Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020137260 - RELAY STATE PREDICTION DEVICE, RELAY STATE PREDICTION SYSTEM, RELAY STATE PREDICTION METHOD, AND PROGRAM

Document

明 細 書

発明の名称 継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラム

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の概要

発明が解決しようとする課題

0004   0005  

課題を解決するための手段

0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018  

発明の効果

0019  

図面の簡単な説明

0020  

発明を実施するための形態

0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065  

符号の説明

0066  

請求の範囲

1   2   3   4   5   6  

図面

1   2   3   4   5   6  

明 細 書

発明の名称 : 継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラム

技術分野

[0001]
 この発明は、継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラムに関し、たとえば、1次側のコイルへの通電をオンオフすることによって2次側の接点を開閉するタイプの継電器が、劣化に至るまでの開閉可能回数を予測することが可能な、継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラムに関する。

背景技術

[0002]
 従来、この種の継電器状態予測装置としては、例えば、特開2013-89603号公報に開示されているように、継電器のオフ時に、継電器が備える1次側の操作コイル(アクチュエーティングコイル)を流れる電流の極大値を測定し、極大値が予め定められた閾値を下回ったとき、劣化したことを予測するものが知られている。

先行技術文献

特許文献

[0003]
特許文献1 : 特開2013-89603号公報

発明の概要

発明が解決しようとする課題

[0004]
 しかしながら、特許文献1(特開2013-89603号公報)に記載のものでは、継電器が、劣化に至るまでの開閉可能回数、すなわち残寿命を予測することについては、開示されていない。
[0005]
 そこで、この発明の課題は、継電器における残寿命を予測することが可能な、継電器状態予測装置、継電器状態予測システム、継電器状態予測方法、およびプログラムを提供することにある。

課題を解決するための手段

[0006]
 そこで、この開示の継電器状態予測装置は、
 継電器が、劣化に至るまでの開閉可能回数を予測する、継電器状態予測装置であって、
 上記継電器は、
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっており、
 上記継電器状態予測装置は、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定する、電圧値取得部と、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出する、電圧値差算出部と、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出する傾き算出部と、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、状態予測部とを、備える、
ことを特徴とする。
[0007]
 この開示の継電器状態予測装置では、電圧値取得部は、シャント抵抗の両端から検出された検出電圧を、刻々、測定する。電圧値差算出部は、1次側スイッチがオフしてから、アーマチュアが変位を開始することによって検出電圧が極小となる時の第1電圧値と、2次側接点が開いた時の第2電圧値との間の電圧値差を算出する。傾き算出部は、上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出する。状態予測部は、現在の上記電圧値差と減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する。ここで、継電器は、開閉回数が増加する(すなわち、劣化する)に伴って、上記電圧値差が一次関数に近似して減少することが経験により知られている。したがって、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数、すなわち継電器における残寿命を予測することが可能となる。
[0008]
 一実施形態の継電器状態予測装置では、上記傾き算出部は、上記電圧値差を上記シャント抵抗の値で除した電流値が減少する傾きを算出する、
ことを特徴とする。
[0009]
 本明細書で、「1次側スイッチがオフしてから、アーマチュアが変位を開始することによって検出電圧が極小となる時の第1電圧値と、2次側接点が開いた時の第2電圧値との間の電圧値差を算出し、電圧値差をシャント抵抗の値で除した電流値」(これを「RUS(Reset Undershoot)」と称する。)とは、2次側可動接点を押している圧力が或る値からゼロになるまでの期間での操作コイルを流れる電流値である。これはアーマチュアの押し込み量に対応し、押し込み量が少なくなるとアーマチュアが劣化していることを表している。
[0010]
 この一実施形態の継電器状態予測装置では、傾き算出部は、電圧値差をシャント抵抗の値で除した電流値が減少する傾きを算出する。したがって、電流値(すなわち、RUS)に基づいて継電器における残寿命を予測することが可能となる。
[0011]
 一実施形態の継電器状態予測装置では、予測された上記開閉可能回数を報知する、報知部を、さらに備えている、
ことを特徴とする。
[0012]
 この一実施形態の継電器状態予測装置では、ユーザは、上記報知を受けることにより、継電器が劣化に至るまでの残寿命を定量的に認識することができる。よって、ユーザは、継電器を交換する等の対策を迅速にとることができる。
[0013]
 別の局面では、この開示の継電器状態予測システムは、
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっている、継電器と、
 上記シャント抵抗の両端から検出された検出電圧を測定する、第1電圧計と、
 上記継電器の上記1対の2次側接点間の電圧を測定する、第2電圧計と
 上記第1および第2電圧計と通信可能に接続された、継電器状態予測装置とを、備え、
 上記継電器状態予測装置は、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定する、電圧値取得部と、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出する、電圧値差算出部と、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出する傾き算出部と、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、状態予測部とを、備える、
ことを特徴とする。
[0014]
 この開示の継電器状態予測システムでは、継電器における残寿命を予測することが可能となる。
[0015]
 別の局面では、この開示の継電器状態予測方法は、
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっている、継電器が、劣化に至るまでの開閉可能回数を予測する、継電器状態予測方法であって、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定し、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出し、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出し、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、
ことを特徴とする。
[0016]
 この開示の継電器状態予測方法では、継電器における残寿命を予測することが可能となる。
[0017]
 さらに別の局面では、この開示のプログラムは、上記継電器状態予測方法を、コンピュータに実行させるためのプログラムである。
[0018]
 この開示のプログラムをコンピュータに実行させることによって、上記継電器状態予測方法を実施することができる。

