WIPO logo
Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 | العربية |
PATENTSCOPE

Search International and National Patent Collections
World Intellectual Property Organization
Search
 
Browse
 
Translate
 
Options
 
News
 
Login
 
Help
 
maximize
Machine translation
1. (WO2018079817) ELECTRODE FOR ELECTROCHEMICAL DEVICE, ELECTROCHEMICAL DEVICE, AND METHOD FOR PRODUCING SAME
Document

明 細 書

発明の名称 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006   0007  

課題を解決するための手段

0008  

発明の効果

0009  

図面の簡単な説明

0010  

発明を実施するための形態

0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037  

符号の説明

0038  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  

図面

1A   1B   1C   2A   2B   3A   3B   4   5   6A   6B  

明 細 書

発明の名称 : 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法

技術分野

[0001]
 本発明は、電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法に関する。

背景技術

[0002]
 携帯電話、デジタルカメラ、ラップトップコンピュータなどの携帯型電子機器の電源や、車両用や家庭用の電源として広く普及している二次電池等の電気化学デバイスの1種として、積層型の電気化学デバイスがある。積層型の電気化学デバイスは、複数対のシート状電極、すなわち複数のシート状の正極と複数のシート状の負極がセパレータを介して交互に繰り返し積層された電極積層体を有している。
[0003]
 電気化学デバイス用のシート状の電極は、集電体に活物質(結着剤や導電材などを含む合剤である場合も含む)が塗布された塗布部と、電極端子と接続するために活物質が塗布されていない未塗布部とを備えている。積層型の電気化学デバイスでは、正極端子の一端が正極の未塗布部に電気的に接続されて他端が外装容器の外部に延び、負極端子の一端が負極の未塗布部に電気的に接続されて他端が外装容器の外部に延びるように、電極積層体が外装容器内に封入されている。外装容器内には電極積層体とともに電解液も封入されている。二次電池は年々大容量化する傾向にあり、これに伴って、仮に電気的短絡が発生した場合の発熱がより大きくなり危険が増すため、電池の安全対策がますます重要になっている。安全対策の例として、正極と負極との間の短絡を防止するために、正極の塗布部と未塗布部の境界部分にテープ状の絶縁部材が貼り付けられた構成がある。特許文献1には、正極の塗布部と未塗布部の境界部分にテープ状の絶縁部材ではなくアルミナペーストが塗布されてアルミナ含有層が形成された構成の電極が開示されている。
[0004]
 特許文献2には、突起状絶縁体の密度が、正極活物質層端部の厚さが不均一な領域(不均一領域)と集電体表面とで異なる構成が開示されている。
 特許文献3には、活物質層を集電体とともに取り囲む耐熱性多孔質層が設けられた構成が開示されている。

先行技術文献

特許文献

[0005]
特許文献1 : 特開2012-74359号公報
特許文献2 : 国際公開WO2013/176161号公報
特許文献3 : 特開2012-99385号公報

発明の概要

発明が解決しようとする課題

[0006]
 特許文献1には、活物質層の端部において厚みが漸次減少するテーパー領域にのみアルミナ含有層を設ける実施例が記載されている。また、特許文献2の発明では、突起状絶縁体の一端を活物質層の端部の不均一領域に配置している。
 特許文献1や特許文献2の場合、活物質層の端部における厚みが変化する部分と平坦な部分との境界を判別するのは困難であり、絶縁体の位置が不安定になりやすい。一方、厚みが変化する部分の長さを大きくすれば絶縁体は配置しやすいが、容量に寄与しにくい部分の電極形状が大きくなることから、エネルギー密度が低下することになり好ましくない。また、特許文献2のように突起状絶縁体をインクジェット方法等で塗布形成するのは生産性が低下するおそれがある。
 特許文献3の発明では、耐熱性多孔質層で活物質層全体が覆われているが、活物質層端部の厚みの変化や、集電体上に形成された耐熱性多孔質層の厚みについては考慮されていない。
[0007]
 そこで、本発明の目的は、隣接する電極との電気的短絡を防止し、容量エネルギー密度の低下を抑制することができ、活物質層が電極から脱落することを抑制する効果も得られる電気化学デバイス用の電極と電気化学デバイスとそれらの製造方法を提供することにある。

課題を解決するための手段

[0008]
 本発明の電気化学デバイス用の電極は、集電体上に活物質層が形成されている塗布部と、活物質層が形成されていない未塗布部と、未塗布部の一部と塗布部とを覆うように積層されている樹脂層と、を有し、樹脂層は、塗布部の上に位置するイオン透過性が高い高透過性部分と、未塗布部の一部の上に位置するイオン透過性が低い低透過性部分と、高透過性部分と低透過性部分との間に位置し、高透過性部分側から低透過性部分側に向かってイオン透過性が小さくなる遷移部分と、を含む。

