Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020135044 - KEY MODULE AND TERMINAL

Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056  

权利要求书

1   2   3   4   5   6   7   8   9   10   11   12  

附图

1   2   3   4   5  

说明书

发明名称 : 按键模组及终端

[0001]
相关申请的交叉引用
[0002]
本申请主张在2018年12月28日在中国提交的中国专利申请号No.201811621884.7的优先权,其全部内容通过引用包含于此。

技术领域

[0003]
本公开涉及终端按键模组设计领域,尤其涉及一种按键模组及终端。

背景技术

[0004]
按键是终端的基本配置之一,如:音量按键、电源按键、虚拟按键等。按键通过按压按键面板实现相应功能,如:音量加、减功能、息屏功能、亮屏功能等。终端的按键一般采用轻触开关,其原理是利用金属弹片按钮来完成开关导通和截止状态之间的切换。如图1所示,当按下轻触开关110时,其弹片受到弹力作用发生形变向下接触到焊片120,使得开关的两组引脚130相导通,电路呈现导通状态。当撤离外力时,弹片弹性恢复,与焊片120脱离,开关的两组引脚断开,电路呈现截止状态。轻触开关110一般贴片焊接在柔性电路板(Flexible Printed Circuit,简称FPC)上,并通过增加钢补强140来保证结构强度,这就导致采用轻触开关的电路板的厚度增大;并且由于采用轻触开关的电路板需在终端上进行开孔处理,导致终端的防水性能降低。
[0005]
发明内容
[0006]
本公开实施例提供了一种按键模组及终端,以解决相关技术中轻触开关需要在按键面板上开孔,防水性能差,内部进液后有腐蚀失效风险的问题。
[0007]
第一方面,本公开的一些实施例提供了一种按键模组,包括:
[0008]
绝缘介质层;
[0009]
压阻柔性件,设置于绝缘介质层上;
[0010]
第一电极和第二电极,压阻柔性件设置于第一电极和第二电极之间;
[0011]
其中,第一电极与压阻柔性件连接,第二电极与压阻柔性件连接。
[0012]
第二方面,本公开的一些实施例还提供了一种终端,包括上述的按键模组。
[0013]
这样本公开的一些实施例的按键模组及终端中,压阻柔性件在被按压和未被按压时输出不同的电压信号,终端的处理器可根据不同的电压信号执行相应的处理,通过压阻柔性件替换物理按键形式,无需在终端上开设按键孔,可提高防水性能和抗静电释放性能(Electro-Static discharge,ESD),还可进一步保证整机的外观完整性。

附图说明

[0014]
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0015]
图1表示相关技术中按键模组的结构示意图;
[0016]
图2表示本公开的一些实施例的按键模组的结构示意图一;
[0017]
图3表示本公开的一些实施例的按键模组的结构示意图二;
[0018]
图4表示本公开的一些实施例的按键模组未被按压和被按压时的结构示意图;以及
[0019]
图5表示本公开的一些实施例的按键模组被按压时的结构示意图。
[0020]
其中,图中:
[0021]
110、轻触开关,120、焊片,130、引脚,140、钢补强;
[0022]
1、绝缘介质层,2、压阻柔性件,3、第一电极,4、第二电极,5、第一导电件,6、第二导电件,7、补强结构,8、空腔结构,9、面板,10、双面胶。