発明の効果

[0019]
 以上より明らかなように、この開示の、継電器状態予測装置、継電器状態予測システム、および継電器状態予測方法によれば、継電器における残寿命を予測することが可能となる。また、この開示のプログラムをコンピュータに実行させることによって、上記継電器状態予測方法を実施することができる。

図面の簡単な説明

[0020]
[図1] 実施形態に係る継電器状態予測システムの概略構成を示す図である。
[図2] 図1の継電器状態予測システムに含まれた継電器状態予測装置のブロック構成を示す図である。
[図3] 図1の継電器状態予測システムの動作を説明するフローチャートである。
[図4] 図4(A)は、継電器の2次側のスイッチが「閉」となっている状態を示す図である。図4(B)は、継電器の2次側のスイッチが「開」となっている状態を示す図である。
[図5] 電圧波形を例示する図である。
[図6] 継電器のRUSと継電器の開閉回数との関係を、複数のサンプルについて、サンプルごとに、示した図である。

発明を実施するための形態

[0021]
 以下、この開示の実施の形態を、図面を参照しながら詳細に説明する。
[0022]
 (継電器状態予測システム100の概略構成)
 図1は、継電器状態予測システム100の全体構成を示している。一例として、継電器状態予測システム100は、継電器4における残寿命を予測する。ここで継電器4の「残寿命」とは、現在から電圧値差(またはRUS)が予め定められた閾値に到達するまでの開閉可能回数を指す。
[0023]
 図1に示すように、継電器状態予測システム100は、継電器4と、電圧計5,8と、継電器状態予測装置10とを備える。また、継電器状態予測システム100は、DC電源1、スイッチ装置2、ダイオード3、シャント抵抗9、AC電源6、および負荷7を、さらに備える。
[0024]
 図1に示すように、継電器4は、1次側回路と2次側回路にまたがって、配置されている。継電器4は、1次側の操作コイル4aと、2次側のスイッチ4bとを、有する。また、2次側のスイッチ4bは、この例では一対の接点(第1の接点4b1および第2の接点4b2)を、有する。当該一対の接点4b1,4b2は、1次側の操作コイル4aへの通電をオンオフすることによって、開閉する。
[0025]
 図1に示すように、1次側回路において、DC電源1の正電極端子1pは、スイッチ装置2の一方端2aに接続されている。スイッチ装置2の他方端2bは、ダイオード3のカソード端子3kに接続されている。また、スイッチ装置2の他方端2bは、操作コイル4aの一方端4a1に接続されている。DC電源1の負電極端子1mは、ダイオード3のアノード端子3aに接続されている。また、DC電源1の負電極端子1mは、シャント抵抗9の一方端9aに接続されている。また、シャント抵抗の他方端9bは、操作コイル4aの他方端4a2に接続されている。なお、電圧計8は、シャント抵抗9に対して、並列に接続されている。これにより、電圧計8は、シャント抵抗9の両端9a,9b間の電圧値を、測定することができる。
[0026]
 図1に示すように、2次側回路において、スイッチ4bの第1の接点4b1は、負荷電源であるAC電源6の一方端6aに接続されている。AC電源6の他方端6bは、負荷7の一方端7aに接続されている。負荷7の他方端7bは、スイッチ4bの第2の接点4b2に接続されている。なお、電圧計5は、スイッチ4bに対して、並列に接続されている。これにより、電圧計5は、継電器4の一対の接点4b1,4b2間の電圧値を、測定することができる。
[0027]
 上述した、1次側回路および2次側回路とは別に、継電器状態予測装置10が、配置されている。図1に示すように、継電器状態予測装置10は、電圧計5,8と、通信可能に接続されている。なお、継電器状態予測装置10と電圧計5,8との接続は、有線であっても、無線であってもよい。当該構成により、継電器状態予測装置10は、電圧計5,8から、当該電圧計5,8の測定結果である、電圧値を受信することができる。また、継電器状態予測装置10は、スイッチ装置2と、通信可能に接続されている。なお、継電器状態予測装置10とスイッチ装置2との接続は、有線であっても、無線であってもよい。当該構成により、スイッチ装置2は、当該スイッチ装置2のオフのタイミングを、継電器状態予測装置10へ通知することができる。
