Processing

Please wait...

Settings

Settings

Goto Application

1. WO2021056395 - WIRE ELECTRODE ION CONTROL DEVICE STRETCHER AND WIRE TENSION CONTROL METHOD

Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066  

权利要求书

1   2   3   4   5   6   7   8   9  

附图

1   2   3   4   5 (R26)   6 (R26)   7   8   9   10   11   12  

说明书

发明名称 : 一种导线电极离子控制装置拉伸器及导线张力控制方法

技术领域

[0001]
本发明涉及离子操纵和分析装置技术领域。特别是涉及导线电极的调整测量装置和方法。

背景技术

[0002]
由于其快速,优异的识别能力,高灵敏度和高分辨率,质谱仪在现代分析化学中发挥着重要作用。然而,质谱仪的体积相对较大,其重量大、功耗高、制造和维护复杂等缺点妨碍了质谱仪得到更为广泛的应用。在公共安全,环境保护,生化分析和工业过程监测等应用领域,人们需要性能良好的小型便携式质谱分析仪。微型质谱仪是满足这些应用的最佳解决方案之一,因为它具有能够在现场部署的优势和卓越的识别未知化合物的能力。然而,目前的微型质谱技术尚不能满足上述这些应用中对探测灵敏度的要求。例如,目前用微型质谱仪检测爆炸性化合物的灵敏度为ppb级,而机场安全检查的要求需要达到ppt水平或更好。离子阱是实现小型化质谱仪的最佳方案之一,因为离子阱的尺寸紧凑,工作压力相对较高,并且具有实现多级串联质量分析(MSn)的独特能力。
[0003]
按照结构来分,离子阱包括三维离子阱和二维线性离子阱。三维离子阱由一对环形电极(ring electrode)和两个呈双曲面形的端盖电极(end cap electrode)组成。三维离子阱最初是由Paul和Steinwedel在美国专利号2,939,952中披露的。在环形电极上加射频电压RF或再加直流电压DC,上下两个端盖电极接地。逐渐增大射频电压的最高值,离子进入不稳定区,由端盖极上的小孔排出。因此,当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排出并被记录而获得质谱图。在三维离子阱中,由于使用的空间有限,空间电荷效应明显,离子的存储容量受到限制,从而限制了质谱仪的分辨率和离子检测的线性范围,从而影响样品分析性能。
[0004]
为了解决这些问题,美国专利No.6,797,950提出了二维离子阱,也称为线性离子阱,它非常类似于四极杆质谱仪,由两组双曲杆和两端的两个平板组成。在一组对角的双曲杆上施加交替的RF电压,而具有180度相位差的交流RF电压则施加到另一组对角的双曲杆电极上。同时,通过在一组对角的双曲杆电极上叠加另一个具有180°相位差的弱交变电压,就可以可以实现偶极共振辅助激励模式。该模式极大地提高了离子阱的离子出射效率和质量分辨率。
[0005]
线性离子阱形成的电场中,在离子激发或逐出方向X上,离子所受到的该方向束缚电位分量函数V(x)=Ax2,即在该方向为二次场,或称简谐势阱函数,离子在该方向上运动的震荡频率与共振幅度无关。
[0006]
这四个双曲杆电极平行设置形成一个离子阱,其中有一个双曲面电极上需要开设一个小 孔,使得共振的离子通过这个小孔出射。跟三维离子阱相比,阱中囚禁的离子显著增加,从而能够改善探测灵敏度。然而,这种二位的线性离子阱需要非常精密的经书加工机械才能形成所需的精确双曲杆电极因而成本较高。另外,双曲杆上的孔径不够大,因而会阻挡一部分离子的出射,限制了灵敏度的进一步增加。
[0007]
为了克服上述缺点,人们做出许多的努力,用简化的电极来替代双曲杆电极,并追求可以令人接受的探测性能。美国专利6,838,666描述了线性离子阱质量分析器的系统和方法,离子阱由简单的长方形电极形成。更为直接的方法是修改离子阱约束电极的边界结构。此方法使得离子出射方向上的约束电极在离子出口处相对突出,详见River Rat在美国专利No.6087658中所提出的解决方案。此外,增加一对理想四极杆之间的距离的方法也被广泛使用。通过使用多个离散电极部分替换原始的约束电极,同时将不同的限制电压施加到这些离散的替代电极上,也可以改善局域电场。对于线性离子阱,在中国专利CN1585081中,丁传凡设计了由印刷电路板包围而成的线性离子阱。该结构包括多个可离散调节的电极条模式。他将电压分压器的电容器-电阻器网络用于调节RF电压和这些电极图案之间的限制DC电压。类似的,如Gangqiang Li等人的美国专利No.7,755,040中所指出的那样,也可以构造出具有轴向二次场的静电离子阱。本专利的发明人之一,吴庆浩等曾使用不锈钢丝电极来产生二次场并获得了更好的分辨率(见分析化学杂志2016年88卷,7800-7806页,以及美国质谱协会杂志2017年刊)。
[0008]
