Processing

Please wait...

Settings

Settings

Goto Application

1. US20200169323 - System and Method of Satellite Communication

Office United States of America
Application Number 16201988
Application Date 27.11.2018
Publication Number 20200169323
Publication Date 28.05.2020
Publication Kind A1
IPC
H04B 10/118
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
118specially adapted for satellite communication
H04L 1/00
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
1Arrangements for detecting or preventing errors in the information received
CPC
H04L 1/0061
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
1Arrangements for detecting or preventing errors in the information received
004by using forward error control
0056Systems characterized by the type of code used
0061Error detection codes
H04B 10/118
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
118specially adapted for satellite communication
Applicants Facebook, Inc.
Inventors Slaven Moro
Title
(EN) System and Method of Satellite Communication
Abstract
(EN)

In particular embodiments, a system may include a spacecraft and optical ground terminals. The spacecraft includes at least an optical space terminal and a space switch unit. The space switch unit is configured to receive physical layer data frames from one optical space terminal, regenerate data-link layer data packets based on the physical layer data frames and route the regenerated data-link layer data packets to another optical space terminal. The optical ground terminals are configured to receive data-link layer data packets by one of the optical ground terminals, encode the received data-link layer data packets into physical layer data frames, transmit encoded physical layer data frames from one of the optical ground terminals to a respective optical space terminal through multiple forward channels at a data rate of 1 Tbps or above, the encoded physical layer data frames are decoded by the respective optical space terminal.

Also published as