Processing

Please wait...

Settings

Settings

Goto Application

1. WO2014155648 - POWER GENERATION SYSTEM AND POWER GENERATION SYSTEM CONTROL METHOD

Document

明 細 書

発明の名称 発電システムおよび発電システムの制御方法

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006  

課題を解決するための手段

0007  

発明の効果

0008   0009  

図面の簡単な説明

0010  

発明を実施するための形態

0011  

実施例 1

0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030  

実施例 2

0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051  

実施例 3

0052   0053   0054   0055   0056   0057   0058   0059  

実施例 4

0060   0061   0062   0063  

実施例 5

0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082  

実施例 6

0083   0084   0085   0086   0087   0088  

符号の説明

0089  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16  

明 細 書

発明の名称 : 発電システムおよび発電システムの制御方法

技術分野

[0001]
 本発明は発電システムに関し、特に系統と連携し起動する発電システムに関する。

背景技術

[0002]
 再生可能エネルギーにより系統電圧が変動する問題があり、それらに対応する信頼性の高い発電システムが求められている。例えば、ガスタービン発電システムは蒸気タービン発電システムに比べて一般に起動時間が短いため,短時間起動による再生可能エネルギー導入時の系統安定化に対する貢献が期待されている。特に、二軸ガスタービンはコンパクトで大出力の発電が可能であり、二軸ガスタービンの性能向上の方法として、特表2007-505261号公報(特許文献1)がある。この特許文献1には、二軸ガスタービンの両軸に発電機を取り付け、その両方の発電機から電力を得る装置が記載されている。
[0003]
 ガスタービンの始動方法は、例えば特開平6-264766号公報(特許文献2)や特公昭59ー9737号公報(特許文献3)に記載がある。すなわち、スタータモータにより圧縮機と第一のタービンを回転し、所定値まで回転数が上昇したのちに燃料に点火を開始してコンプレッサ駆動力を得る。その後燃料や吸気量を調整することで定格回転数まで回転数を上げ、連系する系統電圧と上記発電機の端子電圧位相差が所定範囲内になったのちに発電機と電力系統の間に備えられる遮断器を投入し、ガスタービン発電システムの系統連系を終了する。
[0004]
 位相差を小さくしたうえで遮断器を投入することにより、系統連系時に発電機から過大電流の流出や、連系時系統電圧変動を回避することができる。

先行技術文献

特許文献

[0005]
特許文献1 : 特表2007-505261号公報
特許文献2 : 特開平6-264766号公報
特許文献3 : 特公昭59ー9737号公報

発明の概要

発明が解決しようとする課題

[0006]
 インバータは、出力指令値の大きさにかかわらず、スイッチングを開始すると(以下、デブロック)上流側にも下流側にも電圧脈動が発生し、その結果高調波電流が流れる。この高調波電流は、インバータと繋がれた機器に損失を生じさせる問題がある。系統からみて、主発電機と補助電源が並列に接続され、補助電源がインバータを介して系統と繋がっているシステムを考えた場合、補助電源のインバータの高調波電流が主発電機に流れ込む課題がある。この高調波電流が主発電機と系統に流れ込む割合は、インバータからみて並列に繋がれている主発電機と系統のそれぞれのインピーダンスに反比例する。通常、主発電機のインピーダンスは系統側より大きく、系統が繋がっている場合には発電機に流入する高調波電流は少ないので損失は小さく問題が少ない。しかし、系統側が切り離された状態、例えば、起動時や待機時には、インバータの高調波電流はすべて主発電機に流入し、損失を生じさせてしまう。このため、発電システムの効率や発電機の信頼性を損なう課題がある。

課題を解決するための手段

[0007]
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、動力源と、前記動力源で駆動される発電機と、前記発電機と交流系統の間に設けられる第一の遮断器と、
前記発電機と前記第一の遮断器の間に接続される電力変換部と、前記第一の遮断機と前記電力変換部との間に設けられる第二の遮断機と、前記電力変換部のデブロックと前記第一の遮断器および前記第二の遮断器の開閉を制御する制御器を備えた発電システムであって、前記制御装置は、前記第一の遮断器および前記第二の遮断器が開いている状態で前記電力変換部のデブロック指令を出力した場合、前記第一の遮断器の閉指令を出した後に前記第二の遮断器の閉指令を出すよう構成されていることを特徴とする。