発明の効果

[0009]
 本発明によると、隣接する電極との電気的短絡を防止し、容量エネルギー密度の低下を抑制することができる。また、活物質層が電極から脱落することを抑制する効果も得られる。
 また、塗布剤の塗布によって樹脂層を形成する場合には、樹脂層端部に向かって厚みを徐々に小さくすることができるので、粘着性の絶縁テープ等を貼り付ける場合よりも、樹脂層の有無に伴う部分的な厚さの変化を抑制することができる。従って、このような電極を複数積層したときに、均一に積層体を押さえて使用することができるので、サイクル特性などの低下を抑制することができる。

図面の簡単な説明

[0010]
[図1A] 本発明の電極の一実施形態の側面図である。
[図1B] 図1Aに示す電極の平面図である。
[図1C] 図1Aの要部の拡大図である。
[図2A] 本発明の電極の製造方法の一実施形態の活物質層形成工程を示す平面図である。
[図2B] 図2Aに示す活物質層形成工程を示す側面図である。
[図3A] 図2A,2Bに示す活物質層形成工程に続く樹脂層形成工程を示す平面図である。
[図3B] 図3Aに示す樹脂層形成工程を示す側面図である。
[図4] 本発明の電極の製造方法の樹脂層形成工程を模式的に示す側面図である。
[図5] 本発明の電極の製造方法の樹脂層形成工程の他の例を模式的に示す側面図である。
[図6A] 本発明の電気化学デバイスの一例である積層型二次電池の側面断面図である。
[図6B] 図6AのA-A線断面図である。

