Processing

Please wait...

PATENTSCOPE will be unavailable a few hours for maintenance reason on Tuesday 25.01.2022 at 9:00 AM CET
Settings

Settings

Goto Application

1. US20210332752 - HYBRID COMPRESSED AIR ENERGY STORAGE SYSTEM

Office
United States of America
Application Number 16856627
Application Date 23.04.2020
Publication Number 20210332752
Publication Date 28.10.2021
Publication Kind A1
IPC
F02C 6/18
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
6Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
18using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
F02C 6/16
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
6Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
16for storing compressed air
F02C 1/05
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
1Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
04the working fluid being heated indirectly
05characterised by the type or source of heat, e.g. using nuclear or solar energy
F02C 7/141
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
7Features, component parts, details or accessories, not provided for in, or of interest apart from, groups F02C1/-F02C6/158; Air intakes for jet-propulsion plants
12Cooling of plants
14of fluids in the plant
141of working fluid
CPC
F02C 6/16
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
6Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus
14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
16for storing compressed air
F02C 6/18
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
6Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus
18using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
F02C 1/05
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
1Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
04the working fluid being heated indirectly
05characterised by the type or source of heat, e.g. using nuclear or solar energy
F05D 2260/213
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
2260Function
20Heat transfer, e.g. cooling
213by the provision of a heat exchanger within the cooling circuit
F05D 2220/60
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
2220Application
60making use of surplus or waste energy
F05D 2220/76
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
2220Application
70in combination with
76an electrical generator
Applicants Dresser-Rand Company
Inventors Joseph T. Williams
Title
(EN) HYBRID COMPRESSED AIR ENERGY STORAGE SYSTEM
Abstract
(EN)

A hybrid compressed air energy storage system is provided. A heat exchanger 114 extracts thermal energy from a compressed air to generate a cooled compressed air stored in an air storage reservoir 120, e.g., a cavern. A heat exchanger 124 transfers thermal energy generated by a carbon-neutral thermal energy source 130 to cooled compressed air conveyed from reservoir 120 to generate a heated compressed air. An expander 140 is solely responsive to the heated compressed air by heat exchanger 124 to produce power and generate an expanded air. Expander 140 is effective to reduce a temperature of the expanded air by expander 140, and thus a transfer of thermal energy from an expanded exhaust gas received by a recuperator 146 (used to heat the expanded air by the first expander) is effective for reducing waste of thermal energy in exhaust gas cooled by recuperator 146.


Related patent documents