(EN)
Described herein are systems and methods for automatic unit selection and target decomposition for sequence labelling. Embodiments include a new loss function called Gram-Connectionist Temporal Classification (CTC) loss that extend the popular CTC loss function criterion to alleviate prior limitations. While preserving the advantages of CTC, Gram-CTC automatically learns the best set of basic units (grams), as well as the most suitable decomposition of target sequences. Unlike CTC, embodiments of Gram-CTC allow a model to output variable number of characters at each time step, which enables the model to capture longer term dependency and improves the computational efficiency. It is also demonstrated that embodiments of Gram-CTC improve CTC in terms of both performance and efficiency on the large vocabulary speech recognition task at multiple scales of data, and that systems that employ an embodiment of Gram-CTC can outperform the state-of-the-art on a standard speech benchmark.