Processing

Please wait...

Settings

Settings

Goto Application

1. WO2013011613 - CONDENSING LENS ARRAY, AND SOLAR CELL PROVIDED WITH SAME

Document

明 細 書

発明の名称 集光型レンズアレイおよびそれを備えた太陽電池

技術分野

0001  

背景技術

0002   0003   0004   0005   0006  

先行技術文献

特許文献

0007  

発明の概要

発明が解決しようとする課題

0008   0009  

課題を解決するための手段

0010  

発明の効果

0011  

図面の簡単な説明

0012  

発明を実施するための形態

0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106  

産業上の利用可能性

0107  

符号の説明

0108  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14  

明 細 書

発明の名称 : 集光型レンズアレイおよびそれを備えた太陽電池

技術分野

[0001]
 本願は、追尾型集光太陽電池に使われる集光型レンズアレイおよびそれを用いた太陽電池に関する。

背景技術

[0002]
 光電変換によって、太陽光を電気エネルギーに変換する太陽電池は、将来の有望な発電装置である。しかし、現段階では、太陽電池を構成する半導体等の材料コストおよび太陽電池の製造コストは高く、kwの発電当たりに必要な単価(エネルギー単価)は、火力発電の数倍のレベルにある。
[0003]
 また、太陽は東から西に移動するので、太陽電池の受光面が固定されている場合、太陽の移動にともなって、太陽光の太陽電池への入射角が変化する。入射角の変化により実効的な受光面積が変化するだけでなく(太陽電池の受光面の法線と光線のなす角をθとすると、実効面積はcosθに比例する)、フレネル反射により、太陽電池の受光面での反射率も変化する。一般に正午近くではθの絶対値が最も小さくなり、実効的な受光面積は最大に、表面反射損は最小になり、受光量は最大値を示す。
[0004]
 このようなことから、レンズを使って大面積の光を小さな太陽電池に集光させながら、太陽電池全体を太陽の方位に合わせて動かし、常に太陽光線と太陽電池の受光面が直交するように太陽に追尾させることが考えられている。このようなシステムは追尾型集光太陽電池と呼ばれる。太陽に追尾させるには太陽の方位を検出する装置や太陽電池全体を回転させる駆動装置等が必要であり、これらは追尾型集光太陽電池のエネルギー単価を押し上げる。したがって、レンズと太陽電池の組み合わせをアレイ状にし、多数の太陽電池を1つの検出装置や駆動装置で作動させること、集光効率(太陽電池面積に対するレンズ面積の比)の高い光学系を採用すること等で、全体のエネルギー単価を下げることが好ましい。
[0005]
 図14を参照して、追尾型集光太陽電池に用いられる従来の集光型レンズアレイの構造を説明する。図14は、太陽電池およびその上に配置された集光型レンズアレイの断面構造を模式的に示している。図14に示すように太陽電池基板100に複数の受光部3がアレイ状に設けられている。太陽電池基板100には図示しない冷却機構が設けられており、受光部3に集光される太陽光によって太陽電池基板100が所定の温度以上に過熱されるのを防いでいる。
[0006]
 太陽電池基板100上には、集光型レンズアレイ5が設けられている。集光型レンズアレイ5は、各受光部3に光を集光するために、アレイ状に配置された複数のマイクロレンズ5aを有している。各マイクロレンズ5aの表面5sは球面に近い形状を有している。マイクロレンズ5aの中心軸Lに沿って入射する太陽光線4は表面5sにおいて屈折し、受光部3上の点Fに集束する光4aとなる。この光4aを受光部3で受光し、光電変換する。太陽電池の受光部とレンズアレイとが一体で構成されているため、この太陽電池を太陽光が照射する方向に向けることによって、集光効率が高く、安価な太陽電池を提供できると考えられる。

先行技術文献

特許文献

[0007]
特許文献1 : 特開2008-124381号公報

発明の概要

発明が解決しようとする課題

[0008]
 しかし、このような従来の集光型レンズアレイを備える太陽電池では、光の屈折を利用して集光するため、集光の際に色収差が発生し得る。
[0009]
 本願の限定的ではない例示的なある実施形態は、色収差が抑制された集光を実現する集光型レンズアレイおよびこれを備えた太陽電池を提供する。

課題を解決するための手段

[0010]
 本発明の一態様である集光型レンズアレイは、少なくとも1次元に配列された複数のユニット構造を備えた集光型レンズアレイであって、各ユニット構造は、光が内部へ入射する第1の面と、前記第1の面から入射し、前記内部を透過した前記光を前記内部へ反射する第2の面と、前記第2の面で反射した光を前記内部へ反射する第3の面と、前記第3の面で反射した光を外部へ出射する第4の面とを含み、各ユニット構造において、前記第2の面および前記第3の面は、前記第1の面が位置する入射平面と、前記第4の面が位置する出射平面との間に位置しており、前記第2の面および前記第3の面のうち、少なくとも一方は、入射する光よりも収束させて前記光を反射し、各ユニット構造の前記第2の面は、前記入射平面と垂直な方向であって前記入射平面側から見て、隣接するユニット構造の前記第3の面と重なっており、かつ、隣接するユニット構造の前記第3の面より前記入射平面側に位置している。

発明の効果

[0011]
 本発明の一態様にかかる集光型レンズアレイおよびこれを備えた太陽電池によれば、全反射により、太陽光を集光するため、色収差が大きく抑制され、高い集光効率が得られる。

図面の簡単な説明

[0012]
[図1] 本発明による追尾型太陽電池システムの第1および第2の実施形態を示す概略的な構成図である。
[図2] 第1の実施形態の集光型レンズアレイの模式的な構成を示す斜視図である。
[図3] 第1の実施形態の集光型レンズアレイの3×3つ分のユニット構造を示す分解斜視図である。
[図4] 第1の実施形態の集光型レンズアレイのx方向における3つ分のユニット構造をy軸の負方向から見た分解側面図である。
[図5] 第1の実施形態の集光型レンズアレイのy方向における3つ分のユニット構造をx軸から見た分解側面図である。
[図6] 第1の実施形態の集光太陽電池のx方向における3つ分のユニット構造をy軸の負方向から見た断面図である。
[図7] 集光型レンズアレイの他の形態を示す図であって、x方向における3つ分のユニット構造をy軸の負方向から見た分解側面図である。
[図8] 第2の実施形態の集光型レンズアレイの模式的な構成を示す斜視図である。
[図9] 第2の実施形態の集光型レンズアレイの3×2つ分のユニット構造を示す分解斜視図である。
[図10] 第2の実施形態の集光型レンズアレイのx方向における3つ分のユニット構造をy軸の負方向から見た分解側面図である。
[図11] 第2の実施形態の集光型レンズアレイのy方向における3つ分のユニット構造をx軸から見た分解側面図である。
[図12] 第2の実施形態の太陽電池のx方向における3つ分のユニット構造をy軸の負方向から見た側面図である。
[図13] 第2の実施形態の太陽電池のy方向における3つ分のユニット構造をx軸から見た側面図である。
[図14] 従来の集光型太陽電池の構造を示す断面図である。