発明を実施するための形態

[0011]
 以下、本発明の実施形態について図面を参照して説明する。
 [電極の基本構成]
 本発明の一実施形態の電極の基本構造について説明する。図1A~1Cに示す電極1は、集電体2と、集電体2に塗布された活物質層3とを含む。集電体2の表面と裏面には、活物質層3が形成された塗布部と、活物質層3が形成されていない未塗布部とをそれぞれ有する。具体的には、活物質層3の長手方向の一方の端部(図1Aの左側端部)は、集電体2の端部から離れて位置することによって、集電体2の上に活物質層3が形成されていない未塗布部が残されている。活物質層3の長手方向の他方の端部(図1Aの右側端部)は、集電体2と同じ位置で終端しており、この部分には未塗布部が存在しない。そして、樹脂層4が、活物質層3(塗布部)全体を覆い、塗布部(活物質層3)と未塗布部(集電体2の活物質層が形成されていない部分)との境界部分を越えて未塗布部の一部を覆う位置まで延びるように形成されている。すなわち、集電体2の一端部を除く未塗布部および塗布部が樹脂層4によって覆われている。一例としては、樹脂層4は、アルミナ粉などの絶縁材料をポリマー(樹脂)とともに溶剤に分散させた塗布剤が、集電体2及び活物質層3の上に塗布された後に、溶剤を揮発させて、絶縁材料とポリマーとの間に微細な空隙を形成して固化したものである。樹脂層4は、後述するセパレータ8よりも高い耐熱性を有している。図1Cに示すように、樹脂層4は、活物質層3の上面(平坦面)3a上に位置し、薄くてイオン透過性が高い高透過性部分4aと、未塗布部(集電体2)上に位置し、厚くてイオン透過性が低い低透過性部分4bと、高透過性部分4aと低透過性部分4bの間に位置し、高透過性部分4a側から低透過性部分4b側に向かってイオン透過性が徐々に低下する遷移部分4cとを有する。一例としては、電極1の長手方向に沿って高透過性部分4aは3mm以上、好ましくは低透過性部分4bとは反対側の電極を越えた集電箔上まで、遷移部分4cは2mm程度の長さを有している。低透過性部分4bの長さは特に限定されないが、電池の外形が大きくなりすぎず、絶縁性も確保することを考慮すれば3mm以上10mm以下が好ましい。
[0012]
 本発明の樹脂層4の技術的意義について説明する。電気化学デバイス(例えば二次電池)の充放電時には、活物質層3と電解液との間でイオン(例えばリチウムイオン)の授受が行われる。万一、活物質層3を覆う樹脂層4のイオン透過性が低いと、イオンの授受が十分に行われず、電極2(活物質層3)が良好な充放電動作を行うことができない。従って、活物質層3の上面3a上に位置する樹脂層4は、イオン透過性が高い高透過性部分4aであることが必要である。一方、未塗布部(集電体2)は、電極端部に位置していることから、何らかの要因で電池が発熱した際、セパレータ8の収縮が生じると異なる極性の電極と接触しやすい部分となる。したがって、未塗布部に位置する樹脂層4は高い絶縁性が求められる一方で、高抵抗部であり、イオン透過性が低い低透過性部分4aである。
[0013]
 ここで、活物質層3の形成方法について考慮すると、活物質層3は、一般的に、活物質を含む合剤(塗布剤)が集電体2上に塗布されて固化されることによって形成される。この時、活物質層3の端部、すなわち塗布部と未塗布部の境界部分を、垂直に切り立った形状に形成することは容易ではなく、通常は、図1C、図2Bに示すように、活物質層3の端部は傾斜面状に形成される。図1Cにおける傾斜面状の部分は電極として機能する。そこで、この傾斜面状の部分3bに沿ってイオン透過性が変化する遷移部分4cが設けられている。活物質層3の傾斜面状の部分3bは、電極の中央部側から端部側に向かって厚さが低減するように形成されている。そして、樹脂層4の遷移部分4cは、活物質層3の傾斜面状の部分3bの厚さの変化と反対に、電極の中央部側(高透過性部分4a側)から端部側(低透過性部分4b側)に向かって厚さが増大するように形成されている。その結果、活物質層3の傾斜面状の部分3bのうち、活物質の量が多く(層厚が厚く)、容量への寄与が大きい部分は樹脂層4の遷移部分4cのうち層厚が薄くイオン透過性が比較的高い部分で覆うことによって、電解液との間でのイオンの授受を可能にしている。一方、活物質層3の傾斜面状の部分3bのうち、活物質の量が少なく(層厚が薄く)、容量への寄与が小さく、セパレータ8の異常収縮が生じたときに、対向する電極と接触する可能性が大きい部分は、樹脂層4の遷移部分4cのうち層厚が厚くイオン透過性が低い部分で覆うことによって、絶縁性を高めている。このように、樹脂層4の遷移部分4cのイオン透過性が電極1の長手方向に沿って変化することにより、電池容量の低下の抑制と、絶縁性の確保を両立することが可能となる。なお、活物質層3の傾斜面状の部分3bの層厚の変化と、樹脂層4の遷移部分4cの層厚の変化は必ずしも反比例する必要は無い。その理由の1つは、活物質層3の傾斜面状の部分3bの電極としての機能は活物質の量に依存するが、必ずしも活物質の量が層厚と比例するとは限らないことである。例えば活物質層3の密度が変化する場合には、活物質の量と層厚とが比例しない可能性があるので、活物質層3の傾斜面状の部分3bの層厚と、樹脂層4の遷移部分4cの層厚とが反比例しなくてもよい。また、活物質層3の傾斜面状の部分3bの層厚と樹脂層4の遷移部分4cの層厚は連続的に低減する構成に限られず、段階的に低減する構成、またはある程度不規則に低減する構成であってもよい。