吴庆浩等人利用不锈钢电极产生了二次场并获得了较好的分辨率(Anal.Chem.2016,88,7800-7806;J.Am.Soc.Mass Spectrom.(2017))。导电线电极离子阱具有电容小,分辨率好,易加工等特点在微型离子阱中有重要价值。但仍存在很多问题。这些问题包括:1、导电线电极电极无法有效拉伸固定,导致金属线弯曲,影响电场。2、使用对称场,使离子出射时平均地从两个方向射出,如果只使用一个检测器,会造成一半的离子无法检测,从而降低了灵敏度。而使用两个检测器会造成成本上升,并且存在信号合并等一系列问题。3、使用静电场将离子从VUV灯离子源传输至离子阱,离子的损耗较大,影响了灵敏度。
[0009]
发明内容
[0010]
本发明所解决的技术问题是提供一种导线电极离子控制装置拉伸器及导线张力控制方法提高离子检测灵敏度,可以大大提高导线电极中各导线张紧力的一致性,使导线电极所形成的离子阱电场的更完善。
[0011]
本发明采用的技术方案是,一种导线电极离子控制装置拉伸器,包括至少两个支撑圆筒、穿孔绝缘板,导线电极,导线拉伸器和离子检测器,支撑筒两端分别和一个穿孔绝缘板密封配合形成一个腔体,腔体内设有一组导线电极,穿孔绝缘板的中心设有中心孔,中心孔上设 有金属环,相邻两个穿孔绝缘板之间设有支撑筒和一组导线电极,每组导线电极的数量为至少4个,每个导线电极包括至少2根互相平行的导线,穿孔绝缘板上设有环绕孔,导线的两端分别穿过并固定于前后两个穿孔绝缘板上的环绕孔上;
[0012]
穿孔绝缘板上连接有调整导线张紧力的拉伸器,拉伸器包括拉伸螺栓和固定螺栓,拉伸螺栓连接导线,随着拉伸螺栓的旋拧,导线张紧力发生变化,张紧力调整完毕后用固定螺栓夹紧拉伸螺栓,紧固拉伸螺栓的位置。
[0013]
所述拉伸螺栓为空心螺栓,导线穿过空心螺栓内的通孔并固定在拉伸螺栓上。
[0014]
所述固定螺栓轴线垂直于拉伸螺栓轴线,固定螺栓顶住拉伸螺栓侧面将拉伸螺栓固定。
[0015]
拉伸器还包括导线固定框架,导线固定框架和穿孔绝缘板固定连接,导线固定框架上设有螺纹孔,螺纹孔中安装拉伸螺栓。
[0016]
拉伸器还包括固定块和固定块上的螺栓,导线通过螺栓夹紧于固定块,固定块套装在拉伸螺栓上。
[0017]
导线固定框架为圆形或方形框架,框架上设有连通内外的通孔,导线从通孔内通过。
[0018]
导线固定框架内设有凹槽,固定块位于凹槽内。
[0019]
每个导线电极由同一根金属丝来回穿过所对应环绕孔形成,每个导线电极的导线张紧力通过一个拉伸螺栓进行调整。
[0020]
该装置包括至少三个穿孔绝缘板,穿孔绝缘板的中心设有中心孔,中心孔上设有金属环,相邻两个穿孔绝缘板之间设有支撑筒和一组导线电极,每组导线电极的数量为至少4个,每个导线电极包括至少3根互相平行的导线,穿孔绝缘板上设有环绕孔,导线的两端分别穿过并固定于前后两个穿孔绝缘板上的环绕孔上,支撑筒将导线电极围住并与前后两个穿孔绝缘板密封配合形成一个腔体;穿孔绝缘板上连接有调整导线张紧力的拉伸器,拉伸器包括拉伸螺栓和固定螺栓,拉伸螺栓连接导线,随着拉伸螺栓的旋拧,导线张紧力发生变化,张紧力调整完毕后用固定螺栓夹紧拉伸螺栓,紧固拉伸螺栓的位置;
[0021]
旋拧拉伸螺栓,向导线施加张紧力,拨动每一根导线,用声音频率测试仪器测量导各线所发出声音的频率并记录,取频率值作为基准值,基准值上下500Hz为合格范围,调整相应导线对应的拉伸螺栓,放松发音频率高过合格范围的导线,不断测量其发音频率,直至其发音落入合格范围,拉紧发音频率低于合格范围的导线,不断测量其发音频率,直至其发音落入合格范围。
[0022]
电场的优化对于任何离子阱的设计是必不可少的,需要通过改变各种几何参数来优化电场。计算机模拟提供了有效的方法来测试几何参数设计变更的影响,并能最大限度地减少人工和研发成本。通常我们使用下面两种方法来预测离子阱的性能:1)计算电场的高阶分量, 同时与现有离子阱的参数值进行比较。然而,由于参数的任意性,例如电场的边界和多项式曲线拟合的程度,用这种方法来优化离子阱的几何形状并不理想。2)使用计算机模拟来估算离子阱的探测性能,例如,质量分辨率,离子的出射效率等。该方法提供了评估离子阱几何结构性能的直接方法,因此它可以作为离子阱优化几何参数的有效方法。这种方法的缺点是计算量很大。然而,最近几年计算技术的巨大进步,使得这一障碍基本上得到了克服。在先前的工作[International Journal of Mass Spectrometry 393:52-57。]中,本申请的发明人展示了使用单参数优化方法来研究双板线性离子阱(LIT)中的未对准的问题,每次只对一个几何参数进行优化。然而,离子阱电极的几何形状应该以多种方式变化,在这种情况下,需要进行多参数优化。我们基于分辨率和峰高作为标准用计算机模拟进行优化,即在线性离子阱中同时优化六个参数。然后根据优化的几何结构构建测试系统,并通过实验结果来评估线性离子阱的稳定性图,分辨率和灵敏度。
[0023]
本发明的有益效果是,通过串联的各离子控制室,提高离子传输效率,能达到良好的分辨率,同时,降低分布电容,对机械和装配误差的高耐受性,还能降低重量,减小体积。对导线的拉伸操作方面易行,而且拉伸力可以基本保持一致,各导线张紧力的一致性,使实际产生的电磁场可以完全实现所模拟的电磁场状态。