発明を実施するための形態

[0013]
 本願発明者は、従来の太陽電池に用いられる集光型レンズアレイの課題を詳細に検討した。
[0014]
 まず、集光型レンズアレイを構成する樹脂やガラスなどの透明媒質には分散があり、屈折率は透過する光の波長に依存する。太陽電池の場合、0.4μmから1.6μmの広い範囲の波長の光を光電変換する必要があるため、波長が異なることによる屈折率の差も大きくなる。この屈折率差により、屈折を使った光の集光には大きな色収差が発生し、集光点の位置は波長によって大きく変化する。このため、図14に示すように、太陽光に含まれる全ての波長の光を点Fで収束させることはできず、マイクレンズにより集光される光のスポットは大きくなる。集光した光をできるだけ多く受光するためには、受光部3の面積を大きくする必要がある。これは、集光効率(受光部面積に対するレンズ面積の比)を十分に高められないことを意味する。
[0015]
 また、集光型レンズアレイを樹脂材料で構成する場合、使用期間が長くなるにつれて紫外線による透過率の低下が生じる。このため、図14に示すように、樹脂内部の光路長AFはできるだけ短いほうが好ましい。また、レンズによって受光面に結像する太陽の像を小さくするためにも、光路長AFはできるだけ短いほうが好ましい。光路長AFを短くするためには、表面5sの曲率半径を小さくし、大きな屈折力を得ればよい。しかし、この場合、隣接するマイクロレンズ5aの表面5s間に、狭く深い窪み5bが形成される。この窪みの近傍では面法線が入射光線4と大きな角度をなすので、反射損が増大し、受光部3へ入射する光の入射効率が低下する。
[0016]
 さらに、集光型レンズアレイ5において、マイクロレンズ5aは2次元に配列されているため、窪み5bはマイクロレンズ5aによって挟まれた構成となり、マイクロレンズ5aの表面5sの曲率半径が小さいほど、窪み5bが深くなり、ゴミや汚れが付着しやすくなる。また、いったん付着したごみや汚れを取り除くことは容易ではない。このようなごみや汚れも集光型レンズアレイの透過率を低下させる。
[0017]
 さらに、太陽光は、マイクロレンズ5aの中心軸Lの近傍では、表面5sに対して垂直に入射し、表面5sでの反射光も中心軸Lに沿う方向にあり、反射光量も小さい。これに対し、中心軸Lから離れると、太陽光は表面5sに対して斜めに入射し、表面5sでの反射光は中心軸Lから大きく傾き、反射光量も増大する。このため、マイクロレンズ5aの表面5sの曲率半径が小さくなると、周りに撒き散らされる反射光量が増大し、周囲の環境にとっては光害となり得る。
[0018]
 このような課題に鑑み、本願発明者は、新規な集光型レンズアレイ、これを用いた太陽電池ならびに追尾型太陽電池システムを想到した。本発明の一態様の概要は以下のとおりである。
[0019]
 本発明の一態様である集光型レンズアレイは、少なくとも1次元に配列された複数のユニット構造を備えた集光型レンズアレイであって、各ユニット構造は、光が内部へ入射する第1の面と、前記第1の面から入射し、前記内部を透過した前記光を前記内部へ反射する第2の面と、前記第2の面で反射した光を前記内部へ反射する第3の面と、前記第3の面で反射した光を外部へ出射する第4の面とを含み、各ユニット構造において、前記第2の面および前記第3の面は、前記第1の面が位置する入射平面と、前記第4の面が位置する出射平面との間に位置しており、前記第2の面および前記第3の面のうち、少なくとも一方は、入射する光よりも収束させて前記光で反射し、各ユニット構造の前記第2の面は、前記入射平面と垂直な方向であって前記入射平面側から見て、隣接するユニット構造の前記第3の面と重なっており、かつ、隣接するユニット構造の前記第3の面より前記入射平面側に位置している。
[0020]
 各ユニット構造は、前記入射平面と垂直な方向において配置された前記第1の面および前記第2の面と、前記第2の面で反射した前記光を出射する出射平面とを有する第1の集光体と、前記入射平面と垂直な方向において配置された前記第3の面および前記第4の面と、前記第1の集光体の前記出射平面から出射した光が入射する入射平面とを有する第2の集光体とを備え、前記第1の集光体の出射平面の少なくとも一部と前記第2の集光体の入射平面の少なくとも一部とが互いに接している。
[0021]
 前記第1の集光体の前記第2の面における反射および前記第2の集光体の前記第3の面における反射は全反射を含む。
[0022]
 前記各ユニット構造の第1の集光体は、隣接するユニット構造の前記第2の集光体の上に位置している。
[0023]
 前記第2の面および前記第3の面の少なくとも一方は、回転面の一部によって構成されている。
[0024]
 前記第2の面および前記第3の面の他方は平面である。
[0025]
 前記第2の面および前記第3の面の一方は放物面であり、他方は平面である。
[0026]
 前記第2の面は放物面であり、前記第3の面は双曲面である。
[0027]
 前記第1の面および前記第4の面の一方は球面であり、前記第2の面および前記第3の面の一方は双曲面であり、他方は平面である。
[0028]
 前記第1の面および前記第4の面の一方は球面であり、前記第2の面および前記第3の面は双曲面である。
[0029]
 前記第2の面は、第1方向に伸びる曲面形状を有し、前記第3の面は、前記第1の方向と非平行な第2の方向に伸びる他の曲面形状を有する。
[0030]
 前記第1の方向と前記第2の方向とは直交している。
[0031]
 前記第1の面は、前記第1の方向と平行な柱軸を有する円柱面であり、前記第2の面は、前記第1の方向と平行な柱軸を有する双曲柱面であり、前記第3の面は、前記第2の方向と平行な柱軸を有する放物柱面である。
[0032]
 前記第1の面は、前記第1の方向と平行な平面であり、前記第2の面は、前記第1の方向と平行な柱軸を有する放物柱面であり、前記第3の面は、前記第2の方向と平行な柱軸を有する放物柱面である。
[0033]
 前記第1の面は球面であり、前記第2の面は、前記第1の方向と平行な柱軸を有する双曲柱面であり、前記第3の面は、前記第2の方向と平行な柱軸を有する双曲柱面である。
[0034]
 本発明の一態様である太陽電池システムは、上記太陽電池と、前記太陽電池を回転させる回転モータを含む回転機構部と、前記太陽電池からの信号を基に太陽に対する前記太陽電池基板の追尾誤差を生成し、回転機構部に回転信号を送る制御部と、前記太陽電池基板で変換された電気エネルギーを蓄え、または、送電する蓄電・送電部とを備える。
[0035]
 本発明の一態様である太陽電池は、上記いずれかの集光型レンズアレイと、少なくとも1次元に配列された複数の受光部を有する太陽電池基板とを備え、前記集光型レンズアレイの各ユニット構造が対応する複数の受光部に光を集光する。
[0036]
 本発明の一態様である集光光学系は、光が内部へ入射する第1の面、および、第1方向に伸びる曲面形状を有し、前記第1の面から入射し、前記内部を透過した前記光を反射する第2の面を含む第1の集光体と、前記第1の方向と非平行な第2の方向に伸びる他の曲面形状を有し、前記第1の集光体の第2の面で反射した前記光を内部へ反射する第3の面、および、前記第3の面で反射し、前記内部を透過した前記光を外部へ出射する第4の面を含む第2の集光体とを備える。
[0037]
 以下、図面を参照しながら本発明による、集光型レンズアレイ、これを用いた太陽電池ならびに追尾型太陽電池システムの実施形態を説明する。
[0038]
 (第1の実施形態)
 図1は、追尾型太陽電池システムの第1の実施形態を示す概略的な構成図である。図1に示す追尾型太陽電池システム200は比較的大規模な太陽光発電として好適に用いることができる。追尾型太陽電池システム200は、集光太陽電池106と、集光太陽電池106を回転させる回転モータを含む回転機構部101と、集光太陽電池106からの信号を基に太陽に対する太陽電池基板100の追尾誤差を生成し、回転機構部101に回転信号を送る制御部102と、太陽電池基板100で変換された電気エネルギーを蓄え、または、送電する蓄電・送電部103とを備える。追尾型太陽電池システム200の全体は、集光太陽電池106を除き、公知の技術によって構成することができる。集光太陽電池106は、集光型レンズアレイ105および太陽電池基板100を含む。本発明の主要な特徴の1つは、集光型レンズアレイ105の構造にあるため、以下、主として、集光型レンズアレイ105の構造を中心に集光太陽電池106を説明する。
[0039]
 図2は、集光型レンズアレイ105の模式的な構成を示す斜視図である。図2において、集光型レンズアレイ105は斜線で示すユニット構造が少なくとも1次元に配列された構造を備える。図2では、ユニット構造は、x方向およびy方向にn×mの2次元に配列されているが、少なくとも1次元に配列されていればよい。
[0040]
 図2に示すように、各ユニット構造は、第1の面1a、第2の面1b、第3の面2および第4の面2cを含む。図2において矢印で示すように、第1の面1aからユニット構造の内部へ入射した太陽光は、第2の面1bおよび第3の面2bで内部へ反射を繰り返しながら第4の面2cに到達し、第4の面2cから外部へ出射する。この際、第2の面1bおよび第3の面2bの少なくとも一方において、入射する太陽光よりも収束させて太陽光を反射する。反射角は反射する光の波長に依存しないため、各ユニット構造は、色収差が抑制された太陽光の集光を実現することができる。
[0041]