発明の効果

[0008]
 本発明の発電システムによれば、インバータから主発電機に電流が流れることを抑制でき、起動、停止、待機時に主発電機の損失を減らし、発電システムの信頼性を向上させることができる。
[0009]
 また本発明の発電システムによれば、インバータがデブロックし、且つインバータと主発電機が繋がっている場合には、インバータと主発電機は同時に系統と繋がっているので、インバータの高調波電流は主に系統に流れ、主発電機の損失を増やすことを抑制でき、高効率な運転をすることが可能になる。

図面の簡単な説明

[0010]
[図1] 本発明第一実施例の説明図である。
[図2] 本発明第一実施例の制御方法の説明図である。
[図3] 本発明第一実施例を構成するガスタービン2の説明図である。
[図4] 本発明第二実施例の説明図である。
[図5] 本発明第二実施例の制御方法の説明図である。
[図6] 本発明第二実施例の代案の説明図である。
[図7] 本発明第三実施例の説明図である。
[図8] 本発明第三実施例の制御方法の説明図である。
[図9] 本発明第三実施例の代案の説明図である。
[図10] 本発明第四実施例の説明図である。
[図11] 本発明第四実施例の代案の説明図である。
[図12] 本発明第五実施例の説明図である。
[図13] 本発明第五実施例を構成するインバータ5の説明図である。
[図14] 本発明第五実施例を構成するインバータ5の代案の説明図である。
[図15] 本発明第五実施例の制御方法の説明図である。
[図16] 本発明第六実施例の制御方法の説明図である。