附图说明

[0024]
图1是本发明导线电极离子阱的实施方案。
[0025]
图2是图1中绝缘板和导线电极的结构图。
[0026]
图3是本发明穿孔绝缘板的透视图。
[0027]
图4是本发明多孔绝缘板的另钻孔方法。
[0028]
图5是本发明对称环绕孔结构中的离子出射效果。
[0029]
图6是本发明不对称环绕孔结构中的离子出射效果。
[0030]
图7是本发明导线电极拉伸器的结构图。
[0031]
图8是本发明中离子控制装置的另结构图。
[0032]
图9是本发明穿孔绝缘板中环绕孔的另结构图。
[0033]
图10是本发明另离子控制装置的结构视图。
[0034]
图11是本发明另金属丝导线拉伸器的结构图。
[0035]
图12是本发明金属丝导线拉伸器不同实施方案的构造视图。

具体实施方式

[0036]
下面结合示意图和具体实施案例对本发明作进一步详细说明。
[0037]
VUV灯为紫外线灯。
[0038]
实施例1,如图1-7所示。
[0039]
在所选的实施案例中,如图1所示,三个离子控制装置串联连接,整个装置包括四个穿孔绝缘板,其中,第一穿孔绝缘板101a、第二孔绝缘板101b和支撑筒一103a构成穿孔绝缘板,第三穿孔绝缘板101c、第四穿孔绝缘板101d和支撑筒三103c构成另一个类似的离子捕获室。第二穿孔绝缘板101b,第三穿孔绝缘板101c和支撑筒二103b构成离子分析室。还包括被各支撑圆筒围住的一组导线电极102,紫外灯光电离装置,也即是VUV灯,电子枪电离源106,缓冲气体进气管107,样品进气管一108a和样品进气管二108c。装置的两端还各设有导线电极拉伸器118a。
[0040]
在操作中,各离子捕获室和离子分析室内的导线电极由多根互相平行的金属丝导线构成,离子捕获室和离子分析室的导线电极上被施加不同的电信号形成不同的离子阱,VUV灯一105a,VUV灯二105c或电子枪电离源106在相应的离子捕获室中产生离子。产生的离子被囚禁在离子阱腔室中,交流电压被施加到导线电极。当改变穿孔绝缘板中心孔中的环形电极上的电压时,囚禁的离子穿过中心孔,被转移到第二穿孔绝缘板和第三穿孔绝缘板之间的离子分析室,如图2中的211所示。
[0041]
在离子阱的运行期间,由VUV灯一105a和VUV灯二105c或电子枪电离源106组成的电离源能够在离子捕获室中产生离子。电离源产生离子的机制有如下三种,电子电离,光电离和化学电离。电子枪电离源106包括产生电子的热电子发射灯丝,在灯丝上施加70V DC电压,使电子加速到70eV。这些电子与样品分子的碰撞将在离子捕获室中产生正离子。光电离源由VUV灯发射的高能光子可以直接导致样品分子的软电离,还可以通过光电效应在构成离子阱腔室的金属圆筒表面上产生电子,经过电场加速之后也能将样品分子软电离。实施例一中,由VUV灯一105a所产生的光子能量可以与VUV灯二105c的光子能量相同或不同。如果来自两个灯的光子能量不同,则可以通过比较两个VUV灯所产生的离子之间的差异来区分具有不同电离能的化合物,对于样品的检测及对比效率更高。化学电离则借助离子阱内的辅助化学试剂分子,诸如丙酮、二甲苯等气态分子,经过光电离产生电子和正离子,因为离子阱腔室内的气压可以达到几十帕,因此有足够的时间发生理想的离子分子反应,从而产生相应的分析样品的正离子和负离子。可以采用的电离方式还有尖端放电,例如辉光放电或电晕放电,还有热阴极电子发射源。本发明优选VUV灯作为电离源,取其软电离效果好,同时由于导线电极由若干极细的金属丝构成,其对对紫外光的遮挡几乎可以忽略,对样品气体的电离效果非常好。
[0042]
在离子阱腔内一旦产生离子,它们就被一组施加了交流电信号的导线电极(102)产生的电场所捕获。导线电极的结构如图2所示。被捕获的离子在与缓冲气体多次碰撞之后被冷却。 经过一小段时间后,离子通过在位于中心孔二211b、或中心孔三211c上的中心电极二218b或中心电极三218c上施加的脉冲电压作用下被转移到分析室,如图2所示。在交流电场的遏制下,离子在传输转移过程中的损耗量很小,显著提高了系统的探测灵敏度。由于损耗量降低了一个数量级,对样品需求量降低了很多,受限于样品量太小无法检测的场合就可以实现检测,大大提高了可检测应用范围。无需像现有设备一样为了产生大量离子而耗费很大功率,摆脱了体型巨大的离子产生及捕捉装置,离子传输也非常高效,离子产生、捕捉和传输的过程均在一体化的装置内、在真空环境中完成,整个装置功耗大大降低,体积上非常小巧,非常便于携带到现场检测,无需采集和移送样品,时间上更高效,空间上更灵活。
