(DE) 2004P14535WO 21 Abstract Method of optimum controlled outlet, impingement cooling and sealing of a heat shield and a Heat Shield Element 5 The invention relates to a method for cooling and sealing of a heat shield element (13), comprising a main wall (15) with an inner side (151) , which is restricted by side walls (14) or rims, and an outer side (153), which can be exposed to a 10 hot fluid, and wherein a coolant (K) is introduced into an impingement region (17) of that heat shield element (13) and an impingement flow (19) of said coolant (K) is directed on a surface area (23) of that inner side (151) through a plurality of impingement holes (21), effecting an impingement pressure drop (PI). In the method discharge flow (25) is 15 metered through a number of discharge holes (27) through said side wall (14) or rims from the inner side (151) to the outer side (153) of the main wall (15), generating a discharge pressure drop (PD) in series with the impingement pressure 20 drop (PI). The impingement pressure drop (PI) and the discharge pressure drop (PD) are matched to one another so that a required coolant flow (K) is generated which yields a required predetermined heat-transfer coefficient of the main wall (). Discharging coolant (K) into the gaps between side 25 opposing walls 14 of neighbouring heat shield elements (13) only allows for an effective sealing against hot gas pingestion. Furthermore, the invention relates to a heat shield element (13, 131), preferably to a single chamber or double chamber metallic heat shield element (13, 131), which 30 can be exposed to hot gases. In particular the heat shield element (13) is suitable for being used in a combustion chamber (5) of a gas turbine installation (1). Fig 2 35
(EN) The invention relates to a method for cooling and sealing of a heat shield element (13) , comprising a main wall (15) with an inner side (151) , which is restricted by side walls (14) or rims, and an outer side (153) , which can be exposed to a hot fluid, and wherein a coolant (K) is introduced into an impingement region (17) of that heat shield element (13) and an impingement flow (19) of said coolant (K) is directed on a surface area (23) of that inner side (151) through a plurality of impingement holes (21) , effecting an impingement pressure drop (Delta PI) . In the method discharge flow (25) is metered through a number of discharge holes (27) through said side wall (14) or rims from the inner side (151) to the outer side (153) of the main wall (15) , generating a discharge pressure drop (Delta PD) in series with the impingement pressure drop (Delta PI) .
(FR) L'invention concerne un procédé de refroidissement et de scellage d'un élément d'écran thermique (13) comprenant une paroi principale (15) pourvue d'un côté intérieur (151), restreint par des parois latérales (14) ou des bords, et un côté extérieur (153), qui peut être exposé à un fluide chaud. Un fluide de refroidissement (K) est introduit dans une zone d'impact (17) de l'élément d'écran thermique (13), et un flux d'impact (19) de ce fluide (K) est dirigé sur une zone de surface (23) de ce côté intérieur (151) à travers une pluralité de trous d'impact (21), ce qui produit une baisse de pression d'impact (Delta PI). Selon ce procédé, un flux d'évacuation (25) est mesuré à travers plusieurs trous d'évacuation (27) formés dans ladite paroi latérale (14) ou dans les bords du côté intérieur (151) au côté extérieur (153) de la paroi principale (15), ce qui produit une baisse de pression d'évacuation (Delta PD) successive à la baisse de pression d'impact (Delta PI).