[0014]
 以上の説明は、樹脂層4のイオン透過性が層厚に依存することを前提としている。ただし、樹脂層4のイオン透過性は、他の要因に依存する可能性もある。例えば、樹脂層4の絶縁抵抗が大きい部分はイオン透過性が低く、絶縁抵抗が小さい部分はイオン透過性が高い。また、樹脂層4の密度が高い部分はイオン透過性が低く、密度が低い部分はイオン透過性が高い。これらの要因を考慮すると、本発明の樹脂層4の遷移部分4cは、前述したように電極の中央部側から端部側に向かって層厚が厚くなる構成のみならず、電極の中央部側から端部側に向かって絶縁抵抗が高くなる構成であってもよい。また、本発明の樹脂層4の遷移部分4cは、電極の中央部側から端部側に向かって密度が高くなる構成であってもよい。これらを組み合わせて、樹脂層4の遷移部分4cは、電極の中央部側から端部側に向かって層厚が厚くなることと、絶縁抵抗が高くなることと、密度が高くなることのうちのいずれか2つ、または全てを備えた構成であってよい。
[0015]
 たとえば、樹脂層4に用いる材料は、体積抵抗率が1×10 12Ω・cm以上であることが好ましく、1×10 14Ω・cm以上であることがより好ましい。活物質層3の上面の高透過性部分4aの厚みは5μm以下が好ましい。樹脂層4は、1種以上のポリマー(樹脂)と絶縁性粒子との混合物であることが好ましく、高透過性部分4a、低透過性部分4b、遷移部分4cは同一の樹脂を含むことが好ましい。さらに、低透過性部分は、樹脂層をプレスして、絶縁性粒子とポリマーの間の空隙を潰し、絶縁抵抗を高めることができる。あるいは、樹脂部に加熱部材を押し当てるなどして樹脂を溶融し、空隙を潰すことで絶縁抵抗を高めることもできる。
[0016]
 [電極の製造方法]
 図1A~1Cに示す電極1の製造方法について説明する。電極1を効率良く製造するために、図2A,2Bに示すように、1枚の長尺のシート状の集電体2の複数個所に活物質層3をそれぞれ形成し、図3A,3Bに示すように、樹脂層4を形成する。この活物質層3の形成と樹脂層4の形成を、集電体2の表裏両面に対して行ったら、図3Aに仮想的に示す切断線19に沿って切断することによって、複数の電極1(図1A~1C参照)を得る。
[0017]
 この電極1の製造方法では、活物質層3(塗布部)の全体を覆うとともに、塗布部と未塗布部の境界部分を越えて未塗布部の一部を覆うように、主に樹脂(ポリマー)からなる塗布剤を塗布することによって樹脂層4を形成している。樹脂層4は、図1Cに示すように、活物質層3の上面3a上に位置する高透過性部分4aと、未塗布部上に位置する低透過性部分4bと、高透過性部分4aと低透過性部分4bの間に位置する遷移部分4cとを有し、遷移部分4cは、電極の中央部側から端部側に向かってイオン透過性(および絶縁抵抗)が低下するように、層厚が連続的に増大するように形成されている。
[0018]
 具体的には、長尺のシート状の集電体2をその長手方向に移動させながら、集電体2の表面に活物質を含む合剤(塗布剤)を塗布して活物質層3を形成する。この時、塗布剤を集電体2の表面上に切れ目なく連続的に塗布するのではなく、間隔を置いて間欠的に塗布する、いわゆる間欠塗工を行う。その結果、集電体2の表面に、長手方向に沿って互いに間隔を置いて複数の活物質層3が形成される。この活物質層3をプレスして平坦化した後に、樹脂層4を形成する。樹脂層4の形成は、図4の矢印20に沿って、集電体2をその長手方向に移動させながら、ダイヘッド16から樹脂を主成分とする塗布剤を吐出して行う。ダイヘッド16は、集電体2の搬送経路に対して近づいたり遠ざかったりすることができる。図4には、便宜上、集電体2が移動せずにダイヘッド16が移動しているか、または複数のダイヘッド16が存在するように図示しているが、実際には1個のダイヘッド16が、移動する集電体2の搬送経路に対向する位置に配置されている。図4の左側に示すように、集電体2の、活物質層3が形成された端部よりも所定距離だけ手前の部分が、ダイヘッド16に対向する位置に到達すると、ダイヘッド16が塗布剤の吐出を開始する。開始位置は、集電体の未塗布部も残すようになっており、未塗布部は、正極タブや負極タブとなる。まず、塗布剤の吐出量を多くして低透過性部分4bを形成し、次に、ダイヘッド16が活物質層3の傾斜面状の部分3bに対向する位置で、塗布剤の吐出量を徐々に少なくして遷移部分4cを形成する。そして、ダイヘッド16が活物質層3の上面3aに対向する位置で、塗布剤の吐出量を少量で一定にして高透過性部分4aを形成する。