[0043]
如图1所示,在每个绝缘板上都设有4个定位校准孔120a,120b,120c和120d,能够容易地确定穿孔绝缘板101a,101b,101c,101d的位置。组装时,用通过穿过校准孔的刚性杆进行位置校准,就能精确地确定并保持穿孔绝缘板的位置。
[0044]
如图1所示,缓冲气体通过缓冲气体进气管107引入离子分析室,而样品气体则从样品进气管一108a和样品进气管二108c分别引入两个离子阱捕获腔室。这两种气体的分别引入,克服了原始设计中压力不平衡的问题Anal.Chem。2016,88,7800-7806;J.Am.Soc.Mass Spectrum。2017。这种方法能够增加样气流量,从而提高系统的灵敏度。离子分析室方形套筒侧壁上的狭缝121用于出射离子,出射的离子就能被离子检测器109检测到。
[0045]
一组或多组VUV灯电离装置分别安装在支撑筒一103a,支撑筒三103c的两侧。VUV灯发射的光子穿过窗孔112辐射到支撑筒中,对样品分子进行电离。多组VUV灯电离装置提高了电离效率,从而提高了系统的灵敏度。在实施过程中,不同波长的VUV灯也可用来获得可区分的质谱。例如,较短波长的VUV灯能够电离大多数有机化合物。而使用波长略长的VUV灯只能有效地电离具有较低电离能的化合物。通过比较两组质谱,能够区分样品气体中化合物的电离能差异,从而获得化合物的种类信息。
[0046]
图2展示出图1中的穿孔绝缘板和导线电极的结构,图中移除了支撑筒一103a,支撑筒二103b,支撑筒三103c以便更好地展示。四个穿孔绝缘板,穿孔绝缘板一201a,穿孔绝缘板二201b,穿孔绝缘板三201c和穿孔绝缘板四201d通过前后三组金属导线相连接,三组金属导线分别构成前导线电极202a,中导线电极202b,后导线电极202c,各组导线电极分布情况相同,并且前后可以互相连通。其中,穿孔绝缘板上分布有中心孔和中心孔周围的多组环绕孔212a,212b,212c,212d,每组环绕孔上固定有属于同一导线电极的金属导线。各穿孔绝缘板中心位置的金属环218a,218b,218c,218d紧密地固定在各穿孔绝缘板的中心孔211a,211b,211c和211d中,用来控制离子沿对称轴221的传输。将交流电压信号施加到导线电极就能形成离子阱电场。离子被捕获在由导线电极一202a、导线电极二202b、导线电极三202c、 中心金属环二218b和中心金属环三218c所形成的囚禁区域中。图中的各穿孔绝缘板前后的导线电极之间也可以不相互连接,在同一时间,前后各支撑筒腔体内的导线电极形成的离子阱电场可以不相同,可以用于多种检测、对比方式。穿孔绝缘板之间导线电极的连接方法如图3所示。属于同一导线电极的导线由同一根金属丝往复折返穿过对应的环绕孔形成,这样可以简化导线固定方式,也方便电压信号的施加。一系列定位校准孔220a,220b,220c,220d用于确认穿孔绝缘板201a,201b,201c,201d的位置。
[0047]
支撑筒插入穿孔绝缘板201a,201b,201c和201d上的凹槽214b,214c,214d,其中一个凹槽被挡住,在图2中看不见。凹槽的宽度略大于支撑筒的壁厚,从而可以紧紧地固定支撑筒,同时起到密封作用。由于整个装置都放置在真空环境中,这种支撑筒和穿孔绝缘板的密封与尺寸都很小的环绕孔、中心孔、离子出射孔等结合,可确保离子阱腔的内外之间有一个数量级的压差。为实现较好的分辨率,离子阱内的最佳气压约为0.1至0.5Pa,离子阱外部的气压约为0.01Pa。为保持这个压差,本发明的密封设计可以满足这一要求。此外,较好的密封还会降低缓冲气体的消耗,降低运行成本。装置两端的穿孔绝缘板一201a和穿孔绝缘板四201d上的凹槽在一侧制成,而装置中间的那些穿孔绝缘板二201b和穿孔绝缘板三201d上的凹槽需在两侧制成。