具体实施方式

[0023]
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不 应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
[0024]
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
[0025]
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
[0026]
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
[0027]
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
[0028]
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不 同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
[0029]
以下结合附图对本公开的可选实施例进行说明,应当理解,此处所描述的可选实施例仅用于说明和解释本公开,并不用于限定本公开。
[0030]
本公开的一些实施例提供了一种按键模组,如图2和图3所示,该按键模组包括:绝缘介质层1、压阻柔性件2、第一电极3和第二电极4。
[0031]
其中,压阻柔性件2设置于绝缘介质层1上,压阻柔性件2为采用压阻材料制成的感应元件,可制成压阻柔性件2的压阻材料包括但不限于半导体材料,如锗、多晶硅、非晶硅、碳化硅及单晶硅等。压阻柔性件2具有压阻效应,以采用半导体硅制作压阻柔性件2为例,如图4所示,当用户按压在面板9(如金属、玻璃或塑料)表面形成轻微形变时,这种形变会传递到压阻柔性件2上,并转化为电压信号输出。其中,压阻柔性件2可通过双面胶10粘贴在面板9上。当压阻柔性件2未被按压时,压阻柔性件2呈现第一电阻值,压阻柔性件2输出的电压信号称为第一电压信号。当压阻柔性件2被按压时,按压力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化,相应地压阻柔性件2的电阻由第一电阻值变化为第二电阻值,压阻柔性件2输出的电压信号也发生变化,这时将感应元件输出的电压信号称为第二电压信号。
[0032]
压阻柔性件2设置于第一电极3和第二电极4之间,其中,第一电极3与压阻柔性件2连接,第二电极4与压阻柔性件2连接,使压阻柔性件2至线路板(如PCB板或柔性电路板)形成导电通路。其中,第一电极3和第二电极4可视为线路板中主线路与外界线路连接的至少两个电极,压阻柔性件2在未被按压时向线路板输出第一电压信号,压阻柔性件2在被按压时向线路板输出第二电压信号。其中,第一电压信号和第二电压信号与上述至少两个电极之间的电压值相关。
[0033]
这样通过压阻柔性件2替换物理按键的方式,无需在应用的终端上开设 按键孔,可提高防水性能和抗静电释放性能(Electro-Static Discharge,ESD),还可进一步保证整机的外观完整性。
[0034]
其中,压阻柔性件2铺设于该绝缘介质层1的第一表面上,第一电极3和第二电极4分别设置于绝缘介质层1的第一表面上,且位于压阻柔性件2的两侧。其中,这里所说的两侧与压阻柔性件2的形状有关,假设压阻柔性件2为方形,那么两侧可以是压阻柔性件2的方形边中任意不相邻的位置,如同一方形边上的不同位置,或不同方形边上的不同位置,或不同方形边的相同位置;以压阻柔性件2为四边形为例,第一电极3和第二电极4分别位于四边形的压阻柔性件2相对的两条边上。假设压阻柔性件2为圆形,那么两侧可以是压阻柔性件2的圆周线上任意不相邻的位置。其中,值得指出的是,第一电极3和第二电极4可以是环形电极的两极时,环形电极上不同电极端位于压阻柔性件2的不同位置。
[0035]
进一步地,压阻柔性件2包覆于第一电极3和第二电极4远离绝缘介质层1的至少部分表面上。以线路板为柔性电路板为例,柔性电路板上线路所在的线路铜一般为18μm,如果压阻柔性件2直接搭接在第一电极3和第二电极4上,压阻柔性件2的压阻材料的厚度需要至少18μm以上,为保证搭接可靠性可将压阻柔性件2的厚度设置为28μm,超出柔性电路板的线路铜10μm的部分可包覆于第一电极3和第二电极4远离绝缘介质层1的至少部分表面上,一可保证压阻柔性件2的平整,二可保证搭接可靠性。采用传统按键时,轻触开关的厚度一般在0.55mm,焊片高度一般为0.05mm以上,通过焊接方式将轻触开关与柔性电路板互连一般需要0.8mm以上的结构厚度空间,而采用本公开的一些实施例的按键模组结构,压阻柔性件2仅需28μm以下的厚度空间,加上按键模组的其他部件后,按键模组的结构厚度也可限制在0.2mm以内,较传统按键具有更轻薄的结构厚度。