この時、ダイヘッド16は活物質層3の上面とぶつからないように、集電体2の搬送経路から離れるように移動する。そして、集電体2が移動して活物質層3がダイヘッド16と対向する位置を通過するのに合わせて塗布を終了したら、ダイヘッド16が再び集電体2の搬送経路に接近して、次の活物質層3の端部よりも所定距離だけ手前の部分に塗布剤を吐出するように準備態勢になる。このように、ダイヘッド16が集電体2の搬送経路に対して移動しながら塗布剤の吐出を行うことにより、容易に精度良く良好な樹脂層4の形成を行うことができる。なお、高透過性部分4aは、活物質層の平坦部全面に形成してもよく、平坦部の一部のみに形成してもよいが、終了位置は、活物質層を越えて集電体にもはみだすように樹脂層が形成されるようにするのが好ましい。タブを形成しない側の長手方向の端部は、後から所定の電極形状にカットされるため、集電体に形成した樹脂部分は廃棄することになるものの、電極端部の厚みの小さい部分の活物質が脱落するのを防止する効果も得られ、高品質の電極を得ることができる。
[0019]
 図5には、樹脂層4の形成工程の他の例を示している。この例では、ダイヘッド16を集電体2の搬送経路に対し近づけたり遠ざけたりすることなく、その代わりにダイヘッド16からの塗布剤の吐出量を変えて、塗布位置や塗布厚さを制御して、高精度で良好な絶縁樹脂層4の形成を行うことができる。図5には、ダイヘッド16の吐出量の変更に伴う減圧領域21を模式的に示している。
[0020]
 仮に塗布部と未塗布部の境界部分にテープ状の絶縁部材を貼り付ける場合には、テープ状の絶縁部材を含む電極の厚みが、一部だけ過剰に大きくならないよう、境界部分の傾斜位置での位置合わせが重要となるが、活物質層の上面3aと傾斜部分3bとの境界の判別は難しく、生産性の低下が懸念される。本発明では、主に樹脂からなる塗布剤を塗布するため、絶縁樹脂層4の層厚を変化させることは、塗布剤の塗布量を調節することや、塗布装置の一部であるダイヘッドと集電箔との距離を変化させることによって実行できる。また、活物質層3の上面3a上には、10μm以下、より好ましくは5μm以下の小さな厚みであって、実質的に均一な厚さの樹脂層4の高透過性部分4aが設けられるため、一部分のみが他の部分よりも厚くなることが抑えられ、電気特性のばらつきやサイクル特性の低下を抑制することができる。したがって、活物質層3の上面3aすべてに高透過性部分4aを設けるのではなく、遷移部分との境界近傍にのみ設けることも可能である(図示せず)。高透過性部分4aの厚みが非常に小さいので、電極を積層して積層体を作成した場合でも、樹脂層4の部分の隆起をきわめて小さく抑制できるからである。
 また、本発明では、ダイヘッドによって、塗布剤の塗出量、ダイヘッドと集電体の距離、またはこれらの両方を調整して樹脂層4の厚みを調整するので、電極の位置に応じた任意の厚みの形状の樹脂層4を形成できる。低透過性部分4bの厚みは、活物質層3と高透過性部分4aの厚みの合計よりも小さいことが好ましい。低透過性部分4bの厚みを、活物質層3と高透過性部分4aの厚みの合計よりも大きくする場合には、対向する負極の厚みを減じることで積層体を作成したときの絶縁樹脂による部分的な隆起が抑制可能であるが、負極側の厚みを減じるときは、局所的に負極側のA/Cバランスが逆転しないよう注意が必要である。
 以上説明した実施形態では、本発明の電極の製造方法において、活物質層3を形成した後に、プレス工程を行ってから樹脂層4の形成を行う説明をしたが、活物質層3を形成した後に、プレス工程を行わずに樹脂層4の形成を行い、後から活物質層と絶縁樹脂層とが重なった状態でプレス工程を行うこともできる。このとき、高抵抗部4bは別の圧縮工程や溶融工程を用いて、高抵抗化する処理が加えられていてもよい。あるいは、樹脂層の空隙を埋めるように、さらに別途樹脂を充填してもよく、たとえばインクジェット方式で空隙に充填することもできる。
 また、本発明の電極1は、前述したように集電体2の両面に活物質層3および樹脂層4が形成されている構成に限られず、集電体2の片面のみに活物質層3および樹脂層4が形成されている構成であってもよい。
[0021]
 このようにして活物質層3と樹脂層4とが形成された長尺の集電体2を、切断することなくロール状に巻いて、電極ロール(図示せず)を形成することができる。この電極ロールを保管しておくことにより、多数の電気化学デバイスを非常に効率良く製造できる。
[0022]
 以上説明した電極1(電極ロールから切り出された電極1)を用いて製造した電気化学デバイスについて以下に説明する。以下に記載する例では、前述した電極1を、電気化学デバイスの1種である積層型の二次電池の正極として用いるため、電極1を「正極1」、集電体2を「正極集電体2」、活物質層3を「正極活物質3」とも称する。
[0023]
 [積層型の二次電池の構成]