 本実施形態では各ユニット構造は、第1の集光体1および第2の集光体2を含む。図2に示すように、各ユニット構造の第1の集光体1および第2の集光体2は隣接するユニット構造の第1の集光体1および第2の集光体2とそれぞれつながっている。第1の集光体1の各ユニット構造部分をU1 11、U1 12、・・・・U1 1m、・・・・・U1 n1、・・・・・U1 nmとする。また、第2の集光体2の各ユニット構造部分をU2 11、U2 12、・・・・U2 1m、・・・・・U2 n1、・・・・・U2 nmとする。以下において詳細に説明するように、各ユニット構造の第1の集光体は、そのユニット構造の第2の集光体上ではなく、x方向に隣接するユニット構造の前記第2の集光体の上に位置している。
[0042]
 各ユニット構造がx方向およびy方向に2次元に配列されているため、各ユニット構造の第1の面1aは同一の平面に配置される。この面を入射平面P1と呼ぶ。同様に、各ユニット構造の第4の面2cは同一の平面に配置される。この面を出射平面P2と呼ぶ。複数のユニット構造の第1の面1aは入射平面P1上に配置されているが、同一の平面を構成していなくてもよい。同様に、複数のユニット構造の第4の面2cは同一の平面を構成していなくてもよい。入射平面P1と出射平面P2とは平行であり、集光型レンズアレイ105において、出射平面P2は入射平面P1と反対側に位置している。第2の面1bおよび第2の面2bは入射平面P1と出射平面P2との間に位置している。
[0043]
 また、各ユニット構造の第1の集光体は、x方向に隣接するユニット構造の前記第2の集光体の上に位置しているため、各ユニット構造の第2の面1bは、入射平面P1と垂直な方向であって入射平面P1側から見て、隣接するユニット構造の第3の面2bと重なっており、かつ、隣接するユニット構造の第3の面2bより入射平面P1側に位置する。さらに、入射平面P1と垂直な方向であって入射平面P1側から見て、第1の面1aは、第2の面1bと重なっており、第3の面2bは第4の面2cと重なっている。このため、各ユニット構造では、第2の面1bと第3の面2bとが、入射平面P1と垂直な方向であって入射平面P1側から見て重ならないが、少なくともx方向において複数のユニット構造を配列した場合には、入射平面P1に各ユニット構造の第1の面1aを隙間なく配置することが可能となる。よって、入射平面P1に各ユニット構造の第1の面1aを隙間なく配置することが可能となり、入射平面P1に照射する太陽光を無駄なく太陽電基板100に照射させることができる。また、各ユニット構造において、太陽光を内部で収束させるのに必要な光路長を確保しつつ、集光型レンズアレイ105の厚さ(図2におけるz方向の厚さ)を小さくすることができ、軽量な集光型レンズアレイ105を実現し得る。
[0044]
 なお、第1の集光体1のユニット構造部分U1 n1、・・・・・U1 nmの下方には、第2の集光体2のユニット構造部分は存在しないし、第2の集光体2のユニット構造部分U2 11、U2 12、・・・・U2 1mの上方には、第1の集光体1のユニット部分は存在しないが、これらの部分の段差を埋めるため、第1の集光体1や第2の集光体2のユニット部分を形成してもよい。また、本実施形態では、各ユニット構造は第1の集光体および第2の集光体によって構成されているが、各ユニット構造は、1つの一体的な構造部材によって構成されていてもよい。この場合には、複数の独立したユニット構造を作製し、各ユニット構造を二次元に配列して集光体レンズアレイ105を作製してもよい。
[0045]
 図3、図4および図5は、それぞれ、第一実施形態の集光型レンズアレイの3×3つ分のユニット構造を示す分解斜視図、x方向における3つ分のユニット構造をy軸の負方向から見た分解側面図、およびy方向における3つ分のユニット構造をx軸方向から見た分解側面図である。また、図6は、本実施形態の集光太陽電池のx方向における3つ分のユニット構造をy軸の負方向から見た側面図である。これらの図を参照しながら、本実施形態の集光型レンズアレイおよび太陽電池をより詳細に説明する。
[0046]
 上述したように集光型レンズアレイ105の各ユニット構造は、第1の集光体1および第2の集光体2を含む。第1の集光体1および第2の集光体2は、太陽光の波長領域における光の透過率が高く、耐光性を有する材料によって構成されている。具体的には、種々材料のガラスやPMMAなどの樹脂を用いることができる。ただし、ガラスは樹脂に比べて重いため、ガラスによって第1の集光体1および第2の集光体2を構成する場合、集光型レンズアレイ105の重量が増大する。このため、回転機構部101への負荷を軽減するためには、第1の集光体1および第2の集光体2を樹脂によって構成することが好ましい。第1の集光体1および第2の集光体2は同じ材料によって構成されていてもよいし、異なる材料によって構成されていてもよい。本実施形態では、第1の集光体1および第2の集光体2は同じ材料によって構成されている。
[0047]
 図3および図4に示すように、第1の集光体1は、第1の面1aおよび第2の面1bを含む。太陽光は第1の面1aに入射した後、第1の集光体1の内部を進み、第2の面1bで反射する。本実施形態では第2の面1bは回転面の一部や自由曲面によって構成されている。ここで、回転面とは、平面上の直線または曲線をその平面上の一直線のまわりに回転させることによって形成される面をいう。特に、第2の面1bは回転面の一部によって構成されていればよく、第2の面1bを構成している部分に回転面の回転軸を含んでいなくてもよい。例えば、第2の面1bは、放物線を回転させることにより得られる放物面であることが好ましい。つまり、第2の面1bのxz断面およびyz断面はとも放物線である。第2の面1bでの反射は、第1の集光体1を構成する材料と第1の集光体1の回りの空気などの環境媒体(または第1の集光体の表面に形成された反射膜)との屈折率差により生じる、全反射を含めたフレネル反射である。第1の面1aおよび第2の面1bは互いに対向し、第1の面1aに対する第2の面1bの正射影は第1の面1aのほとんどを覆う。第1の集光体1は、さらに、第2の面において反射した太陽光が出射する出射面1cを含んでいる。出射面1cは、第1の面1aと第2の面1bとの間に位置している。好ましくは、第1の面1aは平面である。第1の集光体1は、x方向において幅Wx、y方向において幅Wyを有する。
[0048]
 図3、図4および図5に示すように、第2の集光体2は、第3の面2bおよび第4の面2cを含む。第3の面2bは平面であり、第1の集光体1の第2の面1bで反射した太陽光を第2の集光体2の内部へ反射する。第1の集光体1と同様、この反射も全反射を含めたフレネル反射である。第4の面2cは第2の集光体2の内部を透過した太陽光を外部へ出射する。第2の集光体2は、さらに、第1の集光体1の第2の面1bで反射した太陽光が入射する入射面2aを含んでいる。入射面2aは、第3の面2bと第4の面2cとの間に位置している。
[0049]
 図6に示すように、集光型レンズアレイ105において、第1の集光体1および第2の集光体2は、第1の集光体1の出射面1cの少なくとも一部と第2の集光体2の入射面2aの少なくとも一部とが互いに接するように配置される。第1の集光体1の出射面1cと第2の集光体2の入射面2aとの接合面で太陽光が効率よく透過するためには、出射面1cおよび入射面2aはそれぞれ平面であることが好ましい。ただし、第1の集光体1および第2の集光体2が同じ材料によって構成されており、屈折率が等しい場合には、出射面1cと入射面2aとが対応した形状を有しており、隙間なく出射面1cと入射面2aとが接着材を介して接合し得る限り、他の形状を有していてもよい。また、ユニット構造が一体的な1つの部材によって構成されている場合には、出射面1cおよび入射面2aは存在しない。第4の面2cは平面であってもよいし、曲面等であってもよく、球面や円柱面であってもよい。さらに、受光部3と第4の面2cとを接着材を介して接合してもよい。
[0050]
 上述したように、各ユニット構造の第1の集光体1は、x方向に隣接するユニット構造の第2の集光体2の上に位置している。好ましくは、第1の集光体1の第2の面1bと隣接し、直下にあるユニット構造の第2の集光体2の第3の面2bとの間に間隙が設けられていることが好ましい。これは、第2の面1bと第3の面2bとが接触している場合、第2の面1bのうち、接触部分において、太陽光が、第1の集光体1から隣接するユニット構造の第2の集光体2へ透過してしまうからである。ただし、第3の面2bが平面であるのに対し、第2の面1bは、回転面の一部によって構成され、互いに異なる方位において曲面形状を有しているため、第2の面1bと第3の面2bとが接触する場合の接触部分は点となる。このため、第2の面1bと第3の面2bとが接触する場合でも第1の集光体1から隣接するユニット構造の第2の集光体2への透過はほとんどなく、大きな問題とはならない。
[0051]
 集光型レンズアレイ105において、第1の集光体1の第1の面1aから入射した太陽光は、第2の面1bで反射し、出射面1cから出射する。このとき、第2の面1bが放物面の曲面形状を有しているため、入射した太陽光は、xz断面、yz断面とも所定の集束状態を有する。第1の集光体1から出射した太陽光は、入射面2aから第2の集光体2に入射し、第3の面2bにおいて反射し、第4の面2cから出射する。第4の面2cから出射する太陽光は一点に集光し、集光面上で太陽の像を形成することができる。図6に示すように、第2の集光体2の第4の面2cには、複数の受光部3が設けられた太陽電池基板100が接合されている。集光型レンズアレイ105の各ユニット構造によって上述したように集光された太陽光は、集光型レンズアレイ105の各ユニット構造に対応した配列で配置された受光部3を照射する。これにより、高い集光効率で太陽光が集光され、太陽電池の受光部3で太陽光が電気エネルギーに変換される。この太陽光の集束は、第1の集光体1の第2の面1bおよび第2の集光体2の第3の面2bにおける全反射を含めたフレネル反射によって実現される。このため、集光が材料の屈折率分散や波長には依存せず、色収差が抑制された太陽光の集光を実現することができる。つまり、受光部3を照射する太陽光のスポットは波長が変わっても変わらず、かつ小さくすることができ、効率よく受光部3の領域内に光を入射させることができる。