[0036]
进一步地,为了减小感应元件1的噪声,可减小感应元件1中压阻材料的体积,具体方式如图3所示,本公开的一些实施例的按键模组,还包括:设置于绝缘介质层1上的第一导电件5和第二导电件6。其中,第一导电件5位于第一电极3和压阻柔性件2之间,用于导通第一电极3和压阻柔性件2,第二导电件6位于第二电极4和压阻柔性件2之间,用于导通第二电极4和 压阻柔性件2。其中,第一导电件5和第二导电件6可统称为导电浆料部。其中,压阻柔性件2的边缘通过第一导电件5与第一电极3电连接,压阻柔性件2的边缘通过第二导电件6与第二电极4电连接。当外力使压阻柔性件2的压阻材料发生形变时,压阻柔性件2的电阻就会发生变化,从而使第一电极3和第二电极4之间的导通电阻发生变化,并作为电信号输出。具体地,在传感器中由于噪声的存在,限制了一些低压量程的压阻式压力传感器(如生物医学领域)的使用,因为传感器中最小的分辨率由器件的噪声水平决定,因此如何提高信噪比(Signal Noise Ratio,SNR)将是低压量程传感器很重要的一个参数。噪声的来源包括本征噪声和非本征噪声,非本征噪声主要来自于外界环境的干扰,比如外界震动等。本征噪声主要是来自于器件本身的噪声,主要有机械噪声和电噪声。而与电噪声相比,机械噪声可以忽略,电噪声限制了传感器的分辨率。1/f噪声则是电噪声的重要来源,其主要原因为体效应,由电阻的电导率波动引起的。热噪声和1/f噪声在根本上是不同性质的,热噪声是电压噪声,因此不需要依靠电阻中的电流大小,相反,1/f噪声是电导率噪声,因此其电压噪声是与电阻中的电流大小有关的,其计算公式如下:
[0037]
其中,f表示频率,N表示电阻总的载流子数目,V b表示电阻两端的偏置电压,α用于衡量晶格质量,α的取值在10 -3和10 -7的范围内变化。其中,具有不同表面体积比的电阻可具有相同的1/f噪声特性,而1/f噪声与电阻体积成正比。
[0038]
进一步地,如图3所示,第一导电件5包覆于压阻柔性件2和第一电极3远离绝缘介质层1的至少部分表面上,第二导电件6包覆于压阻柔性件2和第二电极4远离绝缘介质层1的至少部分表面上。该方式为压阻柔性件2通过导电浆料部分别与第一电极3和第二电极4搭接,为保证搭接可靠性,导电浆料部的厚度可以控制在28μm左右,而压阻柔性件2的压阻材料的厚度则可以控制在10μm左右,这样就大大降低了压阻材料的厚度,进而降低了压阻材料的体积和1/f噪声,提升按键模组整体的最小分辨率。其中,第一导电件5和第二导电件6的材料包括但不限于:导电铜浆、导电银浆及导电碳浆,可选导电碳浆,导电碳浆是一种碳精粉、石墨粉作为导电材料以及 热硬化性酚醛树脂作为结合剂的一液型聚合物导电性碳浆。可选的配方为,碳精粉含量为5-10wt.%,石墨粉含量为10-15wt.%,酚醛树脂含量为30-40wt.%,乙烯树脂含量<3wt.%,二乙二醇单乙基醚醋酸酯含量为10-20wt.%,丁基卡必醇含量为5-15wt.%,二乙二醇单乙醚含量为5-15wt.%,乙二醇醋酸丁醚含量<5wt.%。且导电碳浆具备以下优点:
[0039]
可印刷性好:无粉末状导电材料通过酚醛树脂均匀分散,采用连续印刷作业可获得无气孔且均匀清晰、高可靠性的导电性涂层。
[0040]
无电迁移问题:碳精粉及石墨粉本身化学性质非常稳定,在潮湿及带电情况下本身也不会发生迁移;
[0041]
无硫化问题:碳精粉及石墨粉本身化学性质非常稳定,不与二氧化硫等气体反应;
[0042]
可靠性好:硬化条件即使是低温短时间,硬化涂层的密着性、耐湿性、耐热性也很好。进行上锡等加热处理后性能也不受影响,因此进行solder leveling处理也成为可能。
[0043]
成本低:主要导电材料碳精粉及石墨粉价格低廉易得,因而整体成本较银浆更具优势。
[0044]
可选地,本公开的一些实施例的按键模组还包括:线路板,第一电极3和第二电极4分别由线路板上的线路形成。
[0045]