 前述した電極1を正極として含む電気化学デバイスの一例である積層型の二次電池23について、図6A,6Bを参照して説明する。図6A,6Bは、本発明によって製造された正極1を含む積層型の二次電池23を模式的に示している。図6Aは二次電池23の主面(平坦な面)に対して垂直上方から見た平面図であり、図6Bは図6AのA-A線断面図である。便宜上、図6A,6Bでは樹脂層4を省略し、活物質層3の形状を簡略化しているが、実際には、図1A~1Cに示す樹脂層4を含む正極1が用いられている。もう1種類の電極である負極5は、負極用の集電体(負極集電体)6とその負極集電体6に塗布された負極用の活物質層(負極活物質層)7とを含み、負極集電体6の表面と裏面には塗布部と未塗布部を有する。
[0024]
 本実施形態の二次電池23は、2種類の電極、すなわち正極(正極シート)1と負極(負極シート)5とがセパレータ8を介して交互に重なり合う電極積層体(蓄電素子)9を備えている。この電極積層体9は電解液10とともに、可撓性フィルム(ラミネートフィルム)11からなる外装容器12内に収納されている。電極積層体9の正極1には正極端子13の一端部が接続され、負極5には負極端子14の一端部が接続されている。正極端子13の他端部および負極端子14の他端部は、それぞれ可撓性フィルム11からなる外装容器12の外部に引き出されている。図6Aでは、電極積層体9を構成する各層の一部(厚さ方向の中間部に位置する層)を図示省略して、電解液10を示している。図6Bでは、見やすくするために、正極1と負極5とセパレータ8と可撓性フィルム11がそれぞれ互いに接触していないように図示しているが、実際にはこれらは密着して積層されている。負極5の塗布部(負極活物質層7)の外形寸法は正極1の塗布部(正極活物質層3)の外形寸法よりも大きく、セパレータ8の外形寸法よりも小さいか等しい。なお、正極活物質層3は負極活物質層7よりも小面積であるため、その端部に電気的短絡防止のための樹脂層4が設けられていることが好ましい。負極活物質層7は大面積であるため電気的短絡が生じる虞は小さいが、特に低透過性部分4bはセパレータ8が熱等によって損傷した時に隣接する正極1と電気的に短絡するのを防止する働きがあるため、負極活物質層7にも形成することが好ましい。その場合、前述した本発明の電極の製造方法によって負極5を形成することが可能である。
[0025]
 この二次電池23の製造の際には、正極1と負極5とを、セパレータ8を介して交互に積層し、正極端子13および負極端子14を接続する。具体的には、複数の正極1の正極タブ(正極集電体2の未塗布部)を正極端子13の一端部の上に密接に重ね合わせ、これらを一括して超音波溶着等により接合する。負極5においても、正極1と同様に、複数の負極タブ(負極集電体の未塗布部)6を負極端子14の一端部の上に重ね合わせて超音波溶接等により接合する。正極タブおよび負極タブは、未塗布部であって樹脂層4に覆われていない部分である。
[0026]
 このようにして正極1の未塗布部(正極集電体2)に正極端子13が接続され、かつ負極5の未塗布部(負極集電体6)に負極端子14が接続されて完成した電極積層体9を、その主面(平坦な面)の上下から可撓性フィルム11によって覆う。そして、平面的に見て電極積層体9の外周縁部の外側において、可撓性フィルム11同士が重なり合う部分に、一部を除いて圧力と熱を加えて、可撓性フィルム11の内側の樹脂層を構成する熱融着性樹脂を互いに熱融着させて接合する。この時、正極端子13と負極端子14は、予め設けられた封止材(シーラント)18を介して可撓性フィルム11の外周部に固着させる。一方、可撓性フィルム11同士が重なり合う部分のうち、圧力と熱を加えていない部分は、非接合のままの開口部分(注入口部分)として残る。一般的には、外装容器12のうち、正極端子13及び負極端子14が配置される辺を除く辺のうち、いずれか1辺の一部に注入口部分を形成する。そして、注入口部分から外装容器12の内部に電解液10を注入する。注入口部分以外の辺はすべて既に封止されているので、注入した電解液10が漏れることはない。また、既に封止されている辺において、可撓性フィルム11同士が重なり合う部分に電解液10が浸入することはない。その後、注入口部分に圧力と熱を加えて、可撓性フィルム11の内側の樹脂層を構成する熱融着性樹脂を互いに熱融着させて接合する。こうして電気化学デバイスの一例である二次電池23が完成する。
[0027]
 本実施形態の二次電池23において、正極活物質層3を構成する活物質としては、例えばLiCoO 、LiNiO 、LiMn 、Li MO -LiMO 、LiNi 1/3Co 1/3Mn 1/3などの層状酸化物系材料や、LiMn などのスピネル系材料、LiMPO などのオリビン系材料、Li MPO F、Li MSiO Fなどのフッ化オリビン系材料、V などの酸化バナジウム系材料などが挙げられる(Mは遷移金属)。各正極活物質において、これらの活物質を構成する元素の一部が他の元素で置換されていてもよく、また、Liが過剰組成となっていてもよい。そして、これらの活物質のうちの1種、または2種以上の混合物を使用することができる。