[0048]
穿孔绝缘板上有三种类型的孔。如图3所示。第一类孔为中心孔311,中心孔311上安装有金属环。适当的DC电压施加到金属环上能够控制沿着与导线电极平行的中心轴上的离子传输。第二类孔为环绕孔,用于让金属丝导线电极穿过,四个这样的孔形成一组,共四组环绕孔,第一环绕孔312a、第二环绕孔312b,第三环绕孔312c和第四环绕孔312d。穿过同一组环绕孔的导线相互连接,施以同样的电压信号,成为一个导线电极。环绕孔的位置相对于中心位置可以是对称的或不对称的。第三类孔为校准孔320用于校准这些穿孔绝缘板的位置,这些校准孔与板的中心对称。
[0049]
环绕孔的位置可以通过仿真软件计算来确定,二维平面上,每个孔的位置有两个位置参数。对于对称结构,对称孔的位置可以通过对称性来确定。在模拟软件中,在装置中模拟上千个离子运行来获取质谱,根据所得的质谱分辨率和灵敏度来优化这些小孔的位置。基于这些标准,就能够完全确定这些小孔的位置。例如,在使用16个孔的对称实施案例中,如图3所示,四个孔的位置分别是(6.7,0.7),(6.8,3),(1.5,7),(4.5,7),中心孔的中心设为(0,0),其余环绕孔按照中心对称原则确定其位置。而对于不对称结构,如图4所示,则需要单独计算所有这些环绕孔的位置。根据实际需要,可以非常容易地缩放离子阱的尺寸。金属丝导线通过环绕孔形成导线电极,对环绕孔的加工精度要求仅为0.1mm即可,而现有四级杆的加工精度则需要达到微米级别,加工难度大,加工成本极高,而且加工成型后无法改变,导线电 极可以灵活的更换穿孔绝缘板,用不同的环绕孔分布,构成不同的离子阱,更具工业实用性。
[0050]
定义:AV信号指的是,高压交替电信号,幅值在50V到10000V之间,AC信号指的是低电压交替信号,幅值为0-10V,频率约为AV幅值的三分之一并可以调节。
[0051]
图3中,在相对两组的金属丝导线电极上,例如第二导线电极316b和第四导线电极316d,施加相同的高压交替电信号AV。在另一对相对的两组,例如第一导线电极316a和第三导线电极316c金属丝导线电极上则施加具有180°的相位差的高压交替电信号AV。这个交替的高压电信号AV即为捕获离子提供囚禁电场。高压交替电信号的幅度在50V到10000V之间。另外信号幅度小于10V的交替AV信号被叠加到孔316a中的导线电极。同时,在第三导线电极316c上施加与第一导线电极316a上相差180度的相同幅值电信号。类似地,这种低电压的交替AC信号也可以叠加到第二导线电极316b和第四导线电极316d上。另外,除了施加低压AC信号之外,还需要在第一导线电极316a和第三导线电极316c上施加电位小于10V的恒定电位差,这样可以帮助正离子和负离子沿相反方向从离子阱中出射。
[0052]
图4示出了穿孔绝缘板的另一种孔的分布结构。在这种结构中,在多孔板的中心区域中有一个中心孔411。6组环绕孔,每组3个,各组环绕孔412a,412b,412c,412d,412e,412f围绕中心孔411分布。其中,高压交替电压信号AV施加到穿过第一环绕孔412a,第三环绕孔412c和第五环绕孔412e的导线电极上。将具有相同幅度和180度相位差的高压交替电压信号AV施加到穿过第二环绕孔412b,第四环绕孔412d和第六环绕孔412f的导线电极上。高压交替电压信号AC的幅度在50V至10000V之间。如此施加的AV信号可以在腔中形成用于捕获离子的限制电场。该设计的原理是用六组金属丝导线所形成的电场类似于六极离子传输器中的电场,作为离子传输装置。因此,基于同样的原理,八极离子传输器和其他多电极离子传输器中的电场也可以用类似的方法构造。导线电极的数量为四、六的整数倍。
[0053]