[0028]
 DC電源1は、継電器4内の操作コイル4aに対して、直流電流を供給する。スイッチ装置2は、この例ではFET(電界効果トランジスタ)からなり、図示しない外部からのスイッチ制御信号に応じて、ON(オン)状態からOFF(オフ)状態、または、OFF状態からON状態、へと切り替わる。スイッチ装置2は、当該切り替えのタイミングを表す信号を、継電器状態予測装置10に対して、送信する。なお、スイッチ装置2は、FET以外の半導体スイッチからなっていても良いし、機械式スイッチからなっていても良い。ダイオード3は、誘導負荷である操作コイル4aにより発生する逆起電圧から、回路を保護するために、配設されている。
[0029]
 上述したように、継電器4では、1次側の操作コイル4aへの通電をオンオフすることによって、2次側の一対の接点4b1,4b2が、開閉される。より具体的に、スイッチ装置2がオンに切り替わることにより、操作コイル4aへの、DC電源1からの通電がオンとなる。そして、操作コイル4aへの通電により、継電器4(より具体的には、スイッチ4b)が「閉」となる。他方、スイッチ装置2がオフに切り替わることにより、操作コイル4aへの、DC電源1からの通電がオフとなる。そして、操作コイル4aへの非通電により、継電器4(より具体的には、スイッチ4b)が「開」となる。
[0030]
 継電器4におけるスイッチ4bは、第1の接点4b1と第2の接点4b2とを有する。電圧計5は、第1の接点4b1と第2の接点4b2との間の電圧値を、測定する。なお、電圧計5は、測定した電圧値を、信号として、継電器状態予測装置10へと送信する。AC電源6は、負荷7に対して交流電力を供給する。そして、当該負荷7は、供給される交流電力を消費し、所定の動作を行う。
[0031]
 (継電器の動作)
 図4(A)は、スイッチ装置2はオンであり、継電器4のスイッチ4bが「閉」となっている状態を示す。この状態では、スイッチ4bのアーマチュア4Aは、操作コイル4aが発生する電磁力E1によって、操作コイル4aに対して相対的に変位する。具体的には、アーマチュア4Aは、コイルばね41の引っ張り力F1に抗して、支点SPの周りに矢印X1で示す向きに回転し、或る押し込み量Bxだけ撓みながら、第1の接点4b1を第2の接点4b2に対して接触させるようになっている。
[0032]
 図4(B)は、スイッチ装置2はオフとなり、継電器4のスイッチ4bが「開」となる状態を示す。この状態では、操作コイル4aにより発生する電磁力E1が小さくなり、その結果、スイッチ4bのアーマチュア4Aは、コイルばね41の引っ張り力F2によって、支点SPの周りに矢印X2で示す向きに回転する。これにより、第1の接点4b1を押している圧力が或る値からゼロになって、第1の接点4b1を第2の接点4b2から離れさせる。この場合、操作コイル4aでは、逆起電圧が発生し、操作コイル4aを流れる電流は、ダイオード3を環流する。
[0033]
 (継電器状態予測装置10の概略構成)
 次に、継電器状態予測装置10の構成について、説明する。図2には、継電器状態予測装置10の概略構成が、図示されている。本実施の形態では、継電器状態予測装置10が、上述した継電器4における残寿命を予測する。図2に示すように、継電器状態予測装置10は、信号受信部21、電圧値取得部22、表示部23、操作部24、メモリ25、閾値格納部26、報知部27、およびプロセッサ28を、備える。
[0034]
 継電器状態予測装置10内において、プロセッサ28は、信号受信部21、電圧値取得部22、表示部23、操作部24、メモリ25、閾値格納部26、および報知部27と、通信可能に接続されている。これにより、プロセッサ28は、信号受信部21、電圧値取得部22、表示部23、操作部24、メモリ25、閾値格納部26、および報知部27を制御し、当該制御により、各部21,22,23,24,25,26,27は、所定の動作を実施する。