[0052]
 次に図3から図6を参照しながら、より効率的な集光を実現する構造を詳細に説明する。図3から図6に示す集光型レンズアレイ105において、第1の集光体1の第1の面1a、第1の集光体1の第2の面1b、第2の集光体2の第3の面2b、第2の集光体2の第4の面2cは、それぞれ、平面、放物面等の回転面(自由曲面)、平面、及び平面である。
[0053]
 第1の面1aは平面なので、ほぼ平行な太陽光線4は第1の面1aに垂直に入射し、平行な光4aとなる。この光4aは第2の面1bで反射し、光4bとなり、さらに光4bは第3の面2bで反射し、z軸に沿った光4cとなり、第4の面2cから出射する。出射した太陽光は、太陽電池基板100の受光部3上の点Dに集光する。
[0054]
 太陽光の光軸と第1の面1a、第2の面1bおよび第3の面2bとの交点をそれぞれA、B、Cとする。また、第1の集光体1および第2の集光体2を構成する材料の屈折率をそれぞれnとする。第2の面1bの点Bでの面法線に対する光4aの光軸(AB=z軸)の傾斜角θがarcsin(1/n)より十分大きい場合、太陽光は第2の面1bの全領域において全反射する。例えば、第1の集光体1および第2の集光体2がPMMAによって構成されている場合、PMMAの屈折率は約1.5であるため、全反射となる臨界角θcは約42°である。したがって、傾斜角θが45°以上、好ましくは約50°以上であればよい。
[0055]
 第3の面2bの点Cでの面法線に対する光4bの光軸(BC)の傾斜角をθに一致させておくと、第3の面2bでも光4bは全反射する。反射した光4cの光軸は、光4aの光軸と一致し、z軸と平行である。またこの時、反射光4bの光軸つまり伝搬方向は、光4aの光軸に対して2θ(=約90°以上)の角度なしており、z軸のマイナス側の伝搬になる。従って、点Cは点Bよりもz軸のマイナス側に位置する。第2の面1bのxz面交曲線の点Bに於ける接線は第3の面2bのxz面交線(=直線)に平行なので、点Cが点Bよりもz軸のマイナス側に位置すれば、同じ位置xでの比較で第3の面2bはx方向に隣接し、直上にある第2の面1bのz軸のマイナス側に位置することになる。また、第2の面1bがyz断面でz軸のマイナス方向に凸の形状なのに対し、第3の面2bはyz面に於いて点Cを含む直線であるので、点Cが点Bよりもz軸のマイナス側に位置すれば、同じ位置yでの比較でも第3の面2bはx方向に隣接し、直上にある第2の面1bのz軸のマイナス側に位置することになる。
[0056]
 上述したように各ユニット構造において、第1の集光体1は、第2の集光体2の上には位置しておらず、x方向に隣接するユニット構造の第2の集光体2上に位置している。したがって、上述した各ユニット構造における第2の面1bと第3の面2bとの位置関係は、各ユニット構造の第2の面1bと、隣接するユニット構造の第3の面2bとの位置関係にもあてはまる。つまり、各ユニット構造における第1の集光体1の第2の面1bは、隣接するユニットセルの第2の集光体2の第3の面2bよりもz軸のプラス方向に位置しており、各ユニット構造の第1の集光体1は、互いに干渉することなく、隣接するユニットセルの第2の集光体2の上方に配置し得る。このように、集光型レンズアレイ105において、各ユニット構造が繰り返し形成されることにより、第1の集光体1の第2の面1bによる凹凸構造は、第2の集光体2の第3の面2bの平面構造と嵌合し合う。
[0057]
 次に、第1の面1a、第2の面1b、第3の面2bの曲面の形状について説明する。一般に放物面は一つの焦線Fを持ち、中心軸に沿った平行光は放物面で反射して、焦線Fに無収差で集光する。xz平面における太陽光の集光は、第2の面1bのxz断面によって行う。第2の面1bのxz断面である放物線の焦線をF 1とし、焦線F 1が点Dを通るよう放物線を決定できる。同様に第2の面1bのyz断面である放物線の焦線をF 2とし、焦線F 2が点Dを通るよう放物線を決定できる。焦線F 1と焦線F 2は検出面で互いに直交する。
[0058]
 なお、太陽の光は完全な平行光でなく、伝搬方位に±0.26°程度のばらつきがあり、また、追尾型集光太陽電システムにおける太陽の追尾の制御誤差も±0.2°程度生じ得る。このため光の斜入射により、集光点はある程度の大きさに膨らむが、色収差がないので、スポット径を極小化できる。受光部3の面積は受光部3に入射する太陽光のスポットの大きさに応じて調整し得る。例えば、受光部3に入射する太陽光のスポットの大きさも5mm以下の直径であれば、受光部3の一辺の長さが、5mm程度であればよい。この場合、焦線F 1と焦線F 2が上述した関係を厳密に満たしていなくても、太陽光を受光部3において、5mm以下の直径の光に集束させることができていれば、十分に高い変換効率を維持することができる。
[0059]
 このように、本実施形態の集光型レンズアレイ105によれば、第2の面1bによりxz断面における集光とyz軸断面における集光とが同時に行われる。また、第1の集光体1および第2の集光体2の各面は平面と放物面等の回転面との組み合わせによって構成されているため、加工し易い。第1の集光体1および第2の集光体2を各ユニット構造単位で成形した場合にも、ユニット構造を互いに嵌めこみ、平面部を接着するだけで、集光型レンズアレイ105を作製できる。このため、レンズのアレイ化が極めて容易である。また、第1の面1aは平面であるため、表面の窪みへのゴミや汚れの付着を大幅に抑制することができる。また、第1の面1aでの反射光はほとんど入射軸に沿った方向にあり、反射光量も少なく、反射光が周囲に散乱して光害を起こすこともない。
[0060]
 さらに、光の集光は第2の面1bおよび第3の面2bでの反射で行われる。第1の面1aでの屈折パワーはほとんどないので、集光にともなう色収差をほぼゼロにでき、集光点での集光スポットを小さく、これを捕捉する受光部3の面積も小さくできる。また、これらの面での反射は損失のない全反射であり、光の伝達効率は高い。これらの理由から、集光効率(受光部面積に対するレンズ面積の比)が高く、安価で安定した集光型レンズアレイを備えた太陽電池を提供できる。
[0061]
 本実施形態の集光型レンズアレイおよび太陽電池は上述の形態に限られず、種々の改変が可能である。例えば、本実施形態において、第2の面1bおよび第3の面2bにおける反射は、好ましくは、全反射を含めたフレネル反射であるが、第2の面1bおよび第3の面2bの少なくとも一方に金属膜などを設け、太陽光の一部を金属膜によって反射させてもよい。
[0062]
 また、本実施形態では、第2の面1bは放物面等の回転面であり、第3の面2bは平面であったが、第2の面1bが平面であり、第3の面2bが放物面等の回転面であってもよい。この場合、第1の面1aから入射した太陽光は、平行光のまま第2の面1bで反射し、第3の面2bに入射する。第3の面2bは、図6に示す点Dに焦点を有する放物面によって構成されており、太陽光は第3の面2bで反射することにより、点Dが位置する受光部3に収束する。
[0063]
 また、集光型レンズアレイにおいて、第2の面1bおよび第3の面2bの両方において太陽光を集光させてもよい。図7は、第2の面1bおよび第3の面2bの両方において太陽光を集光する集光型レンズアレイのx方向における3つ分のユニット構造をy軸の負方向から見た分解側面図である。この集光型レンズアレイは、第2の面1bおよび第3の面2bの形状を除き、上記実施形態と同じであるので、重複する説明は省略する。図7に示す集光型レンズアレイにおいて、第2の面1bは放物面であり、第3の面2bは双曲面である。より具体的には、第2の面1bのxz断面およびyz断面は放物線であり、第3の面2bの第3の面2bのxz断面およびyz断面は双曲線である。一般に双曲線は2つの焦点F 1、F 2を持ち、焦点F 2に集光する光は、双曲線で反射して、もう一つの焦点F 1に無収差で集光する。第2の面1bを構成する放物線の焦点をF 3とした場合、好ましくは、焦点F は、第3の面2bの焦点F 1と一致している。第1の集光体1の第1の面1aから入射した太陽光は、第2の面1bで、所定の集光状態で反射し、出射面1cから出射する。第1の集光体1から出射した太陽光は、入射面2aから第2の集光体2に入射し、第3の面2bにおいて反射し、さらに集光され、第4の面2cから出射する。第4の面2cから出射する太陽光は一点に集光し、集光面上で太陽の像を形成することができる。
[0064]
 図7に示す集光型レンズアレイの場合、第2の面1bおよび第3の面2bにおいて、太陽光を収束させる。このため、正弦条件を満足する設計が可能である。正弦条件を満足する場合、傾斜した光でも、その収差を抑えることができる。前述したように、太陽光は±0.26°程度の画角ばらつきがあり、追尾制御誤差も±0.2°程度存在するが、このような角度誤差があっても、収束光に発生する収差を極小化できる。したがって、色収差がないことと合わせて、上記実施形態以上に、スポット径を極小化でき、集光効率を高められる。
[0065]
 なお、上記実施形態では、第1の面1aおよび第4の面2cは平面であったが、大きな収差が生じなければ、第1の面1aおよび第4の面2cは曲面であってもよい。この場合、第2の面1bおよび第3の面2bは双曲面によって構成することができる。また、第1の面1aおよび第4の面2cのいずれかが円柱形状である場合、xz断面、yz断面の内、円柱軸に沿った断面において、第2の面1bおよび第3の面2bは双曲線となる。本実施形態の集光型レンズアレイにおいて、とり得る面の組み合わせを以下の表1に示す。
[0066]
[表1]


