Processing

Please wait...

Settings

Settings

Goto Application

1. US20060211228 - Method for forming a ruthenium metal layer on a patterned substrate

Office United States of America
Application Number 10907022
Application Date 16.03.2005
Publication Number 20060211228
Publication Date 21.09.2006
Grant Number 7273814
Grant Date 25.09.2007
Publication Kind B2
IPC
H01L 21/02
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
H01L 21/44
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
34the devices having semiconductor bodies not provided for in groups H01L21/06, H01L21/16, and H01L21/18159
44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/36-H01L21/428158
CPC
H01L 21/28556
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
18the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
283Deposition of conductive or insulating materials for electrodes ; conducting electric current
285from a gas or vapour, e.g. condensation
28506of conductive layers
28512on semiconductor bodies comprising elements of Group IV of the Periodic System
28556by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
C23C 16/18
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
06characterised by the deposition of metallic material
18from metallo-organic compounds
C23C 16/4481
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
448characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
4481by evaporation using carrier gas in contact with the source material
C23C 16/45542
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
455characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
45523Pulsed gas flow or change of composition over time
45525Atomic layer deposition [ALD]
45527characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
45536Use of plasma, radiation or electromagnetic fields
45542Plasma being used non-continuously during the ALD reactions
C23C 16/52
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
52Controlling or regulating the coating process
H01L 21/28562
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
18the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
283Deposition of conductive or insulating materials for electrodes ; conducting electric current
285from a gas or vapour, e.g. condensation
28506of conductive layers
28512on semiconductor bodies comprising elements of Group IV of the Periodic System
28556by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
28562Selective deposition
Applicants Tokyo Electron Limited
Inventors Matsuda Tsukasa
Agents Wood, Herron & Evans, LLP
Priority Data 10907022 16.03.2005 US
Title
(EN) Method for forming a ruthenium metal layer on a patterned substrate
Abstract
(EN)

A method for forming a ruthenium metal layer includes providing a patterned substrate in a process chamber of a deposition system, where the patterned substrate contains one or more vias or trenches, or combinations thereof, depositing a first ruthenium metal layer on the substrate in an atomic layer deposition process, and depositing a second ruthenium metal layer on the first ruthenium metal layer in a thermal chemical vapor deposition process. The deposited ruthenium metal layer can be used as a diffusion barrier layer, a seed layer for electroplating, or both.