[0028]
 負極活物質層7を構成する活物質としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料や、リチウム金属材料、シリコンやスズなどの合金系材料、Nb やTiO などの酸化物系材料、あるいはこれらの複合物を用いることができる。
[0029]
 正極活物質層3および負極活物質層7を構成する活物質合剤は、前述したそれぞれの活物質に、結着剤や導電助剤等が適宜加えられたものである。導電助剤としては、カーボンブラック、炭素繊維、または黒鉛などのうちの1種、または2種以上の組み合せを用いることができる。また、結着剤としては、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子などを用いることができる。正極活物質層3と負極活物質層7のいずれにおいても、例えば製造上のばらつきや層形成能力に起因する不可避な各層の傾斜や凹凸や丸み等が生じていても構わない。
[0030]
 正極集電体2としては、アルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金等を用いることができ、特にアルミニウムが好ましい。負極集電体6としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金を用いることができる。
[0031]
 電解液10としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類や、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類や、脂肪族カルボン酸エステル類や、γ-ブチロラクトン等のγ-ラクトン類や、鎖状エーテル類、環状エーテル類、などの有機溶媒のうちの1種、または2種以上の混合物を使用することができる。さらに、これらの有機溶媒にリチウム塩を溶解させることができる。
[0032]
 セパレータ8は主に樹脂製の多孔膜、織布、不織布等からなり、その樹脂成分として、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ナイロン樹脂、アラミド樹脂(芳香族ポリアミド樹脂)、またはポリイミド樹脂等を用いることができる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータ4にも無機物粒子を含む層を形成してもよい。無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiO やAl を含むことが好ましい。電極だけに限らず、セパレータにも絶縁性の無機物粒子を含めることで、より安全な電池を提供することが可能となる。
[0033]
 外装容器12は、可撓性フィルム11からなる軽量の外装ケースであり、可撓性フィルム11は、基材となる金属箔の両面にそれぞれ樹脂層が設けられたラミネートフィルムである。金属箔には、電解液10の漏出や外部からの水分の浸入を防止するためのバリア性を有するものを選択することができ、アルミニウムやステンレス鋼などを用いることができる。金属箔の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルム11の熱融着性樹脂層同士を対向させ、電極積層体9を収納する部分の周囲を熱融着することで外装容器12が形成される。金属箔の、熱融着性樹脂層が形成された面と反対側の面には、外装容器12の表面として、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
[0034]
 正極端子13としては、アルミニウムやアルミニウム合金で構成されたものを用いることができる。負極端子14としては、銅や銅合金、あるいはそれらにニッケルメッキを施したものや、ニッケルなどを用いることができる。それぞれの端子13,14の他端部側は外装容器12の外部に引き出される。それぞれの端子13,14の、外装容器12の外周部分の熱溶着される部分に対応する箇所には、熱融着性の樹脂(封止材18)を予め設けておく。
[0035]
 本発明はリチウムイオン二次電池に特に有用であるが、リチウムイオン電池以外の二次電池や、キャパシタ(コンデンサ)等の電池以外の電気化学デバイスに適用しても有効である。
[0036]
 以上、いくつかの実施形態を参照して本発明を説明したが、本発明は上記した実施形態の構成に限られるものではなく、本発明の構成や細部に、本発明の技術的思想の範囲内で、当業者が理解し得る様々な変更を施すことができる。
[0037]
 本出願は、2016年10月31日に出願された日本特許出願2016-212820号を基礎とする優先権を主張し、日本特許出願2016-212820号の開示の全てをここに取り込む。