[0035]
 信号受信部21は、信号またはデータを、外部端末との間で送受信する。たとえば、本実施の形態に係る信号受信部21は、スイッチ装置2と、通信可能に接続されている。したがって、当該信号受信部21は、スイッチ装置2から、当該スイッチ装置2がOFFしたタイミングを表すデータなどを、受信する。
[0036]
 電圧値取得部22は、信号またはデータを、外部端末との間で送受信する。たとえば、本実施の形態に係る電圧値取得部22は、電圧計5,8と、通信可能に接続されている。したがって、当該電圧値取得部22は、電圧計5,8から、当該電圧計5,8が測定した電圧値を表す信号を、受信(取得)する。
[0037]
 表示部23は、各種画像を表示する、モニタである。表示部23は、プロセッサ28における各種解析の結果等を、視認可能に表示することができる。また、操作部24を介したユーザからの指示に応じて、表示部23は、所定の情報を、視認可能に表示することもできる。たとえば、表示部23は、メモリ25および閾値格納部26に格納されている情報(データ)を、視認可能に表示してもよい。また、表示部23は、所定の通知などを、視認可能に表示してもよい。たとえば、表示部23として、液晶モニタ等を採用することができる。
[0038]
 操作部(閾値入力部と把握できる)24は、ユーザからの、所定の操作(指示)を受け付ける部分である。たとえば、当該操作部24は、マウスおよびキーボードなどから、構成される。ここで、表示部23として、タッチパネル式のモニタを採用した場合には、表示部23は、表示機能だけでなく、操作部24としての機能をも有する。
[0039]
 メモリ25は、各種データを記憶する。当該メモリ25は、RAM(Random Access Memory)およびROM(Read Only Memory)等を含む。たとえば、メモリ25には、プロセッサ28の動作等に用いられる各種プログラムが、変更可能に格納されている。また、メモリ25は、信号受信部21が取得したスイッチ装置2からのデータ(スイッチングのタイミングを示すデータ)、および電圧値取得部22が取得した電圧計5,8からの電圧値データ等を、格納する。メモリ25は、格納されている各種データを、格納後、予め設定された所定時間経過した後に、消去してもよい。
[0040]
 閾値格納部26は、継電器4が劣化したか否かの予測のための閾値Thを格納する。ここで、当該閾値Thは、経験則等に基づいて、ユーザにより決定(設定)される。なお、閾値格納部26に格納されている閾値Thは、変更可能である。たとえば、操作部24は、閾値Thを可変して入力するための閾値入力部として機能する。当該操作部24に対して、ユーザは、所望の閾値Thを、入力する。これにより、閾値格納部26に、当該閾値Thが格納(設定)される。なお、既に、閾値格納部26内に、閾値Th’が格納されている場合には、ユーザからの操作部24を介した操作により、閾値Th’は、当該操作に応じた閾値Thに変更される。なお、閾値格納部26は、所定の閾値Thを、デフォルトとして有していてもよい。
[0041]
 報知部27は、後述するプロセッサ28の解析結果に基づいて、継電器4の残寿命を報知する。たとえば、報知部27は、液晶表示装置から構成される。この例では、当該報知部27は、継電器4の残り開閉可能回数をデジタルまたはアナログ表示する。なお、表示部23に、当該報知部27の機能を持たせることができ、この場合には、所定の情報(継電器4の残寿命を示す情報)が、表示部23に、視認可能に表示される。
[0042]
 プロセッサ28は、この例ではCPU(Central Processing Unit)を含んでいる。たとえば、プロセッサ28は、メモリ25に格納されている各プログラムおよび各データを読み込む。また、プロセッサ28は、読み込んだプログラムに従い、各部21-27を制御し、所定の動作(機能)を実行させる。また、プロセッサ28は、読み込んだプログラムに従い、当該プロセッサ28内(プログラムによって構成される各ブロック28a,28c)において、所定の演算、解析、処理等を実施する。なお、プロセッサ28が実行する各機能の一部又は全部を、一つ或いは複数の集積回路等によりハードウェア的に構成してもよい。