発明を実施するための形態

[0011]
 以下、実施例を図面を用いて説明する。
実施例 1
[0012]
 本発明の実施例1をその代表図である図1を基準に説明する。
[0013]
 図1で示す実施例1の発電システム1は、動力源2により駆動される主発電機3と、電力変換部5と、制御器10を備え、電力変換部5は直流電源7から電力を供給され、主発電機3は遮断器61を介して系統100に接続され、電力変換部5は遮断機62を介して主発電機3と交流系統100の間に接続されている。
[0014]
 本実施例では、何らかの理由で電力変換部5を発電システムの起動中にデブロックする発電システムにおいて、前記制御器10が、発電システム1を起動するときに、まず遮断器61を閉じて主発電機3と交流系統100を繋いだ後に、遮断器62を閉じて電力変換部5を主発電機3に接続する。
[0015]
 発電機3が交流系統100と接続されていない発電システムの起動中において、スイッチングしている電力変換部5が発電機3に接続される状態が発生しないように遮断器を設け制御し、起動シークエンスの終わりに、発電機が交流系統100に繋がれた後は電力変換部5が主発電機3に繋がれている状態にする。
[0016]
 電力変換部5から供給される電力は、発電システム1が電力を系統100に送電しているときに、主発電機3では応答が間に合わない、交流系統100の早い電力変動を吸収する用途で使われることがある。
[0017]
 動力源2は水車であっても、一軸や多軸ガスタービン等の回転機であっても、ディーゼルエンジン等のレシプロ機であっても、高調波が発電機に与える影響は発生するものであれば、後述する本実施例の効果と同様の効果が得られる。
[0018]
 電力変換部5を発電システムの起動中にデブロックする理由としては、主に動力源を始動するための始動装置4に電力を供給することを想定したものであるが、それに限るものではない。
[0019]
 動力源2がガスタービンや水車等の始動装置4が必要な動力源である場合は、発電システムの起動中に始動装置を駆動するため電力変換部5をデブロックして電力を供給し、同じ電力変換部5を通常運転中にも利用することで、コスト的に有利となる。
[0020]
 主発電機3は同期発電機が望ましいがそれに限られるものではない。
[0021]
 電力変換部5に電力を供給する直流電源7は、蓄電池やキャパシタのバッファ等の直流電源であっても、別の発電機と変圧器/整流器からなる電源であっても、他の実施例での記載されているように、圧縮機と同軸の回転機より供給された電力であってもよく、それらの組み合わせでもよい。
[0022]
 電力変換部5はIGBTやサイリスタやMOSFETを使った電流型や電圧型の単相~多相のインバータであっても、多重、多レベルインバータであっても、スイッチングによる高調波電流を発生するため本実施例と同様の効果が得られる。
[0023]
 本実施例において、インバータは逆に整流器として用いられる場合もあり、インバータと記載/符合されていても、その電力変換機能は直流から交流への変換に限るものではない。また、インバータの組み合わせによっては降圧変圧器等のAC/AC変換器にもなり、他の電力変換手段で代用することもできるため、これら電力を変換する手段を総称して電力変換部と言い換える場合もある。
[0024]
 それぞれの遮断器は、一般的な電気的接続を接続したり遮断したりする機能を有する装置を総称し、それは開閉器、スイッチ、ある種の保護回路等でも実施できる。
[0025]
 以上の構成の発電システム1の起動方法として、本発明では以下の手順で行うことを特徴とする。
[0026]
 図1の制御器10からの指示先については後に説明する。
[0027]
 図2のフローチャートに示されるように、最初に発電システム1が停止状態のとき、遮断器61と遮断器62は両方とも開いている。まず動力源2を始動させ主発電機3の回転数を上げていく。その際に必要に応じて電力変換部5をデブロックする。主発電機3が定格回転数に達した後、遮断器61を閉じて送電開始可能となる。その後、遮断器62を閉じて電力変換部5を主発電機3と系統100のラインに接続する。
[0028]
 以上の発電システム1において、以上の発電システム起動方法を取った場合、以下の課題が解決され、発電機の信頼性と効率が向上する効果が得られる。
[0029]
 電力変換器5はスイッチング等により高調波電流を発し、接続された周囲の機器に影響を与える。発電システムの通常運転時、遮断器61と遮断器62が両方とも閉じている状態では、一般的に主発電機3は系統の3~10倍のインピーダンスがあり、電力変換部5からの高調波はほとんど系統100に流れる。しかし発電システムの始動時や待機時や停止時において、主発電機3が系統100に接続されていない状態で、電力変換部5を有する補助電源555が主発電機5に接続される状態となると、高調波のほとんどが主発電機3に流れ込むことになり、主発電機において電気的な損失が発生し、発電機の駆動電力に高調波成分が入ることで発電機の信頼性を低下させる問題がある。