[0067]
 (第2の実施形態)
 以下、図面を参照しながら本発明による、集光型レンズアレイ、これを用いた太陽電池ならびに追尾型太陽電池システムの第2の実施形態を説明する。
[0068]
 図1に示すように、本実施形態の太陽電池システム200’は第1の実施形態と異なる構造の集光型レンズアレイ105’を備えていることを除き、第1の実施形態の太陽電システム200と同じ構造を備えている。具体的には、集光型レンズアレイ105’の各ユニット構造において、第2の面1bおよび第3の面2bがそれぞれ柱状曲面によって構成される点が第1の実施形態と異なる。このため、以下、主として、集光型レンズアレイ105’の構造を説明する。
[0069]
 図8は、集光型レンズアレイ105’の模式的な構成を示す斜視図である。第1の実施形態と同様、集光型レンズアレイ105’は、図8において、斜線で示すユニット構造が少なくとも1次元に配列された構造を備える。図8では、ユニット構造は、x方向およびy方向にn×mの2次元に配列されているが、少なくとも1次元に配列されていればよい。
[0070]
 各ユニット構造は、第1の実施形態と同様、第1の集光体1および第2の集光体2を含む。図8に示すように、各ユニット構造の配置も第1の実施形態と同じである。各ユニット構造は、1つの一体的な構造部材によって構成されていてもよい。
[0071]
 図9、図10および図11は、それぞれ、本実施形態の集光型レンズアレイの3×2つ分のユニット構造を示す分解斜視図、x方向における3つ分のユニット構造をy軸の負方向から見た分解側面図、およびy方向における3つ分のユニット構造をx軸方向から見た分解側面図である。また、図12および図13は、本実施形態の太陽電池のx方向における3つ分のユニット構造をy軸の負方向から見た側面図、およびy方向における3つ分のユニット構造をx軸方向から見た側面図である。これらの図を参照しながら、本実施形態の集光型レンズアレイおよび太陽電池をより詳細に説明する。
[0072]
 上述したように集光型レンズアレイ105’の各ユニット構造は、第1の集光体1および第2の集光体2を含む。第1の集光体1および第2の集光体2は、第1の実施形態と同様の材料によって構成されている。
[0073]
 図9および図10に示すように、第1の集光体1は、第1の面1aおよび第2の面1bを含む。第1の面には太陽光が照射し、第1の面1aから第1の集光体1の内部へ太陽光が入射する。第2の面1bは少なくとも第1の方向であるy軸方向に伸びる曲面形状を有している。y軸方向に伸びる曲面形状は、y軸の任意の位置でのy軸に垂直な断面が同じ形状の曲線で規定される。第1の集光体1において、第1の面1aから入射し、第1の集光体1の内部を透過した太陽光は、第2の面1bにおいて反射する。この反射は、第1の集光体1を構成する材料と第1の集光体1の回りの空気などの環境媒体(または第1の集光体の表面に形成された反射膜や透明膜)との屈折率差により生じる、全反射を含めたフレネル反射である。
[0074]
 第1の面1aおよび第2の面1bは互いに対向している。第1の集光体1は、さらに、第2の面において反射した太陽光が出射する出射面1cを含んでいる。出射面1cは、第1の面1aと第2の面1bとの間に位置している。好ましくは、第1の面1aは第1の方向(y軸方向)に伸びる、つまり、第1の方向と平行な柱軸を有する円柱面である。第1の集光体1は、x方向において幅Wxを有する。
[0075]
 図9、図10および図11に示すように、第2の集光体2は、第3の面2bおよび第4の面2cを含む。第3の面2bは、第1の方向と非平行な第2の方向(例えばxz面内の直線方向)に伸びる曲面形状を有し、第1の集光体1の第2の面1bで反射した太陽光を第2の集光体2の内部へ反射する。第1の集光体1と同様、この反射も全反射を含めたフレネル反射である。第4の面2cは第2の集光体2の内部を透過した太陽光を外部へ出射する。第2の集光体2は、さらに、第1の集光体1の第2の面1bで反射した太陽光が入射する入射面2aを含んでいる。入射面2aは、第3の面2bと第4の面2cとの間に位置している。第2の集光体2は、y方向において幅Wyを有する。
[0076]
 図12に示すように、集光型レンズアレイ105’において、第1の集光体1および第2の集光体2は、第1の集光体1の出射面1cの少なくとも一部と第2の集光体2の入射面2aの少なくとも一部とが互いに接するように配置される。第1の集光体1の出射面1cと第2の集光体2の入射面2aとの接合面で太陽光が効率よく透過するためには、出射面1cおよび入射面2aはそれぞれ平面であることが好ましい。ただし、第1の集光体1および第2の集光体2が同じ材料によって構成されており、屈折率等しい場合には、出射面1cと入射面2aとが対応した形状を有しており、隙間なく出射面1cと入射面2aとが接合し得る限り、他の形状を有していてもよい。第4の面2cは平面であってもよいし、曲面等であってもよく、例えば、第2の方向と平行な柱軸を有する円柱面であってもよい。さらに、受光部3と第4の面2cとの界面における反射を抑制するための反射防止をこれらの間に設けてもよい。
[0077]
 上述したように、各ユニット構造の第1の集光体1は、x方向に隣接するユニット構造の第2の集光体2の上に位置している。好ましくは、第1の集光体1の第2の面1bと隣接するユニット構造の第2の集光体2の第3の面2bとの間に間隙が設けられていることが好ましい。第2の面1bと第3の面2bとが接触している場合、第2の面1bのうち、接触部分において、太陽光が、第1の集光体1から隣接するユニット構造の第2の集光体2へ透過してしまうからである。ただし、第2の面1bおよび第3の面2bは、互いに異なる方位において、曲面形状を有しているため、第2の面1bと第3の面2bとが接触する場合の接触部分は点となる。このため、第2の面1bと第3の面2bとが接触する場合でも第1の集光体1から隣接するユニット構造の第2の集光体2へ透過はほとんどなく、大きな問題とはならない。
[0078]
 集光型レンズアレイ105’において、第1の集光体1の第1の面1aから入射した太陽光は、第2の面1bで反射し、出射面1cから出射する。このとき、第2の面1bが第1の方向(y軸)に伸びる曲面形状を有しているため、入射した太陽光は、第1の方向と垂直な平面(xz平面)においてのみ所定の集束状態を有する。第1の集光体1から出射した太陽光は、入射面2aから第2の集光体2に入射し、第3の面2bにおいて反射し、第4の面2cから出射する。このとき、第3の面2bが第2の方向に伸びる曲面形状を有しているため、入射した太陽光は、第2の方向と垂直な平面(y軸を含む面)においてのみ所定の集束状態を有する。このため、第4の面2cから出射する太陽光は、第1の方向と垂直な平面内および第2の方向と垂直な平面内において集束されている。第1の方向と第2の方向とは非平行であるため、平行でない2平面において、太陽光を集束させることができる。第1の方向と第2の方向とが直交する場合には、2平面は直交するため、2平面が交わる直線に垂直な平面内で太陽光を集束させ、太陽の像を形成することができる。
[0079]
 図12に示すように、第2の集光体2の第4の面2cには、複数の受光部3が設けられた太陽電池基板100が接合されている。集光型レンズアレイ105’の各ユニット構造によって上述したように集光された太陽光は、集光型レンズアレイ105’の各ユニット構造に対応した配列で配置された受光部3を照射する。これにより、高い集光効率で太陽光が集光され、太陽電池の受光部3で太陽光が電気エネルギーに変換される。
[0080]
 この太陽光の集束は、第1の集光体1の第2の面1bおよび第2の集光体2の第3の面2bにおける全反射を含めたフレネル反射によって実現される。このため、集光が波長には依存せず、色収差が抑制された太陽光の集光を実現することができる。つまり、受光部3を照射する太陽光のスポットを小さくすることができ、効率よく受光部3の領域内に光を入射させることができる。
[0081]
 次に図9から図13を参照しながら、より効率的な集光を実現する構造を詳細に説明する。
[0082]
 図9から図13に示す集光型レンズアレイ105’において、第1の集光体1の第1の面1a、第1の集光体1の第2の面1b、第2の集光体2の第3の面2bおよび第2の集光体2の第4の面2cは、それぞれ、円柱面、双曲柱面、放物柱面および平面である。第1の面1aである円柱面の柱軸および第2の面1bである双曲柱面の柱軸(焦線)は、第1の方向、つまりy軸と平行である。また、第3の面2bである放物柱面の柱軸(焦線)は、第2の方向と平行である。本実施形態では、第2の方向はxz面上の直線と平行である。
[0083]
