Processing

Please wait...

Settings

Settings

Goto Application

1. US5578350 - Method for depositing a thin layer on a substrate by laser pulse vapor deposition

Office
United States of America
Application Number 08478861
Application Date 07.06.1995
Publication Number 5578350
Publication Date 26.11.1996
Grant Number 5578350
Grant Date 26.11.1996
Publication Kind A
IPC
H05B 7/00
HELECTRICITY
05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
7Heating by electric discharge
C23C 14/30
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
24Vacuum evaporation
28by wave energy or particle radiation
30by electron bombardment
C23C 14/28
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
24Vacuum evaporation
28by wave energy or particle radiation
CPC
C23C 14/28
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
24Vacuum evaporation
28by wave energy or particle radiation
Applicants Fraunhofer-Gesellschaft
Inventors Mai Hermann
Dietsch Reiner
Schubert Klaus
Agents Evenson, McKeown, Edwards and Lenahan, P.L.L.C.
Title
(EN) Method for depositing a thin layer on a substrate by laser pulse vapor deposition
Abstract
(EN)

A method for depositing a thin layer on a substrate by laser pulse vapor deposition provides a substantially cylindrical target having a cylinder axis and a curved target surface. A pulsed laser beam is generated having an initial path section and an initial path section axis and is capable of producing a plasma plume from the target when the pulsed laser beam impinges on the curved target surface. A first mirror located between the target and the initial path section of the laser beam is provided having a plurality of reflective interior surfaces and a first mirror axis substantially coincident with an initial path section axis of the laser beam. The laser beam is deflected so as to impinge on the reflective interior surface of the first mirror and subsequently to be reflected and to impinge on the curved target surface by controlling a plane reflective mirror that intersects the first mirror axis and is located on a side of the first mirror opposite from the target. The plane reflective mirror is tilted at an angle to the laser beam axis and is rotatable about a rotation axis substantially coincident with the first mirror axis. The laser beam is focussed on a center of the target to produce the plasma plume on the curved target surface. The plasma plume is moved on the curved target surface over a track by moving a position where the laser beam impinges on the reflective interior surface of the first mirror step-by-step rotation of the plane reflective mirror about the rotation axis, with a thin layer being deposited with a substantially uniform thickness on the substrate by contact of the plasma plume with the substrate. The first mirror includes a plurality of plane mirrors connected in a cylindrical manner.


Related patent documents