图3中的导线穿绕方式可以采用下述方式,由一根金属丝在两个穿孔绝缘板之间折返三次构成四根互相平行的导线,成为一个导线电极,此根金属丝的两端可以同时固定在一个导线拉伸器上,环绕孔仅起到定位作用,电信号施加到此根金属丝上即可保证此导线电极上各导线上是相同的电压信号。图4中,每个导线电极由三根平行的导线构成,其导线穿绕方式可以是一根导线在两个穿孔绝缘板之间折返两次,此根导线的一端连接到导线拉伸器,另一端固定到穿孔绝缘板上。环绕孔还起到固定作用。也可以采用另一种穿绕方式,两个需要施加相同电压信号的导线电极由同一根金属丝折返五次,形成六根平行的导线,构成两个导线电极,注意金属丝避开端电极。金属丝很细,与环绕孔之间没有摩擦,同一根导线折返次数越多,优点就是导线张紧力的一致性越强,缺点就是导线张紧力对拉伸器的反应会更加敏感,拉伸螺栓稍有移动,引起的导线移动幅度就会放大更多倍,调节张紧力时需要更加小心,对 拉伸螺栓的固定需要更加稳固。
[0054]
图5和6展示出对称结构的环绕孔分布和不对称结构环绕孔分布之间的差异。在图5的对称性环绕孔结构中,大多数离子从两个相对侧面等量出射。而在图6的非对称环绕孔结构中,由于环绕孔位置的移动,这些环绕孔位置相对于中心轴变得不对称,从而能够获得离子的单向出射效果。这种设计不对称环绕孔可以产生更多的参数以优化离子阱的性能。因为不对称,每个孔的位置就增加了两个参数,可以更好地优化性能,可以减少一个离子探测器,不仅降低了成本,还提高了质谱仪的探测灵敏度。图5中附图标记,定位孔-520,图6中附图标记,定位孔-620。
[0055]
图7展示出了导线电极的拉伸器。该设计包括电线固定框架718和一些空心螺栓719。其中,电线固定框架718上设有一组螺纹孔720。螺纹孔720的轴线相对于固定板701的平面成0°到90°的角度,空间不足的情况下,使用多角度可以有效利用空间。中空螺栓安装在螺纹孔720中。每个导线电极穿过一个空心螺栓719中心处的通孔,在那里导线电极被打结或焊接。施加在导线电极上的拉力可以通过调节空心螺栓719的旋转位置来确定。这种设计简单易用,可以针对每个导线电极单独调节拉力,从而解决了原始设计中导线电极的张力不均匀的问题。
[0056]
由于导线非常细,张紧力变化很敏锐,而导线张紧力的一致性对离子阱电场非常重要,本发明的张紧力调整方式如下:旋拧拉伸螺栓,向导线施加张紧力,拨动每一根导线,用声音频率测试仪器测量导各线所发出声音的频率并记录,首选设定一个基准值,基准值可以根据各导线所测频率选定一个中间值作为基准值,也可以考虑导线长度、因素等设定一个基准值,基准值上下500Hz为合格范围,调整相应导线对应的拉伸螺栓,放松发音频率高过合格范围的导线,不断测量其发音频率,直至其发音频率落入合格范围,拉紧发音频率低于合格范围的导线,不断测量其发音频率,直至其发音落入合格范围。
[0057]
实施案例2,如图8和9所示。
[0058]
图8展示出了另离子控制装置的结构。该结构使用三个穿孔绝缘板,第一穿孔绝缘板801a,第二穿孔绝缘板801b,第三穿孔绝缘板801c,板上有定位校准孔820,若干组环绕孔812。其中第一穿孔绝缘板801a和第二穿孔绝缘板801b之间的导线电极形成离子捕获室803,第二穿孔绝缘板801b和第三穿孔绝缘板801c之间的导线电极构成离子质量分析室804。在离子捕获室中,第一绝缘板801a的环绕孔分布图案类似于图4中所示的图案。在该设计中,离子捕获室中的导线电极和离子阱质量分析室彼此独立,并且通过图9中所示的第二穿孔绝缘板801b相连接。该设计利用了图4中的环绕孔分布结构,具有比较大的离子质量范围,从而能够增加捕获离子的质量范围。
[0059]
其中第一穿孔绝缘板801和第二穿孔绝缘板801b的离子控制室也可以作为离子分子反应室,从外部设备引入离子,在离子分子反应室内进行反应,
[0060]