[0043]
 図2に示すように、本実施の形態に係るプロセッサ28は、所定の動作を実現するためにプログラム化された、RUS算出部28a、傾き算出部28bおよび状態予測部28cを、機能ブロックとして、備える。なお、各ブロック28a,28b,28cの動作は、後述する動作の説明において、詳述される。
[0044]
 (継電器状態予測システム100の動作)
 次に、継電器状態予測システム100における、継電器4の残寿命予測動作を、図3に示すフローチャートを用いて説明する。
[0045]
 図3を参照して、スイッチ装置2は、ON状態からOFF状態に切り替わったとする(ステップS1)。当該スイッチ装置2は、当該切り替わったことを、継電器状態予測装置10へ通知する。継電器状態予測装置10の信号受信部21は、当該通知を受信する。
[0046]
 次に、電圧計8は、シャント抵抗9において、両端9a,9bの間の電圧を、測定する(ステップS2)。そして、電圧計8は、測定結果である電圧値Vaを、継電器状態予測装置10へ送信し、継電器状態予測装置10の電圧値取得部22は、当該電圧値Vaを受信する。メモリ25は、電圧値取得部22が受信した電圧値Vaを、格納する。ここで、電圧計8は、シャント抵抗9の両端9a,9bの間の電圧を、刻々、測定している。
[0047]
 ここで、図5は、継電器4に対するオフ指示以後(図3のステップS1以後)の、シャント抵抗9の両端9a,9bの間の電圧値Vaと、スイッチ4bにおける、第1の接点4b1と第2の接点4b2との間の電圧値Vbとの時間変化を示している。図5の縦軸は、電圧値(V)であり、図5の横軸は、時間(ms)である。
[0048]
 次に、継電器状態予測装置10のRUS算出部28aは、アーマチュア4Aが図4(B)中に矢印X2で示した向きに変位を開始することによって、電圧値Vaが低くなり極小となる時の電圧値V1を取得する(図3のステップS3)。
[0049]
 次に、電圧計5は、スイッチ4bにおいて、第1の接点4b1と第2の接点4b2との間の電圧を測定する。そして、スイッチ4bが開いた時(図5中の点線の円Dで示すように電圧値Vbが急低下した時を指す。)、継電器状態予測装置10のRUS算出部28aは、電圧計8が測定した電圧値Vaを第2電圧値V2として取得する(図3のステップS4)。
[0050]
 次に、継電器状態予測装置10の電圧値差算出部であるRUS算出部28aは、上記の電圧値V1と電圧値V2との間の電圧値差VDを算出する(ステップS5)。
[0051]
 次に、継電器状態予測装置10のRUS算出部28aは、上記の電圧値差VDをシャント抵抗9の抵抗値で除してRUSを算出する(ステップS6)。メモリ25は、RUS算出部28aが算出したRUSを、格納する。
[0052]
 次に、RUS算出部28aは、上記のRUSを、傾き算出部28bへ送信する。
[0053]
 ここで、図6は、RUSと、接点4b1,4b2の開閉回数との、関係を例示している。図6の縦軸は、RUS(μA)であり、図6の横軸は、接点4b1,4b2の開閉回数である。図6に例示するように、開閉回数の増加に伴って、RUSは一次関数(減少する傾きS )に近似して減少していることが分かる。
[0054]
 次に、傾き算出部28bは、RUSの減少中に、刻々、RUSの値(これをRUS とする)を受信する。詳しくは、この例では、RUS算出部28aからRUS を受信し、次に、前回のターン時(所定の開閉回数n以前)のRUS i-1を受信する。これにより、今回のターンでのRUSの減少する傾きS =(RUS -RUS i-1)/nを求める(図3のステップS7)。このようにして、傾き演算部28bは、RUSの減少中に、刻々、RUSの減少する傾きS を求める。なお、RUSの減少する傾きS を算出する方法は、これに限られるものではない。最小二乗法を用いて減少する傾きS を求めてもよい。
[0055]