本公开的一些实施例中,如图2和图3所示,按键模组还可以包括:设置于绝缘介质层1的第二表面上的补强结构7,补强结构7与绝缘介质层1之间形成有空腔结构8,第二表面为绝缘介质层1背离压阻柔性件2的表面,该空腔结构8位于压阻柔性件2的下方,对应于压阻柔性件2在补强结构7上的投影区域内。其中,本公开的一些实施例的按键模组的装配结构可以依次包括:面板、双面胶、压阻柔性件、绝缘介质层和补强结构;也可以是:面板、双面胶、补强结构、绝缘介质层和压阻柔性件。这样当压阻柔性件2被按压时会向下发生形变,空腔结构8的设计可有效减少其它材料对按压力的吸收,易于压阻柔性件2的形变,从而有效提升压阻柔性件2的灵敏度。
[0046]
其中,补强结构7包括:设置于绝缘介质层1的第二表面上的补强板,补强板上设置有开孔或开槽,开孔或开槽位于压阻柔性件2在补强板上的投 影区域内。以上述第一种装配结构为例,如图4所示,双面胶10将压阻柔性件2粘接于面板9上,该补强板的作用是支撑和固定线路板,补强板中的开孔或开槽的作用是形成位于压阻柔性件2下方的空腔结构8,这样当面板9被按压时,双面胶10将按压力传递于压阻柔性件2上,压阻柔性件2被按压时会向下发生形变,开孔或开槽可有效减少其它材料对按压力的吸收,易于压阻柔性件2的形变,从而有效提升压阻柔性件2的灵敏度。
[0047]
具体地,以开孔为例,补强板上设置有开孔,该开孔位于压阻柔性件2在补强板7上的投影区域内。也就是说,在厚度方向上,压阻柔性件2的下方设置有对补强板7局部掏空(开孔8)形成的空腔结构,当压阻柔性件2被按压时会向下发生形变,开孔设计可有效减少其它材料对按压力的吸收,易于压阻柔性件2的形变,从而有效提升压阻柔性件2的灵敏度。其中,开孔在结构厚度方向(即垂直于绝缘介质层1的方向)上的尺寸为100μm以上。
[0048]
可选地,本公开的一些实施例中的补强结构7还可以包括:设置于绝缘介质层1的第二表面上的第一补强板和第二补强板,第一补强板和第二补强板之间存在间隙,该间隙位于压阻柔性件2的下方。以上述第二种装配结构为例,如图5所示,双面胶10将第一补强板和第二补强板粘接于面板9上,当面板9被按压时,双面胶10将按压力传递于第一补强板和第二补强板上,第一补强板和第二补强板靠近按压位置的一侧会在按压力的作用下发生旋转,具体地,第一补强板和第二补强板靠近按压位置的一侧向下旋转(即按压力的施力方向),相应地,第一补强板和第二补强板远离按压位置的一侧向上旋转(即按压力的施力方向的反方向),这样压阻柔性件2会随之被拉伸产生形变。进一步地,第一补强板和第二补强板的厚度(如图5中所示的h)越大,压阻柔性件2的拉伸量越大,按键模组的按压灵敏度越高。
[0049]
此外,本公开的一些实施例的按键模组仅以将压阻柔性件2应用于柔性电路板上为例进行说明,本领域技术人员可以理解,该压阻柔性件2还可应用于PCB板(硬板)或RFPC(软硬结合板)上,其具体结构与应用于柔性电路板的结构类似,在此不再赘述。
[0050]
本公开的一些实施例的按键模组中,压阻柔性件在未被按压时输出第一电压信号,在被按压时输出第二电压信号,通过压阻柔性件替换物理按键形 式,无需在应用的终端上开设按键孔,可提高防水性能和抗静电释放性能ESD,还可进一步保证整机的外观完整性。
[0051]
进一步地,本公开的一些实施例还提供了一种终端,该终端包括如上所述的按键模组。以调节音量为例,终端的处理器根据压阻柔性件输出的第一电压信号执行升高音量的操作,根据压阻柔性件输出的第二电压信号执行降低音量的操作。或者,终端的处理器根据压阻柔性件输出的第一电压信号执行降低音量的操作,根据压阻柔性件输出的第二电压信号执行升高音量的操作。
[0052]
这样,本公开的一些实施例的终端中,压阻柔性件在未被按压时输出第一电压信号,在被按压时输出第二电压信号,终端的处理器可根据第一电压信号或第二电压信号执行相应的处理,通过压阻柔性件替换物理按键形式,无需在终端上开设按键孔,可提高防水性能和抗静电释放性能,还可保证整机的外观完整性。
[0053]
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
[0054]
尽管已描述了本公开的一些实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开实施例范围的所有变更和修改。
[0055]
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
[0056]
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