图9展示了一种连接两个离子控制装置的穿孔绝缘板的环绕孔的构型。中心孔位于中心区域,环绕的小孔由两套不同大小和位置的小孔组成,一套前环绕孔913a,913b,913c,913d,913e,913f用于安装前端离子捕获室的导线电极,分为六组,每组三个;另一套后环绕孔912a,912b,912c,912d用于安装后端离子分析室的导线电极,分为四组,每组3个。穿过同一组环绕孔的三根金属导线为一个导线电极,施加相同电压,属于同一离子控制室的相邻导线电极所施加的电压具有180°相位差。具体如下:具有180度相位差但幅值相同的两组AV信号,分别被施加到穿过前环绕孔913a,913c,913e的导线电极和穿过前环绕孔913b,913d,913f上的导线电极上。类似地,具有180度相位差但幅值相同的AV信号分别被施加到穿过后环绕孔912a,912c的导线电极和穿过环绕孔913b,913d的导线电极上。这些环绕孔的分布可以相对于穿孔绝缘板的中心对称或不对称,如图5和图6所示。图9中金属导线的穿绕方式可以参考关于图3、图4的描述。在该实施例中,导线拉伸器为两个,分别安装在第一穿孔绝缘板801a和第三穿孔绝缘板801c上,分别用于调整离子捕获室803和离子质量分析室804的导线电极张紧力。导线电极张紧力检测和调整,同实施例一中的调整方式。
[0061]
实施案例3,如图10和11所示。
[0062]
图10展示出另离子控制装置的结构。在所选实施案例中,三个离子控制装置串联连接。第一穿孔绝缘板1033a和第二穿孔绝缘板1033b构成离子捕获室;第二穿孔绝缘板1033b和第三穿孔绝缘板1033c构成离子传输室;第三穿孔绝缘板1033c和第四穿孔绝缘板1033d构成离子分析室。在第一支撑筒1036a的侧壁上设置两个通孔,以使VUV灯1040a和1040b产生的紫外光通过。在第二支撑筒1036b的侧壁上设置通孔1038以限制腔体内的气压。在第三支撑筒1036c的侧壁上设置切口以使出射的离子通过。一端的拉伸器包括金属导线固定框架1041a和其上的一组固定螺栓1037a,用来调节离子传输室内导线电极张紧力。另一端的拉伸器包括金属导线固定框架1041d和其上的一组固定螺栓1037d,用来调整离子分析室内导线电极的张紧力。
[0063]
图11显示了另金属线拉伸器的结构。在选定的实施案例中,拉伸器包括导线固定框架1140,导线固定块1141和拉伸螺栓1142,拉伸螺栓1142的进退调整导线的张紧力。其中,由绝缘材料制成的电线固定框架设有三种螺纹孔:加固孔1145,导线孔1146和孔1147。导线孔1146用于使金属丝穿过,使得它们可以通过导线固定块1141固定。孔1147具有内螺纹,用于安装拉伸螺栓1142,通过旋转向导线固定块1141提供压力。虽然螺纹有一定的自锁性,但是导线的张紧力可变范围非常小,若其中一个拉伸螺栓稍有移动,就可能造成导线电极的 张紧力的巨大差异,影响导线电极张紧力的一致性,加固孔1145用于安装螺栓来顶紧拉伸螺栓1142,以防止导线拉伸螺栓1142的移动。导线固定块1141具有通孔1142和螺纹孔1143,金属丝穿过通孔1142并通过螺栓1148固定,安装在螺纹孔1143中。凹槽1102用于保持导线固定块1141的位置。导线连接在导线固定块上,那么在拉伸的过程中,拉伸螺栓的旋拧就只能影响到导线的张紧度,不会使导线自身发生拧动,导线会更加平直舒展,更有利于形成更理想的离子阱电磁场。
[0064]
其中离子传输室内的导线电极的导线拉伸器可以安装在第二穿孔绝缘板1033b或第三穿孔绝缘板1033c上,对离子传输室导线电极的导线张紧力进行调节,受空间限制,对应离子传输室的导线拉伸器不能采用和两端的拉伸器相同的结构,那么也可以采用简化的结构,在穿孔绝缘板上安装若干空心螺栓,空心螺栓带动导线电极的导线拉伸,每个空心螺栓对应一到两个导线电极即可。
[0065]
图12显示了拉伸器的另一个实施方案。拉伸器包括导线固定框架1201,八个导线拉伸螺栓1202,八个导线固定块1203和八个导线固定螺栓1204。在导线固定框架1201中,在框架上设置八个大螺纹孔1205。导线拉伸螺栓1202安装在螺纹孔1205中,以通过旋转拉伸螺栓1202向导线提供拉拉力。导线固定块1203通过所安装的导线固定螺栓1204来固定导线。螺纹孔1206用于固定拉伸螺栓1202以防止在拉紧导线之后的移动。这种结构的拉伸器对固定框架的尺寸要求不高,拉伸螺栓的调整更易操作。
[0066]
每个腔室内的导线电极都要进行张紧力检测和调整,操作方式参考实施例一中的调整方式。