 次に、状態予測部28cは、閾値格納部26に格納されている閾値Thを読み出す。状態予測部28cは、現在のRUS とRUSの減少する傾きS とに基づいて、RUSが閾値Thに到達するまでの開閉可能回数Mを予測する(図3のステップS8)。詳しくは、図6に例示するように、この例では、閾値Th=100μAに設定されている。したがって、一次関数を現在のRUS からRUSの減少する傾きS に基づいて外挿することによって、現在のRUS から閾値Thに到達するまでの開閉可能回数Mが求められる。具体的には、M=(RUS -Th)/S として算出される。
[0056]
 ここで、上記から分かるように、ステップS7の比較処理で用いられるRUSは、ステップS6において求められた、RUSである。また、ステップS7の比較処理で用いられる閾値は、継電器状態予測装置10の閾値格納部26において、予め設定されている閾値Thである。
[0057]
 また、閾値Thは、経験則等に基づいて、ユーザにより設定される。ユーザは、図6に例示するRUSの測定結果、継電器4の使用状況、および予想される継電器4の故障の時点(継電器4の開閉が正常に動作しなくなると予想される時点)等を加味して、経験則に基づいて、閾値Thを設定する。なお、図6の例では、閾値Thは、100μAに設定されている。つまり、図6の例では、ユーザは上記各要素を勘案し、使用される継電器4のRUSが100μAに達したとき、当該継電器4が劣化していると当該ユーザは判断している。
[0058]
 次に、図3のステップS9において、状態予測部28cは、報知部27を制御し、当該報知部27は、継電器4の開閉可能回数Mを報知する(図3のステップS9)。その後、継電器状態予測処理は、終了する。
[0059]
 (効果)
 従来技術で述べたように、従来の継電器では、残寿命を予測する技術については、開示されていない。これに対して、本実施の形態では、現在からRUSが予め定められた閾値に到達するまでの開閉可能回数、すなわち継電器における残寿命を予測することが可能となる。
[0060]
 図6は、継電器のRUSと、当該継電器の開閉回数との関係を例示する、一実験データを示している。図6で示されているサンプル#1~#5は、同じ種類(型番)の継電器であり、同じ条件で実験されている。図6の実験例から分かるように、同じ種類(型番)の継電器であっても、RUS等に関しては、サンプル#1~#5間で個体差が大きい。
[0061]
 これに対して、本実施の形態では、RUS算出部28aは、継電器4に対するRUSを求める。そして、状態予測部28cは、現在からRUSが予め定められた閾値に到達するまでの開閉可能回数を予測する。ここで、継電器4が劣化している場合のRUSに関しては、継電器4の個体差は小さいことが経験的に分かっている。したがって、本実施の形態によれば、継電器4の残寿命を精度良く報知することができる。
[0062]
 また、本実施の形態では、報知部27は、現在からRUSが予め定められた閾値に到達するまでの開閉可能回数、すなわち残寿命を報知する。よって、ユーザは、継電器4を交換する等の対策を迅速にとることができる。
[0063]
 上述の継電器状態予測方法(図3)をコンピュータに実行させるための、ソフトウェア(コンピュータプログラム)を、CD(コンパクトディスク)、DVD(デジタル万能ディスク)、フラッシュメモリなどの、非一時的(non-transitory)にデータを記憶することが可能な記録媒体に、記録してもよい。このような記録媒体に記録されたソフトウェアを、パーソナルコンピュータ、PDA(パーソナル・デジタル・アシスタンツ)、スマートフォンなどの実質的なコンピュータ装置にインストールすることによって、それらのコンピュータに、上述の継電器状態予測方法を実行させることができる。
[0064]
 また、上述の実施の形態では、プロセッサ28はCPUを含むものとしたが、これに限るものではない。プロセッサ28は、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などの、論理回路(集積回路)を含むものとしてもよい。
[0065]
 以上の実施の形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。