[0030]
 高調波電流を発生するインバータを発電機に接続すると、発電機の電機子巻線に高調波電流が誘起する。余分な電流が流れることで発熱が大きくなり、加熱現象が発生して事故に至る恐れがある。さらに、高調波成分により回転子に振動が起きる恐れがある。これらにより、発電機の信頼性を低下させる恐れがある。また、高調波は逆相成分となるので磁束を弱める方向に働き、その分発電機の出力は低下し、発電機の回転速度上昇速度を低下させる恐れがある。
実施例 2
[0031]
 第2の実施例では、圧縮機と軸で接続されたモータにより発電された電力を電力変換部5に供給することで、補助電源として二軸のガスタービンの回転エネルギーを利用した発電システムの起動方法を示す。
[0032]
 再生可能エネルギー等による電力変動に対応するための構成で、発電システム1全体として大きな電力は主発電機3から、小さく急峻な変動電力はモータ4とインバータ5からなる補助電源から出力する。
[0033]
 交流系統100の電圧変動に対応するために、発電機3と並列に接続された電力変換部5に高価な蓄電池を設けなくて良いという利点を持つ本実施例の発電システムにおいて、モータ4をガスタービンの始動装置として併用したときに、発電システム起動時に発電機3に高調波が入るという課題がある。
[0034]
 本実施例の構成では、普段から電圧変換部の発する高調波に対して交流系統がアースとして働いている現象を、発電システムの起動時においても効率よくシンプルな起動シークエンスで利用でき、起動時に遮断器を開閉する制御を工夫することで、発電機3への高調波流入を抑制する効果を得られる。
[0035]
 ガスタービン発電システムは蒸気タービン発電システムに比べて一般に起動時間が短いため、短時間起動による再生可能エネルギー導入時の系統安定化に対する貢献が期待されている。
[0036]
 ガスタービン発電システムには、1つの軸にコンプレッサとタービン、発電機が機械的に接続された一軸ガスタービン発電システムがある。また、第一のタービンと、該第一のタービン軸と機械的に接続されない第二の軸に第二のタービンを備え、第一のタービンの排気により第二のタービンが回転し、それにより該第二のタービン軸に機械的に接続された発電機の回転子が回転することにより発電する二軸ガスタービン発電システムがある。二軸ガスタービンにはコンパクトで大出力の発電が可能であるメリットがある。
[0037]
 まず、図4で二軸のガスタービン2について説明する。ガスタービン2は、主に空気を圧縮する圧縮機20、図示しない燃料タンクから供給される燃料と圧縮機20により供給される圧縮空気を混合して燃焼させる燃焼器21、燃焼器21の排気膨張力を受けて回転する高圧側タービン22、タービン22の排気を受けて回転トルクを得る低圧側タービン23、圧縮機20と高圧側タービン22を機械的に接続し、圧縮機20の回転トルクを高圧側タービン22へ伝達する回転軸24、低圧側タービン23に接続され、発電機3の回転子に回転トルクを伝達する回転軸25により構成される。
[0038]
 また、ガスタービン2の圧縮機20には、圧縮機の吸い込む空気流量を調整するための入り口ガイドベーン(以降IGV)26、燃焼器21への燃料投入量調整弁27が備えられていてもよい。
[0039]
 燃料は配管270、271を介して燃焼器21に供給される。また、圧縮機20により圧縮された空気は配管201を通って燃焼器21に供給される。燃焼器21の排気は配管210を通して高圧側タービン22に供給される。
[0040]
 図4に、本発明の実施例2の構成をしめす。
[0041]
 インバータ5はモータ4を駆動する装置である。
[0042]
 インバータ5から発生する電流高調波を低減するため高調波フィルタ85を通してもよい。
[0043]
 また、IGBT選択の自由度を上げるために、インバータ51と主発電機3の電圧を合わせるため変圧器82で電圧を変換し、その系統側に遮断機62を置く。
[0044]
 また、系統100と主発電機3の電圧を合わせるために、遮断器61の発電機側に変圧器83を置く。
[0045]
 主発電機3は低圧タービン23と同軸で回転しており、系統周波数を安定させるため一定回転を保つ。一方、回転軸24には圧縮機20と高圧タービン22及び、モータ4が繋がれているが、一定回転である必要は必ずしもない。したがって、この回転軸24の速度を可変にすると、その回転エネルギーをフライホイールの原理で、モータ4とインバータ5を用いて電力変換し、系統に入出力させることが可能である。これを第1の実施例における、電力変換部5と直流電源7で構成された補助電源とみなすことができる。つまり、急峻な出力変動要求に対して、発電機からの出力は急激には変えられないが、より回転数に自由度のある圧縮機側の回転エネルギーを入出力することで、補助電源を付加したことに対応する発電システムを提供することができる。