 図12に示すように、第1の面1aの円柱面は、曲率半径が十分に大きく、ほとんど平面に近い。したがって、ほぼ平行な太陽光線4は第1の面1aに垂直に入射し、弱く屈折し、わずかに集光された光4aとなる。この光4aは第2の面1bで反射し、光4bとなり、さらに光4bは第3の面2bで反射し、z軸に沿った光4cとなり、第4の面2cから出射する。出射した太陽光は、太陽電池基板100の受光部3上の点Dに集光する。
[0084]
 太陽光の光軸と第1の面1a、第2の面1bおよび第3の面2bとの交点をそれぞれA、B、Cとする。また、第1の集光体1および第2の集光体2を構成する材料の屈折率をそれぞれnとする。第1の実施形態と同様、第2の面1bの点Bでの面法線に対する光4aの光軸(AB=z軸)の傾斜角θがarcsin(1/n)より十分大きい場合、太陽光は第2の面1bの全領域において全反射する。例えば、第1の集光体1および第2の集光体2がPMMAによって構成されている場合、PMMAの屈折率は約1.5であるため、全反射となる臨界角θcは約42°である。したがって、傾斜角θが45°以上、好ましくは約50°以上であればよい。
[0085]
 第3の面2bの点Cでの面法線に対する光4bの光軸(BC)の傾斜角をθに一致させておくと、第3の面2bでも光4bは全反射する。反射した光4cの光軸は、光4aの光軸と一致し、z軸と平行である。またこの時、反射光4bの光軸つまり伝搬方向は、光4aの光軸に対して2θ(=約100°以上)の角度なしており、z軸のマイナス側の伝搬になる。従って、点Cは点Bよりもz軸のマイナス側に位置する。第2の面1bのxz面交曲線の点Bに於ける接線は第3の面2bのxz面交線(=直線)に平行なので、点Cが点Bよりもz軸のマイナス側に位置すれば、同じ位置xでの比較で第3の面2bはx方向に隣接する第2の面1bのz軸のマイナス側に位置することになる。また、第2の面1bがy軸方向に伸びた形状なのに対し、第3の面2bはyz面に於いてz軸のプラス側に凸形状で、点Cはその頂点上にあるので、同じ位置yでの比較でも第3の面2bはx方向に隣接する第2の面1bのz軸のマイナス側に位置することになる。
[0086]
 上述したように各ユニット構造において、第1の集光体1は、第2の集光体2の上には位置しておらず、隣接するユニット構造の第2の集光体2上に位置している。したがって、上述した各ユニット構造における第2の面1bと第3の面2bとの位置関係は、各ユニット構造の第2の面1bと、隣接するユニット構造の第3の面2bとの位置関係にもあてはまる。つまり、各ユニット構造における第1の集光体1の第2の面1bは、隣接するユニットセルの第2の集光体2の第3の面2bよりもz軸のプラス方向に位置しており、各ユニット構造の第1の集光体1は、互いに干渉することなく、隣接するユニットセルの第2の集光体2の上方に配置し得る。このように、集光型レンズアレイ105’において、各ユニット構造が繰り返し形成されることによる、第1の集光体1の第2の面1bによる凹凸構造は、第2の集光体2の第3の面2bによる凹凸構造と嵌合し合う。このため、集光型レンズアレイ105’の厚さを小さくすることができる。
[0087]
 次に、第1の面1a、第2の面1b、第3の面2bの曲面の形状について説明する。一般に双曲線は2つの焦点F 1、F 2を持ち、焦点F 2に集光する光は、双曲線で反射して、もう一つの焦点F 1に無収差で集光する。また放物線は一つの焦点F 3を持ち、中心軸に沿った平行光は放物線で反射して、焦点F 3に無収差で集光する。
[0088]
 第1の方向に垂直な平面、つまり、xz平面における太陽光の集光は、第1の面1aおよび第2の面1bによって行う。第2の面1bを構成している双曲柱面2つの焦線F 1、F 2のうち、双曲柱面に近接する側の焦線をF 1とした場合、第1の面1aを構成する円柱面の焦線を双曲柱面の焦線F 2に一致させる。また、第3の面2bにおいて光4bが反射せずに直進したと仮定した場合における光軸BCを延長し、点Cから距離CDを隔てた位置に、焦線F 1を一致させる。一方、第3の面2bは、xz面内に柱軸を有する放物柱面であるため、xz平面内では集光作用を有しない。これにより、平行光である太陽光4は、第1の面1aおよび第2の面1bによって、第1の方向に垂直な平面、つまりxz平面において点Dに集光される。第1の面1aから焦線F 2までの距離は、後述するように集光型レンズアレイ105’のz方向の厚さよりも十分に長いため、第1の面1aを構成する円柱面の曲率半径を従来に比べて大きくでき、第1の面1aをほぼ平坦にすることができる。
[0089]
 一方、第2の方向に垂直な面(y軸を含む面)においては、太陽光4は第1の集光体1では集光されず、平行なまま第2の集光体2の第3の面2bに光4bとして入射する。このため、第2の方向に垂直な面における太陽光の集束は、第3の面2bによって行う。具体的には、第3の面2を構成する放物柱面の焦線F 3を点Dに一致させる(厳密には、CDを通りxz面に直交する面内で、この面と第3の面2との交線である放物線の焦点を点Dに一致させる)。これにより、第2の方向に垂直な平面(y軸を含む面)において、光4bは第3の面2bによって点Dに集光される。
[0090]
 なお、円柱面の焦線、双曲柱面の焦線および放物柱面の焦線が上述した関係を満たしている場合に、太陽光4は点Dにおいて最も小さいスポットで集光され、受光部3に入射するが、受光部3に入射する太陽光のスポットの大きさは、受光部3の面積に応じて調整し得る。例えば、受光部3の一辺の長さが、5mm程度であれば、受光部3に入射する太陽光のスポットの大きさも5mm以下の直径であればよい。この場合、円柱面の焦線、双曲柱面の焦線および放物柱面の焦線と点Dとの関係が上述した関係を厳密に満たしていなくても、太陽光を受光部3において、5mm以下の直径の光に集束させることができていれば、十分に高い変換効率を維持することができる。
[0091]
 太陽の光は完全な平行光でなく、伝搬方位に±0.26°程度のばらつきがあり、また、追尾型集光太陽電システムにおける太陽の追尾の制御誤差も±0.2°程度生じ得る。このため、太陽光が第1の面1aに垂直に入射するように太陽電池を太陽の方向に一致させた場合でも、第1の面1aを透過し、第1の集光体1に入射した太陽光が直接出射面1cから出射し、迷光となる場合が考えられる。本実施形態では、このような迷光をxz平面において抑制するために第1の面1aを曲率半径の大きい円柱面で構成した。NA=0.02もあれば角度偏差を持つ太陽光の全てを収束性の光にすることができる。さらにyz平面においても迷光を抑制する場合には、上述したように第1の面1aを球面によって構成することが好ましい。一方、このような迷光が問題とならない場合には、第1の面1aを平面によって構成することができる。この場合第1の面1aが完全な平面となるため、ごみの付着をほぼ完全に抑制することができる。
[0092]
 このように、本実施形態の集光型レンズアレイ105’によれば、太陽光の第1の方向と垂直な面(xz平面)における集光と第2の方向と垂直な面(y軸を含む面)における集光とを独立して行うため、第2の面1bの双曲柱面および第3の面2bの放物柱面を独立して設計することができる。このため、集光型レンズアレイ105’の設計が容易である。また、第1の集光体1および第2の集光体2の各面は平面および柱面の組み合わせによって構成されているため、加工し易い。第1の集光体1および第2の集光体2を各ユニット構造単位で成形した場合にも、ユニット構造を互いに嵌めこみ、平面部を接着するだけで、集光型レンズアレイ105’を作製できる。このため、レンズのアレイ化が極めて容易である。
[0093]
 また、第1の面1aの曲率半径が十分大きいため、集光型レンズアレイ105’の表面はほとんど平面といってよく、表面の窪みへのゴミや汚れの付着を大幅に抑制することができる。また、第1の面1aでの反射光はほとんど入射軸に沿った方向にあり、反射光量も少なく、反射光が周囲に散乱して光害を起こすこともない。
[0094]
 さらに、光の集光は第2の面1bおよび第3の面2bでの反射で行われる。第1の面1aでの屈折パワーはほとんどないので、集光にともなう色収差をほぼゼロにでき、集光点での集光スポットを小さく、これを捕捉する受光部3の面積も小さくできる。また、これらの面での反射は損失のない全反射であり、光の伝達効率は高い。これらの理由で、集光効率(受光部面積に対するレンズ面積の比)が高く、安価で安定した集光型レンズアレイを備えた太陽電池を提供できる。
[0095]
 本実施形態の集光型レンズアレイ105’において、より効率的な集光を実現するためには、第1の集光体1の第1の面1aおよび第2の面1bならびに第2の集光体2の第3の面2bおよび第4の面2cは、表2に示す形状の組み合わせであることが好ましい。例えば、本実施形態では、第1の面1aは円柱面であったが、第1の面1aは、球面であってもよいし、平面であってもよい。また、第4の面2cは平面であったが、円柱面であってもよいし、球面であってもよい。
[0096]
[表2]