符号の説明

[0038]
1   電極(正極)
2   集電体(正極集電体)
3   活物質層(正極活物質層)
3a  上面
3b  傾斜面状の部分
4   樹脂層
4a  高透過性部分
4b  低透過性部分
4c  遷移部分
5   負極
6   負極用の集電体(負極集電体)
7   負極用の活物質層(負極活物質層)
8   セパレータ
9   電極積層体(蓄電素子)
10  電解液
11  可撓性フィルム(ラミネートフィルム)
12  外装容器
13  正極端子
14  負極端子
16  ダイヘッド
18  封止材(シーラント)
19  切断線
23  積層型の二次電池(電気化学デバイス)

請求の範囲

[請求項1]
 集電体上に活物質層が形成されている塗布部と、前記活物質層が形成されていない未塗布部と、前記未塗布部の一部と前記塗布部とを覆うように積層されている樹脂層と、を有し、
 前記樹脂層は、前記塗布部の上に位置するイオン透過性が高い高透過性部分と、前記未塗布部の一部の上に位置するイオン透過性が低い低透過性部分と、前記高透過性部分と前記低透過性部分との間に位置し、高透過性部分側から低透過性部分側に向かってイオン透過性が小さくなる遷移部分と、を含む、電気化学デバイス用の電極。
[請求項2]
 前記樹脂層の体積抵抗率が1×10 12Ω・cm以上である、請求項1に記載の電極。
[請求項3]
 前記高透過性部分は層厚が薄く、前記低透過性部分は層厚が厚く、前記遷移部分は高透過性部分側から低透過性部分側に向かって層厚が厚くなる、請求項1または2に記載の電極。
[請求項4]
 前記高透過性部分は絶縁抵抗が小さく、前記低透過性部分は絶縁抵抗が大きく、前記遷移部分は高透過性部分側から低透過性部分側に向かって絶縁抵抗が大きくなる、請求項1から3のいずれか1項に記載の電極。
[請求項5]
 前記高透過性部分は密度が低く、前記低透過性部分は密度が高く、前記遷移部分は高透過性部分側から低透過性部分側に向かって密度が高くなる、請求項1から4のいずれか1項に記載の電極。
[請求項6]
 前記塗布部の端部は傾斜面状に形成されており、前記遷移部分は傾斜面状の部分の上に形成されている、請求項1から5のいずれか1項に記載の電極。
[請求項7]
 前記樹脂層は絶縁材料を含む、請求項1から6のいずれか1項に記載の電極。
[請求項8]
 前記絶縁材料はアルミナ粉である、請求項7に記載の電極。
[請求項9]
 前記未塗布部であって前記樹脂層に覆われていない部分は、電極端子と接続される電極タブである、請求項1から8のいずれか1項に記載の電極。
[請求項10]
 請求項1から9のいずれか1項に記載の電極が、正極と負極のいずれか一方または両方として用いられ、前記正極と前記負極とがセパレータを介して交互に積層された電極積層体と、
 前記電極積層体と電解液とを収容する外装容器と、
 を含む電気化学デバイス。
[請求項11]
 集電体の一部に活物質層を形成して、前記集電体上に前記活物質層が形成されている塗布部と、前記活物質層が形成されていない未塗布部とを設けるステップと、前記未塗布部の一部と前記塗布部とを覆うように樹脂層を積層するステップと、を含み、
 前記樹脂層を積層するステップでは、前記樹脂層として、前記塗布部の上に位置するイオン透過性が高い高透過性部分と、前記未塗布部の一部の上に位置するイオン透過性が低い低透過性部分と、前記高透過性部分と前記低透過性部分との間に位置し、高透過性部分側から低透過性部分側に向かってイオン透過性が小さくなる遷移部分とを形成する、電気化学デバイス用の電極の製造方法。
[請求項12]
 前記高透過性部分は層厚が薄く、前記低透過性部分は層厚が厚く、前記遷移部分は高透過性部分側から低透過性部分側に向かって層厚が厚くなるように形成する、請求項11に記載の電極の製造方法。
[請求項13]
 前記高透過性部分は絶縁抵抗が小さく、前記低透過性部分は絶縁抵抗が大きく、前記遷移部分は高透過性部分側から低透過性部分側に向かって絶縁抵抗が大きくなるように形成する、請求項11または12に記載の電極の製造方法。
[請求項14]
 前記高透過性部分は密度が低く、前記低透過性部分は密度が高く、前記遷移部分は高透過性部分側から低透過性部分側に向かって密度が高くなるように形成する、請求項11から13のいずれか1項に記載の電極の製造方法。
[請求項15]
 前記活物質層は、集電体の長手方向に沿って間欠的に形成され、
 前記樹脂層は、前記活物質層と、前記活物質層の長手方向の一端側の未塗布部と他端側の活物質の未塗布部にもはみだすように形成され、
 長手方向の一端側に、樹脂層の形成されていない前記未塗布部を含むように所定の電極形状に切り出される
 請求項11から14のいずれか1項に記載の電極の製造方法。
[請求項16]
 前記低透過性部分は、樹脂層を圧縮するか、樹脂層の樹脂を溶融するか、または樹脂を吹き付けるかして、樹脂と絶縁材料の空隙を埋めるステップをさらに含む、請求項11から15のいずれか1項に記載の電極の製造方法。
[請求項17]
 請求項11から16のいずれか1項に記載の電極の製造方法によって正極と負極のいずれか一方または両方を製造する工程と、
 前記正極と前記負極とをセパレータを介して交互に積層して電極積層体を形成する工程と、
 前記電極積層体と電解液を外装容器内に収容する工程と、
 を含む電気化学デバイスの製造方法。

図面

[ 図 1A]

[ 図 1B]

[ 図 1C]

[ 図 2A]

[ 図 2B]

[ 図 3A]

[ 図 3B]

[ 図 4]

[ 図 5]

[ 図 6A]

[ 図 6B]