[0046]
 圧縮機側の回転数N_HPCは、回転速度センサ70で計測する。このインバータ5は、双方向に電力を送れるように、インバータ5Aと5Bが2台、直流端子同士で繋がれ、その間にコンデンサを備える構成である。5A、5Bのそれぞれは後に説明するが図6や7に示した構成を例えば採用する。
[0047]
 モータ4に始動時に電力を供給するために、5Aと5Bの間の直流部に、発電機92を整流器91を介して接続する。
[0048]
 図4で示すように、制御器10への入力信号は、電力負荷指令MWD、主発電機3の出力P_GENと回転数N_GEN、及び、モータの出力P_GENと高圧軸24の回転数N_HPCである。制御器10の出力は、発電機出力P_GENとモータ出力P_MOTの合計が出力指令と一致するようにガスタービン2は、燃料指令Fuel_CMDとIGV開度指令IGV_CMDを、モータ4にはトルク指令Tq_CMDを送る。
 ここで、本発明の第2の実施例であるこの発電システムの起動方法を図5を用いて説明する。まず、遮断器62は投入せず接続されていない状態にて、発電機92を起動する。その電圧を整流器91で直流にし、インバータ5Aと5Bの間の直流回路に電圧をかける。次に、インバータ5Bをデブロックして、モータ4を駆動し、圧縮機20の回転数を上げていく。圧縮機20が或る回転数になったら、燃焼器21で燃焼を始め、定格回転になるまで徐々に増やしていく。燃焼が始まると低圧タービン23が回転を始める。インバータ5Aはブロックしたままだが、インバータ5Bの高調波電流は変圧器82にもかかる。しかし、遮断器62で切断されているため、主発電機3には損失は発生しない。その後、実施例1と同様の手順で、ガスタービンで自立運転できるようになったら発電機92からの電力を停止し、モータ4は仕事を止める。徐々に回転数を上げ、低圧タービン23が同期速度になったら、主発電機3の同期制御をおこなって遮断器61で系統100に投入し通常発電が可能になる。最後に、遮断器62を投入し、モータ4と主発電機3の両方を協調制御する。この遮断器62の投入が遮断器61の投入の後であることが本実施例の特徴であり、これにより、発電システムを起動中のインバータ5Bに起因する高調波電流が主発電機3に流入するのを防ぐことができる。本実施例では、起動にインバータを使っている時間が長く、初期のインバータ5Bのデブロックを始めたときから、遮断器62の投入時までの、発電機の高調波損失を効果的に抑制できる。
[0049]
 図6に示されるように、モータ4を駆動する電力を供給する発電機92の接続場所は、インバータ5Aと遮断器62の間でもよい。また、接続場所はインバータ5Bとモータ4の間でもよい。
[0050]
 発電機92は交流発電機であり、遮断器64を介して変圧器82のとインバータの間に並列に接続する。この方法では、非常用発電機92の交流電力をインバータ5Aで直流化し、インバータ5Bでモータ41を駆動する。
[0051]
 図6の構成でも、第1、第2の実施例と同様に、遮断器62を開けたままガスタービンを起動させ、ガスタービンが通常に発電した後に、遮断器62を投入してモータ41と発電機3の協調制御を始める。この制御方法により、起動中にインバータ5から主発電機3に流入する高調波電流を無くすことができる。
実施例 3
[0052]
 図7に本実施例のガスタービン発電システム1の構成図を示す。本実施例では、ガスタービン始動時にモータ4を駆動するための電力が、交流系統100から供給される構成である。そのために本実施例では、遮断器61と遮断器62を含めた形で、電力変換器5と発電機3と交流系統100の接続関係を自由に切り替える切替手段を設ける。
[0053]
 本実施例の構成により、モータ4を駆動するための電力を確保するために、別途発電機を設置する必要のない点で有効である。
[0054]
 図7の発電システム1のうち、既に説明した実施例1、2に示された構成と同一の符号を付された構成、及び同様の機能を有する部分については、説明を省略する。
[0055]
 図7の発電システムでは、電力変換部5が遮断器61の発電機3側と交流系統100側の両方に接続され、これら2つの接続を繋いだり切断したりすることで接続状態を切り替える切替手段を備える。
[0056]
