Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (US20170137939) PLASMA SOURCE AND SURFACE TREATMENT METHOD

Office : United States of America
Application Number: 15321847 Application Date: 25.06.2015
Publication Number: 20170137939 Publication Date: 18.05.2017
Publication Kind : A1
Prior PCT appl.: Application Number:PCTNL2015050463 ; Publication Number: Click to see the data
IPC:
C23C 16/455
C23C 16/458
C23C 16/513
H01J 37/32
C CHEMISTRY; METALLURGY
23
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
C
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16
Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44
characterised by the method of coating
455
characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
C CHEMISTRY; METALLURGY
23
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
C
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16
Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44
characterised by the method of coating
458
characterised by the method used for supporting substrates in the reaction chamber
C CHEMISTRY; METALLURGY
23
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
C
COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16
Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44
characterised by the method of coating
50
using electric discharges
513
using plasma jets
H ELECTRICITY
01
BASIC ELECTRIC ELEMENTS
J
ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37
Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
32
Gas-filled discharge tubes
CPC:
C23C 16/45514
H01J 37/32715
H01J 37/3244
H01J 37/32348
H01J 37/32541
C23C 16/45536
C23C 16/4583
C23C 16/513
C23C 16/45504
H01J 223/332
Applicants: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
Inventors: Yves Lodewijk Maria Creyghton
Paulus Willibrordus George Poodt
Marcel Simor
Freddy Roozeboom
Priority Data: 14173878.1 25.06.2014 EP
Title: (EN) PLASMA SOURCE AND SURFACE TREATMENT METHOD
Abstract: front page image
(EN)

A plasma source has an outer surface, interrupted by an aperture for delivering an atmospheric plasma from the outer surface. A transport mechanism transports a substrate in parallel with the outer surface, closely to the outer surface, so that gas from the atmospheric plasma may form a gas bearing between the outer surface the and the substrate. A first electrode of the plasma source has a first and second surface extending from an edge of the first electrode that runs along the aperture. The first surface defines the outer surface on a first side of the aperture. The distance between the first and second surface increasing with distance from the edge. A second electrode covered at least partly by a dielectric layer is provided with the dielectric layer facing the second surface of the first electrode, substantially in parallel with the second surface of the first electrode, leaving a plasma initiation space on said first side of the aperture, between the surface of the dielectric layer and the second surface of the first electrode. A gas inlet feeds into the plasma initiation space to provide gas flow from the gas inlet to the aperture through the plasma initiation space. Atmospheric plasma initiated in the plasma initiation space flows to the aperture, from which it leaves to react with the surface of the substrate.


Also published as:
EP3161182WO/2015/199539