权利要求书

[权利要求 1]
一种导线电极离子控制装置拉伸器,其特征在于:包括至少两个支撑圆筒、穿孔绝缘板,导线电极,导线拉伸器和离子检测器,支撑筒两端分别和一个穿孔绝缘板密封配合形成一个腔体,腔体内设有一组导线电极,穿孔绝缘板的中心设有中心孔,穿孔绝缘板上安装有端电极,端电极中心设有通孔,通孔和中心孔位置一致,相邻两个穿孔绝缘板之间设有支撑筒和一组导线电极,每组导线电极的数量为至少4个,每个导线电极包括至少2根互相平行的导线,穿孔绝缘板上设有环绕孔,导线的两端分别穿过并固定于前后两个穿孔绝缘板上的环绕孔上; 穿孔绝缘板上连接有调整导线张紧力的拉伸器,拉伸器包括拉伸螺栓和固定螺栓,拉伸螺栓连接导线,随着拉伸螺栓的旋拧,导线张紧力发生变化,张紧力调整完毕后用固定螺栓夹紧拉伸螺栓,紧固拉伸螺栓的位置。
[权利要求 2]
根据权利要求1所述的导线电极离子控制装置拉伸器,其特征在于:所述拉伸螺栓为空心螺栓,导线穿过空心螺栓内的通孔并固定在拉伸螺栓上。
[权利要求 3]
根据权利要求2所述的导线电极离子控制装置拉伸器,其特征在于:所述固定螺栓轴线垂直于拉伸螺栓轴线,固定螺栓顶住拉伸螺栓侧面将拉伸螺栓固定。
[权利要求 4]
根据权利要求1-3中任意一项所述的导线电极离子控制装置拉伸器,其特征在于:拉伸器还包括导线固定框架,导线固定框架和穿孔绝缘板固定连接,导线固定框架上设有螺纹孔,螺纹孔中安装拉伸螺栓。
[权利要求 5]
根据权利要求4所述的导线电极离子控制装置拉伸器,其特征在于:拉伸器还包括固定块和固定块上的螺栓,导线通过螺栓夹紧于固定块,固定块套装在拉伸螺栓上。
[权利要求 6]
根据权利要求4述的导线电极离子控制装置拉伸器,其特征在于:导线固定框架为圆形或方形框架,框架上设有连通内外的通孔,导线从通孔内通过。
[权利要求 7]
根据权利要求5所述的导线电极离子控制装置拉伸器,其特征在于:导线固定框架内设有凹槽,固定块位于凹槽内。
[权利要求 8]
根据权利要求1所述的导线电极离子控制装置拉伸器,其特征在于:每个导线电极由同一根金属丝来回穿过所对应环绕孔形成,每个导线电极的导线张紧力通过一个拉伸螺栓进行调整。
[权利要求 9]
一种导线电极离子控制的导线拉伸器张力控制方法,其特征在于:该装置包括至少三个穿孔绝缘板,穿孔绝缘板的中心设有中心孔,中心孔上设有金属环,相邻两个穿孔绝缘板之间设有支撑筒和一组导线电极,每组导线电极的数量为至少4个,每个导线电极包括至少3根互相平行的导线,穿孔绝缘板上设有环绕孔,导线的两端分别穿过并固定于前后两个穿孔绝缘板上的环绕孔上,支撑筒将导线电极围住并与前后两个穿孔绝缘板密封配合形成一个 腔体;穿孔绝缘板上连接有调整导线张紧力的拉伸器,拉伸器包括拉伸螺栓和固定螺栓,拉伸螺栓连接导线,随着拉伸螺栓的旋拧,导线张紧力发生变化,张紧力调整完毕后用固定螺栓夹紧拉伸螺栓,紧固拉伸螺栓的位置; 旋拧拉伸螺栓,向导线施加张紧力,拨动每一根导线,用声音频率测试仪器测量导各线所发出声音的频率并记录,调整相应导线对应的拉伸螺栓,放松发音频率过高的导线,拉紧发音频率低于合格范围的导线,不断测量其发音频率,直至其发音落入合格范围,然后用固定螺栓将对应拉伸螺栓紧固。

附图

[ 图 1]
[ 图 2]
[ 图 3]
[ 图 4]
[ 图 5]   [根据细则26改正 14.11.2019] 
[ 图 6]   [根据细则26改正 14.11.2019] 
[ 图 7]
[ 图 8]
[ 图 9]
[ 图 10]
[ 图 11]
[ 图 12]