 図7の発電システム1の起動方法は図8に示されており、それは次のとおりである。最初は動力源2と発電機3とインバータ5が停止しており、すべての遮断器が開放されている。遮断器65を閉じてから電力変換部5をデブロックし、モータ4を駆動して圧縮機の回転数を上昇させる。ガスタービン着火確認後に、遮断器65を開けてモータ4の駆動を停止し、発電機3が所定回転数で系統と同期された後に遮断器61を閉じ、その後遮断器62を閉じる。
[0057]
 本実施例における切替手段は図9に示されるような接続でも実施できる。図9の発電システムでは、発電機3と交流系統100の間に遮断器61と遮断器66の二つの遮断器があり、電力変換部5が遮断器62を介して、遮断器61と遮断器66の間に接続されている構成をもつ。
[0058]
 遮断器を閉じる順番と組み合わせが違うが、インバータ5と発電機3と交流系統100の接続関係を図7の発電システム1と同じようにすることで実施できるため具体的な制御手順については説明を省略する。
[0059]
 本実施例における切替手段はインバータ5と発電機3と交流系統100の接続関係を適宜切り替える機能を有すれば他のどのような形態であってもよい。
実施例 4
[0060]
 実施例3では、モータ4を駆動するための電力を交流系統100から供給するために切替手段を設けたが、本実施例では図10のようにモータ4を、始動モータ42と、回転軸からエネルギを出し入れするモータ41とに分けて、始動モータ42は降圧変圧器81と遮断器63を介して交流系統100に接続される構成にしても実施できる。また、図11のように別の発電機92を設け、始動モータ41に電力を供給してもよい。
[0061]
 図10の発電システム1のうち、既に説明した実施例1、2、3に示された構成と同一の符号を付された構成、及び同様の機能を有する部分については、説明を省略する。
[0062]
 蓄電池7をインバータ5Aとインバータ5Bのあいだの直流部に設けてもよい。その場合は、発電システム1の起動時においてインバータ5Bをデブロックし、蓄電池7の電力をモータ41を駆動するために利用してもよいし、逆にモータ41で発電した電力を蓄電池7や直流部のコンデンサに、交流系統100の出力変動に備えて蓄えておいてもよい。
[0063]
 本実施例において制御器10が行う制御内容は、上記のように付加された装置を除いて実施例3と同様であり、遮断器65への指令を遮断器63や発電機92への指令と置き換え、実施例3のフローチャートの内容に準ずる。
実施例 5
[0064]
 本発明第5の実施例のガスタービン発電システム1の構成図を図12に示す。
[0065]
 図12の発電システム1のうち、既に説明した実施例1、2、3、4に示された構成と同一の符号を付された構成と、同様の機能を有する部分については、説明を省略する。
[0066]
 ガスタービン発電システム1は大きく動力源であるガスタービン2、と主発電機3と制御器10により構成され、ガスタービンが軸に動力を与え、軸入力を主発電機が電力に変換する。主発電機3で発電された電力は遮断器61を介して交流系統100に接続される。本実施例は構成の特徴として、直流電源7がインバータ5と遮断器62を介して交流系統100に、主発電機と並列に接続されている。これは、再生可能エネルギー等による電力変動に対応するための構成で、発電システム1全体として大きな電力は主発電機3から、小さく急峻な変動電力は直流電源7とインバータ5からなる補助電源から出力する。
[0067]
 本実施例において、インバータ5は直接的に発電機3のみに接続されているので、より多くの高調波電流が発電機3に流れ込む可能性があり、発電機3の効率と信頼性を向上する効果が他の実施例よりも大きい。
[0068]
 ガスタービン2は一軸であっても多軸であってもよい。
[0069]
 インバータ5の発する高調波に対して交流系統100がアースとして働いている現象を、発電システム1の起動時においても効率よくシンプルな起動シークエンスで利用でき、起動時に遮断器を開閉する制御を工夫することで、発電機3への高調波流入を抑制する効果を得られる。
[0070]
 本実施例において、モータ4は回転数ゼロの状態から圧縮機を回転する用途にしか使われないため、高価な高速モータを採用しなくてよい点で有効である。
[0071]
 直流電源7は例えば蓄電池や発電機と整流器の組み合わせなどが挙げられる。
[0072]
 ガスタービン2の軸に繋がる始動モータ4を設置してもよい。その場合、始動モータ4の電源は、システム内の系統から得てもよいし、システム内に別に用意された電源から得てもよいし、図12に示されるように変圧器81と遮断器63を介して系統100から得てもよい。
[0073]
 つぎにインバータ5の構成の例を、図13を用いて説明する。
[0074]
 本実施例のインバータ5は、IGBT素子が2つ直列接続されたアーム3つで構成される2レベルインバータである。
[0075]