符号の説明

[0066]
 2 スイッチ装置
 4 継電器
 4a 操作コイル
 4b スイッチ
 5 電圧計
 8 電圧計
 10 継電器状態予測装置
 22 電圧値取得部
 28a RUS算出部
 28b 傾き算出部
 28c 状態予測部
 100 継電器状態予測システム

請求の範囲

[請求項1]
 継電器が、劣化に至るまでの開閉可能回数を予測する、継電器状態予測装置であって、
 上記継電器は、
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっており、
 上記継電器状態予測装置は、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定する、電圧値取得部と、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出する、電圧値差算出部と、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出する傾き算出部と、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、状態予測部とを、備える、
ことを特徴とする継電器状態予測装置。
[請求項2]
 一実施形態の継電器状態予測装置では、
 請求項1に記載の継電器状態予測装置において、
 上記傾き算出部は、上記電圧値差を上記シャント抵抗の値で除した電流値が減少する傾きを算出する、
ことを特徴とする継電器状態予測装置。
[請求項3]
 請求項1または2に記載の継電器状態予測装置において、
 予測された上記開閉可能回数を報知する、報知部を、さらに備えている、
ことを特徴とする継電器状態予測装置。
[請求項4]
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっている、継電器と、
 上記シャント抵抗の両端から検出された検出電圧を測定する、第1電圧計と、
 上記継電器の上記1対の2次側接点間の電圧を測定する、第2電圧計と
 上記第1および第2電圧計と通信可能に接続された、継電器状態予測装置とを、備え、
 上記継電器状態予測装置は、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定する、電圧値取得部と、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出する、電圧値差算出部と、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出する傾き算出部と、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、状態予測部とを、備える、
ことを特徴とする継電器状態予測システム。
[請求項5]
 1次側電源に対して直列に接続された1次側スイッチと、操作コイルと、シャント抵抗とを含み、
 上記操作コイルと上記シャント抵抗との直列接続に対して並列に、上記1次側スイッチがオフする時に上記操作コイルの逆起電力による電流を上記シャント抵抗に流す向きに接続されたダイオードを含み、さらに、
 上記1次側スイッチのオンオフに応じて少なくとも1対の2次側接点を開閉するアーマチュアを含み、このアーマチュアは、上記1次側スイッチのオンする時に上記操作コイルが発生する電磁力によって上記操作コイルに対して相対的に変位して、或る押し込み量だけ撓みながら、一方の2次側接点を他方の2次側接点に対して接触させるようになっている、継電器が、劣化に至るまでの開閉可能回数を予測する、継電器状態予測方法であって、
 上記シャント抵抗の両端から検出された検出電圧を、刻々、測定し、
 上記1次側スイッチがオフしてから、上記アーマチュアが変位を開始することによって上記検出電圧が極小となる時の第1電圧値と、上記2次側接点が開いた時の第2電圧値との間の電圧値差を算出し、
 上記1次側スイッチがオンオフを繰り返すのに応じて上記2次側接点が開閉を繰り返すのに伴って、上記電圧値差が減少する傾きを算出し、
 現在の上記電圧値差と上記減少する傾きとに基づいて、現在から上記電圧値差が予め定められた閾値に到達するまでの開閉可能回数を予測する、
ことを特徴とする継電器状態予測方法。
[請求項6]
 請求項5に記載の記継電器状態予測方法を、コンピュータに実行させるためのプログラム。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]