权利要求书

[权利要求 1]
一种按键模组,包括: 绝缘介质层(1); 压阻柔性件(2),设置于所述绝缘介质层(1)上; 第一电极(3)和第二电极(4),所述压阻柔性件(2)设置于所述第一电极(3)和所述第二电极(4)之间; 其中,所述第一电极(3)与所述压阻柔性件(2)连接,所述第二电极(4)与所述压阻柔性件(2)连接。
[权利要求 2]
根据权利要求1所述的按键模组,其中,所述压阻柔性件(2)铺设于所述绝缘介质层(1)的第一表面上,所述第一电极(3)和所述第二电极(4)分别设置于所述绝缘介质层(1)的第一表面上位于所述压阻柔性件(2)的两侧。
[权利要求 3]
根据权利要求1所述的按键模组,还包括: 设置于所述绝缘介质层(1)上的第一导电件(5)和第二导电件(6),其中,所述第一导电件(5)位于所述第一电极(3)和所述压阻柔性件(2)之间,用于导通所述第一电极(3)和所述压阻柔性件(2),所述第二导电件(6)位于所述第二电极(4)和所述压阻柔性件(2)之间,用于导通所述第二电极(4)和所述压阻柔性件(2)。
[权利要求 4]
根据权利要求3所述的按键模组,其中,所述第一导电件(5)包覆于所述压阻柔性件(2)和所述第一电极(3)远离所述绝缘介质层(1)的至少部分表面上;所述第二导电件(6)包覆于所述压阻柔性件(2)和所述第二电极(4)远离所述绝缘介质层(1)的至少部分表面上。
[权利要求 5]
根据权利要求3所述的按键模组,其中,所述第一导电件(5)和所述第二导电件(6)的材料为导电铜浆、导电银浆或导电碳浆。
[权利要求 6]
根据权利要求1所述的按键模组,其中,所述压阻柔性件(2)包覆于所述第一电极(3)和所述第二电极(4)远离所述绝缘介质层(1)的至少部分表面上。
[权利要求 7]
根据权利要求1所述的按键模组,还包括: 设置于所述绝缘介质层(1)的第二表面上的补强结构(7),所述补强结构(7)与所述绝缘介质层之间形成有空腔结构(8),所述第二表面为所述绝缘介质层(1)背离所述压阻柔性件(2)的表面,所述空腔结构(8)对应于所述压阻柔性件(2)在所述补强结构(7)上的投影区域内。
[权利要求 8]
根据权利要求7所述的按键模组,其中,所述补强结构为设置于所述绝缘介质层(1)的第二表面上的补强板,所述补强板上设置有开孔或开槽,所述开孔或开槽位于所述压阻柔性件(2)在所述补强板上的投影区域内。
[权利要求 9]
根据权利要求7所述的按键模组,其中,所述补强结构包括设置于所述绝缘介质层(1)的第二表面上的第一补强板和第二补强板,所述第一补强板和所述第二补强板之间存在间隙,所述间隙位于所述压阻柔性件(2)下方。
[权利要求 10]
根据权利要求1所述的按键模组,还包括: 线路板,所述第一电极(3)和所述第二电极(4)分别由所述线路板上的线路形成。
[权利要求 11]
根据权利要求1所述的按键模组,其中,所述压阻柔性件(2)为压阻材料支撑的感应元件。
[权利要求 12]
一种终端,包括如权利要求1至11中任一项所述的按键模组。

附图

[ 图 1]  
[ 图 2]  
[ 图 3]  
[ 图 4]  
[ 图 5]