[0097]
 第1の面1aが円柱である場合、円柱面の焦線は第1の方向に平行である。第2の面1aを構成する双曲柱面または放物柱面の焦線も第1の方向に平行である。一方、第3の面2baを構成する双曲柱面または放物柱面の焦線は第2の方向に平行である。また、第4の面2cが円柱である場合、円柱面の焦線は第2の方向に平行である。
[0098]
 また、第1の面1aが円柱である場合、円柱面の焦線は第2の面1bを構成する双曲柱面の2つの焦線の一方と一致することが好ましい。この場合、2つの焦線の他方は第3の面2bにおける反射と第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0099]
 第1の面1aが平面である場合、第2の面1bを構成する放物柱面の焦線は第3の面2bにおける反射と第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0100]
 第1の面1aが球面である場合、球面の焦点は第2の面1bを構成する双曲柱面の2つの焦線の一方と一致することが好ましい。この場合、2つの焦線の他方は第3の面2bにおける反射と第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0101]
 また、第4の面2cが円柱である場合、円柱面の焦線は第3の面2bを構成する双曲柱面の2つの焦線の一方と一致することが好ましい。この場合、2つの焦線の他方は第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0102]
 第4の面2cが平面である場合、第3の面2bを構成する放物柱面の焦線は第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0103]
 第1の面1aが球面である場合、球面の焦点は第3の面2bを構成する双曲柱面の2つの焦線の一方と一致することが好ましい。この場合、2つの焦線の他方は第3の面2bにおける反射と第4の面2cにおける屈折を考慮した太陽電池基板の受光部の位置に一致することが好ましい。
[0104]
 さらに、第1の面1aが平面であり、第4の面2cが球面である場合、または、第1の面1aが球面であり、第4の面2cが平面である場合、球面の焦点と、第2の面1bを構成する双曲柱面の2つの焦線の一方および第3の面2bを構成する双曲柱面の2つの焦線の一方と一致することが好ましい。
[0105]
 また、本実施形態において、第2の面1bおよび第3の面2bにおける反射は、好ましくは、全反射を含めたフレネル反射であるが、第2の面1bおよび第3の面2bの少なくとも一方に金属膜などを設け、太陽光の一部を金属膜によって反射させてもよい。
[0106]
 本実施形態によれば、色収差がほとんどない集光を実現できるため、集光型レンズアレイ以外の種々の光学系などの集光機構として、本実施形態の構造を好適に用いることができる。例えば、上述した本実施形態の集光型レンズアレイの1つのユニット構造を撮像装置の集光光学系に用いることができる。この場合、xz平面における焦点距離とyz平面における焦点距離が異なるため、集光型レンズアレイの1つのユニット構造によって形成される像は、一般に歪んでいる。このため、形成される像を撮像装置で電気信号に変換した後、信号処理によって歪みを解消することによって正しい像を得ることができる。また、撮像用レンズに必須な正弦条件も第一の方向には第1の面1aと第2の面1bの組み合わせ、第2の方向には第3の面2bと第4の面2cの組み合わせで設計的に満足させることが可能である。

