recombination as well as somatic (homologous) recombination processes that occur often during (human) tumorigenesis.