Processing

Please wait...

Settings

Settings

Goto Application

1. US20200211834 - METHODS FOR FORMING FILMS CONTAINING SILICON BORON WITH LOW LEAKAGE CURRENT

Office
United States of America
Application Number 16725226
Application Date 23.12.2019
Publication Number 20200211834
Publication Date 02.07.2020
Publication Kind A1
IPC
H01L 21/02
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
C23C 16/34
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
34Nitrides
C23C 16/02
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
02Pretreatment of the material to be coated
C23C 16/513
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44characterised by the method of coating
50using electric discharges
513using plasma jets
CPC
C23C 16/345
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
34Nitrides
345Silicon nitride
H01L 21/0217
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
02104Forming layers
02107Forming insulating materials on a substrate
02109characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
02112characterised by the material of the layer
02123the material containing silicon
0217the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
H01L 21/02274
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
02104Forming layers
02107Forming insulating materials on a substrate
02225characterised by the process for the formation of the insulating layer
0226formation by a deposition process
02263deposition from the gas or vapour phase
02271deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
02274in the presence of a plasma [PECVD]
C23C 16/513
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
50using electric discharges
513using plasma jets
C23C 16/0209
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
02Pretreatment of the material to be coated
0209by heating
Applicants Applied Materials, Inc.
Inventors Chuanxi YANG
Hang YU
Sanjay KAMATH
Deenesh PADHI
Honggun KIM
Euhngi LEE
Zubin HUANG
Diwakar N. KEDLAYA
Rui CHENG
Karthik JANAKIRAMAN
Title
(EN) METHODS FOR FORMING FILMS CONTAINING SILICON BORON WITH LOW LEAKAGE CURRENT
Abstract
(EN)

Methods for forming the silicon boron nitride layer are provided. The method includes positioning a substrate on a pedestal in a process region within a process chamber, heating a pedestal retaining the substrate, and introducing a first flow of a first process gas and a second flow of a second process gas to the process region. The first flow of the first process gas contains silane, ammonia, helium, nitrogen, argon, and hydrogen. The second flow of the second process gas contains diborane and hydrogen. The method also includes forming a plasma concurrently with the first flow of the first process gas and the second flow of the second process gas to the process region and exposing the substrate to the first process gas, the second process gas, and the plasma to deposit the silicon boron nitride layer on the substrate.