産業上の利用可能性

[0107]
 本願に開示された集光型レンズアレイおよび太陽電池によれば、全反射を用いた集光を行うため、光の損失が少なく、色収差がない。このため、これまで屈折レンズによる集光であったレンズアレイの集光効率(受光部面積に対するレンズ面積の比)を大幅に高められ、安価で安定した集光型レンズアレイおよびこれを備えた太陽電池として有用である。

符号の説明

[0108]
 1   第1の集光体
 1a  第1の面
 1b  第2の面面
 2   第2の集光体
 2b  第3の面
 2c  第4の面
 3   受光部
 4   太陽光
 4a、4b、4c 光
 100 太陽電池基板
 105、105’ 集光型レンズアレイ
 200、200’ 太陽電池システム

請求の範囲

[請求項1]
 少なくとも1次元に配列された複数のユニット構造を備えた集光型レンズアレイであって、
 各ユニット構造は、
 光が内部へ入射する第1の面と、前記第1の面から入射し、前記内部を透過した前記光を前記内部へ反射する第2の面と、前記第2の面で反射した光を前記内部へ反射する第3の面と、前記第3の面で反射した光を外部へ出射する第4の面とを含み、
 各ユニット構造において、前記第2の面および前記第3の面は、前記第1の面が位置する入射平面と、前記第4の面が位置する出射平面との間に位置しており、前記第2の面および前記第3の面のうち、少なくとも一方は、入射する光よりも収束させて前記光を反射し、
 各ユニット構造の前記第2の面は、前記入射平面と垂直な方向であって前記入射平面側から見て、隣接するユニット構造の前記第3の面と重なっており、かつ、隣接するユニット構造の前記第3の面より前記入射平面側に位置している、集光型レンズアレイ。
[請求項2]
 各ユニット構造は、
 前記入射平面と垂直な方向において配置された前記第1の面および前記第2の面と、前記第2の面で反射した前記光を出射する出射平面とを有する第1の集光体と、
 前記入射平面と垂直な方向において配置された前記第3の面および前記第4の面と、前記第1の集光体の前記出射平面から出射した光が入射する入射平面とを有する第2の集光体と
を備え、
 前記第1の集光体の出射平面の少なくとも一部と前記第2の集光体の入射平面の少なくとも一部とが互いに接している請求項1に記載の集光型レンズアレイ。
[請求項3]
 前記第1の集光体の前記第2の面における反射および前記第2の集光体の前記第3の面における反射は全反射を含む請求項2に記載の集光型レンズアレイ。
[請求項4]
 前記各ユニット構造の第1の集光体は、隣接するユニット構造の前記第2の集光体の上に位置している請求項2または3に記載の集光型レンズアレイ。
[請求項5]
 前記第2の面および前記第3の面の少なくとも一方は、回転面の一部によって構成されている請求項1から4のいずれかに記載の集光型レンズアレイ。
[請求項6]
前記第2の面および前記第3の面の他方は平面である請求項5に記載の集光型レンズアレイ。
[請求項7]
 前記第2の面および前記第3の面の一方は放物面であり、他方は平面である請求項6に記載の集光型レンズアレイ。
[請求項8]
 前記第2の面は放物面であり、前記第3の面は双曲面である請求項5に記載の集光型レンズアレイ。
[請求項9]
 前記第1の面および前記第4の面の一方は球面であり、
 前記第2の面および前記第3の面の一方は双曲面であり、他方は平面である請求項5に記載の集光型レンズアレイ。
[請求項10]
 前記第1の面および前記第4の面の一方は球面であり、
 前記第2の面および前記第3の面は双曲面である請求項5に記載の集光型レンズアレイ。
[請求項11]
 前記第2の面は、第1方向に伸びる曲面形状を有し、
 前記第3の面は、前記第1の方向と非平行な第2の方向に伸びる他の曲面形状を有する、請求項1から4のいずれかに記載の集光型レンズアレイ。
[請求項12]
 前記第1の方向と前記第2の方向とは直交している請求項11に記載の集光型レンズアレイ。
[請求項13]
 前記第1の面は、前記第1の方向と平行な柱軸を有する円柱面であり、
 前記第2の面は、前記第1の方向と平行な柱軸を有する双曲柱面であり、
 前記第3の面は、前記第2の方向と平行な柱軸を有する放物柱面である、請求項12に記載の集光型レンズアレイ。
[請求項14]
 前記第1の面は、前記第1の方向と平行な平面であり、
 前記第2の面は、前記第1の方向と平行な柱軸を有する放物柱面であり、
 前記第3の面は、前記第2の方向と平行な柱軸を有する放物柱面である、請求項12に記載の集光型レンズアレイ。
[請求項15]
 前記第1の面は球面であり、
 前記第2の面は、前記第1の方向と平行な柱軸を有する双曲柱面であり、
 前記第3の面は、前記第2の方向と平行な柱軸を有する双曲柱面である、請求項12に記載の集光型レンズアレイ。
[請求項16]
 請求項1から15のいずれかに記載の集光型レンズアレイと、
 少なくとも1次元に配列された複数の受光部を有する太陽電池基板とを備え、前記集光型レンズアレイの各ユニット構造が対応する複数の受光部に光を集光する、太陽電池。
[請求項17]
 請求項16に記載の太陽電池と、
 前記太陽電池を回転させる回転モータを含む回転機構部と、
 前記太陽電池からの信号を基に太陽に対する前記太陽電池基板の追尾誤差を生成し、回転機構部に回転信号を送る制御部と、
 前記太陽電池基板で変換された電気エネルギーを蓄え、または、送電する蓄電・送電部と
を備える、太陽電池システム。
[請求項18]
 光が内部へ入射する第1の面、および、第1方向に伸びる曲面形状を有し、前記第1の面から入射し、前記内部を透過した前記光を反射する第2の面を含む第1の集光体と、
 前記第1の方向と非平行な第2の方向に伸びる他の曲面形状を有し、前記第1の集光体の第2の面で反射した前記光を内部へ反射する第3の面、および、前記第3の面で反射し、前記内部を透過した前記光を外部へ出射する第4の面を含む第2の集光体と
を備える、集光光学系。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]