 IGBT素子5m~5rはIGBTと該IGBTに逆並列接続されたダイオードにより構成される。コントローラ10より出力されるゲート信号GateSigはIGBT素子5m~5rの制御電極であるゲートへ入力され、IGBTがオン・オフ制御される。
[0076]
 インバータ5は、端子U、V、Wへ上記IGBT素子のオン・オフの時比率を調整することにより高調波成分を含む交流電圧を出力する。
[0077]
 リアクトル5filは、上記電圧高調波により発生する高調波電流を抑制するために設けられる。
[0078]
 端子P、Nには直流電源7が接続され、該直流電源7はインバータ5に直流電力を供給、もしくは直流電力を充電することで一定の直流電圧を供給する。
[0079]
 図14に記すようにインバータ5は変圧器5trを介して主発電機3及び交流系統100に接続することで、漏れインダクタンスによる高調波低減効果を以て高調波フィルタとしても良い。さらに変圧器5trを用いることで、交流系統100の電圧によらず適切な電圧・電流仕様のIGBTを選定できるようになるため、設計自由度が増す効果が得られる。
[0080]
 インバータ5は図14に示すような3レベルインバータに代表されるようなマルチレベルインバータでも同様の効果を奏する。
[0081]
 このようなガスタービン発電システムに於ける起動時の状態を図15に示す。初めに遮断器63を投入し、始動モータ4を駆動させる。それによってガスタービン2の回転数が上がっていく。ある速度まで上がったらガスタービン2に燃料を投入して燃焼を始め、ガスタービン自身の出力とモータ動力の両方で回転数を上げていく。ガスタービン2が自立回転できるようになったら遮断器63でモータ動力を切り離し、ガスタービンの出力を増やしながら回転数を増加させる。回転数が定格回転数に達したら、次に主発電機3と系統100の交流電圧と位相を同期させる制御をおこなう。この同期が完了したら、遮断器61を投入し、発電開始可能となる。そして、そのあと、遮断器62を投入し、インバータ5を系統に接続する。
[0082]
 遮断器62の投入前には、主発電機3の同期制御と同じくインバータ5の出力電圧も系統100電圧と同期させておく必要がある。そのため、予めインバータ5のスイッチングを開始(デブロック)しておく。このとき、インバータ5の出力指令をゼロとしても、主発電機3が遮断器62で切断されていないと、主発電機3にはスイッチングに起因する高調波電流が流れる。この高調波電流は、主発電機3の固定子巻線に流れ損失を発生させる問題がある。しかし、遮断器62で切断しておけば、主発電機3に損失が生じることはない。本実施例では、遮断器62の投入は遮断器61の投入の後としていることに特徴がある。なぜなら、遮断器61投入後ならば、インバータ5の高調波電流は主に系統100側に流れるからである。インバータからみて、系統100側と主発電機3側は並列であり、並列回路にはインピーダンスに反比例して電流が流れる。一般に発電機のインピーダンスに比べて系統のインピーダンスは十分に小さいので、遮断器61投入後であれば、高調波電流は主発電機3には殆ど流れ込まない。このため、遮断器62を遮断器61投入の後にするとよい。
実施例 6
[0083]
 本実施例は、発電システム1を停止する際や交流系統100への送電を中断する際の制御に関する。図1を用いて説明する。
[0084]
 発電システムを停止する際や、交流系統100への送電を中断する際に、発電システム1を交流系統100から切り離すために遮断器61を開放するが、その際に電力変換部5が稼働中で遮断器62が閉じていると、電力変換器5で発生した高調波電流が、発電機3に多く流れ込む恐れがあり、それにより発電機の信頼性を低下させる課題が、発電システム起動時と同様にある。
[0085]
 遮断器62を開放した後、遮断器61を開放する発電システム1の制御シークエンスを採用することで、電力変換部5からの高調波が発電機3に流れ込むのを抑制し、発電機の効率と信頼性を向上させる効果がある。
[0086]
 発電システム1を交流系統100から切り離す状況として、例えば交流系統もしくは発電システム側に、何らかの障害が生じた状況などが考えられる。
[0087]
 本実施例における発電システム1と交流系統100を切り離すシークエンスは、第1から第5実施例に記載の構造を有する発電システム等で実施できる。また、切り離すシークエンスの開始段階では本実施例において電力変換器5が起動している状況が想定されるので、発電システム1の起動時にあった電力変換器5を動かす状況として例えば始動装置4等の構成要件は必須ではない。
[0088]
 例えば、図1の発電システムで実施した場合、本実施例における制御器10の制御内容は図16に示されるとおりである。まず遮断器62を開放し、その後に遮断器61を開放することで、発電機3は交流系統100から切り離される。

