Processing

Please wait...

Settings

Settings

Goto Application

1. US20180041718 - Hybrid imaging sensor for structured light object capture

Office United States of America
Application Number 15231179
Application Date 08.08.2016
Publication Number 20180041718
Publication Date 08.02.2018
Grant Number 10574909
Grant Date 25.02.2020
Publication Kind B2
IPC
H04N 5/33
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
NPICTORIAL COMMUNICATION, e.g. TELEVISION
5Details of television systems
30Transforming light or analogous information into electric information
33Transforming infra-red radiation
H04N 13/257
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
NPICTORIAL COMMUNICATION, e.g. TELEVISION
13Stereoscopic video systems; Multi-view video systems; Details thereof
20Image signal generators
257Colour aspects
H04N 13/254
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
NPICTORIAL COMMUNICATION, e.g. TELEVISION
13Stereoscopic video systems; Multi-view video systems; Details thereof
20Image signal generators
204using stereoscopic image cameras
254in combination with electromagnetic radiation sources for illuminating objects
G01S 7/4912
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/, G01S15/, G01S17/127
48of systems according to group G01S17/58
491Details of non-pulse systems
4912Receivers
G01S 17/46
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
17Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
02Systems using the reflection of electromagnetic waves other than radio waves
06Systems determining position data of a target
46Indirect determination of position data
G01S 17/89
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
17Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
88Lidar systems, specially adapted for specific applications
89for mapping or imaging
CPC
G01S 7/4816
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
48of systems according to group G01S17/00
481Constructional features, e.g. arrangements of optical elements
4816of receivers alone
H04N 5/332
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
NPICTORIAL COMMUNICATION, e.g. TELEVISION
5Details of television systems
30Transforming light or analogous information into electric information
33Transforming infra-red radiation
332Multispectral imaging comprising at least a part of the infrared region
G01S 7/4863
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
48of systems according to group G01S17/00
483Details of pulse systems
486Receivers
4861Circuits for detection, sampling, integration or read-out
4863Detector arrays, e.g. charge-transfer gates
G01S 7/4868
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
48of systems according to group G01S17/00
483Details of pulse systems
486Receivers
4868Controlling received signal intensity or exposure of sensor
G01S 7/4914
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
48of systems according to group G01S17/00
491Details of non-pulse systems
4912Receivers
4913Circuits for detection, sampling, integration or read-out
4914of detector arrays, e.g. charge-transfer gates
G01S 7/4918
GPHYSICS
01MEASURING; TESTING
SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
7Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
48of systems according to group G01S17/00
491Details of non-pulse systems
4912Receivers
4918Controlling received signal intensity, gain or exposure of sensor
Applicants Microsoft Technology Licensing, LLC
Inventors Raymond Kirk Price
Michael Bleyer
Jian Zhao
Denis Demandolx
Agents Ray Quinney & Nebeker, P.C.
John Carpenter
William C. Hwang
Title
(EN) Hybrid imaging sensor for structured light object capture
Abstract
(EN)

A three dimensional imaging system includes a hybrid imaging sensor with infrared wavelength photoreceptors and visible wavelength photoreceptors integrated in one photoreceptor array. The three dimensional imaging system includes a bandpass filter to filter incoming light before the light is received at the hybrid imaging sensor to reduce crosstalk between the infrared wavelength photoreceptors and visible wavelength photoreceptors. The infrared photoreceptors receive infrared light provided by a structured light source and the visible wavelength photoreceptors receive ambient visible light. The hybrid imaging sensor collects infrared image data and visible light image data concurrently and/or simultaneously.