符号の説明

[0089]
1   発電システム
2   ガスタービン
3   発電機
4   モータ
5   電力変換部
9   発電機
20  圧縮機
21  燃焼器
22  高圧タービン
23  低圧タービン
24  高圧軸
25  低圧軸
61、62、63、64、65、66 遮断器
81、82    変圧器

請求の範囲

[請求項1]
 動力源と、
 前記動力源で駆動される発電機と、
 前記発電機と交流系統の間に設けられる第一の遮断器と、
 前記発電機と前記第一の遮断器の間に接続される電力変換部と、
 前記第一の遮断機と前記電力変換部との間に設けられる第二の遮断機と、
 前記電力変換部のデブロックと前記第一の遮断器および前記第二の遮断器の開閉を制御する制御器を備えた発電システムであって、
 前記制御装置は、前記第一の遮断器および前記第二の遮断器が開いている状態で前記電力変換部のデブロック指令を出力した場合、前記第一の遮断器の閉指令を出した後に前記第二の遮断器の閉指令を出すよう構成されていることを特徴とする発電システム。
[請求項2]
 請求項1の発電システムであって、
 前記制御装置は、前記第一の遮断器が閉じたことを確認した後に、前記第二の遮断器の閉指令を出すよう構成されていることを特徴とする発電システム。
[請求項3]
 動力源と、
 前記動力源で駆動される発電機と、
 前記発電機と交流系統の間に設けられる第一の遮断器と、
 前記発電機と前記第一の遮断器の間に接続される電力変換部と、
 前記第一の遮断機と前記電力変換部との間に設けられる第二の遮断機と、
 前記電力変換部のデブロックと前記第一の遮断器および前記第二の遮断器の開閉を制御する制御器を備えた発電システムであって、
 前記制御装置は、前記第一の遮断器および前記第二の遮断器が閉じている状態で前記電力変換部が作動している場合、前記第二の遮断器の開指令を出した後に前記第一の遮断器の開指令を出すよう構成されていることを特徴とする発電システム。
[請求項4]
 請求項3の発電システムであって、
 前記制御装置は、前記第二の遮断器が開いたことを確認した後に、前記第一の遮断器の開指令を出すよう構成されていることを特徴とする発電システム。
[請求項5]
 請求項1乃至4の何れかの発電システムであって、
 前記動力源が始動装置を備え、
 前記電力変換部が、
 前記発電機と前記第二の遮断器を介して接続された第一の電力変換器と、
 前記始動装置と接続された第二の電力変換器と、
 前記第一の電力変換器と前記第二の電力変換器の間に設けられたコンデンサを備えることを特徴とする発電システム。
[請求項6]
 請求項1乃至5の何れかの発電システムであって、
 前記動力源が始動装置を備え、
 前記始動装置に電力を供給する電源を備えたことを特徴とする発電システム。
[請求項7]
 請求項6の発電システムであって、
 前記制御装置は、前記第一の遮断器および前記第二の遮断器が開いている状態で前記電力変換部のデブロック指令を出力した場合、前記電源が始動装置に電力を与えて前記動力源が始動した後に前記第一の遮断器の閉指令を出し、その後に前記第二の遮断器の閉指令を出すよう構成されていることを特徴とする発電システム。
[請求項8]
 請求項1乃至5の何れかの発電システムであって、
 前記動力源が始動装置を備え、
 前記発電機が前記交流系統との接続が切断された状態で、前記交流系統からの電力を前記始動装置に供給できるよう構成されたことを特徴とする発電システム。
[請求項9]
 請求項8の発電システムであって、
 前記第一の遮断器の前記交流系統側と前記第二の遮断器の前記電力変換器側とを接続する切替系統と、前記切替系統上に設けられた第三の遮断器を有し、
 前記制御器は、前記第一の遮断器および前記第二の遮断器が開いている状態で、閉じた前記第三の遮断器を介して前記交流系統から電力を供給し前記電力変換機をデブロックさせることを特徴とする発電システム。
[請求項10]
 請求項8の発電システムであって、
 前記第一の遮断器と前記発電機の間、かつ、前記第二の遮断器と前記発電機の間に第三の遮断器を備え、前記制御器は、前記第一から第三の遮断器が全て開いている状態でかつ前記電力変換機がデブロックしていない状態をスタートとした場合、
 前記第一および第二の遮断器の閉指令、前記電力変換機のデブロック指令、前記第二の遮断器の開指令、前記第三の遮断器の閉指令、前記第二の遮断器の閉指令の順番で指令を出すよう構成されていることを特徴とする発電システム。
[請求項11]
 請求項1乃至10の何れかの発電システムであって、
 前記発電機と前記電力変換器の間に変圧器が設けられたことを特徴とする発電システム。
[請求項12]
 請求項1乃至11の何れかの発電システムであって、
 前記発電機と前記電力変換器の間に高調波フィルタが設けられたことを特徴とする発電システム。
[請求項13]
 請求項1乃至12の何れかの発電システムであって、
 前記動力源が、
 空気を圧縮する圧縮機と、
 前記圧縮機で圧縮された空気と燃料を混合して燃焼させる燃焼器と、
 前記燃焼器の排ガスにより回転力を得るタービンを備えたガスタービンであることを特徴とする発電システム。
[請求項14]
 請求項13の発電システムであって、
 前記ガスタービンが2軸ガスタービンであることを特徴とする発電システム。
[請求項15]
 動力源と、
 前記動力源で駆動される発電機と、
 前記発電機と交流系統の間に設けられる第一の遮断器と、
 前記発電機と前記第一の遮断器の間に接続される電力変換部と、
 前記第一の遮断機と前記電力変換部との間に設けられる第二の遮断機を備えた発電システムの制御方法であって、
 前記第一および第二の遮断器が開いた状態で前記電力変換器を起動させた後、前記第一の遮断器を閉じ、その後で前記第二の遮断器を閉じることを特徴とする発電システムの制御方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]