Title: METHOD FOR DETECTING WELLBORE INFUX

Abstract: The invention relates to a method for early detection of a wellbore influx using at least a first pressure transmitter (P₁) arranged in a first position in the well and a second pressure transmitter (P₂) arranged in a second position in the well, the at least first and second pressure transmitters (P₁, P₂) being arranged in a fixed vertical distance in relation to each other, the method comprising the steps: A) calculating an expected density of a return flow between the at least first and second pressure transmitters (P₁, P₂) by measuring or predicting mud or sacrificial fluids density, rock density, flow rate (Q), true vertical depth (TVD), rate of penetration (ROP) and wellbore diameter, B) continuous measuring of the actual density of a return flow based on a measured pressure at each of the at least first and second pressure transmitters (P₁, P₂) and adjusted for frictional pressure drop between each of the at least first and second pressure transmitters (P₁, P₂) based on direction and the flow rate (Q) in annulus, C) comparing the calculated expected return flow density and the measured actual return flow density to determine a wellbore influx. D) using at least a first temperature transmitter (T₁) arranged in a section of the well adjacent the at least first and/or second pressure transmitter (P₁, P₂), measuring the temperature at the at least first temperature transmitter (T₁), and using said temperature together with the measurements from the first and second pressure transmitters (P₁, P₂) to predict the probability of hydrates forming in the well.
Published:

— with international search report (Art. 21(3))
METHOD FOR DETECTING
WELLBORE INFLUX

5 Present enhanced kick detection systems in use have been based on advanced flow
measurements such as Coriolis meter and to keep control over total active volume
and rate of penetration (ROP). However, to create a kick detection system that rely
on changes in volume flow has shown to be difficult since the expansion of the gas,
and hence rapid change in volume flow or gain, typically occurs 800 to 1000 meter
below sea surface and in large water depths, as this will be too late since the gas has
then already passed the subsea BOP.

Hydrates may also form if the pressure is high and temperature low enough, making
early kick detection based on volume control almost impossible. This is due to the
fact that when hydrates have been formed, the gas or hydrates will not expand until
the hydrates “melt”. The gas molecules are “trapped and/or hidden” within a crystal
structure of water molecules, and will be transported like a “trojan horse”, up the
wellbore and high up the drilling riser. When the pressure is low enough, and the
hydrates have been transported high up in the riser, the gas will be released and will
expand rapidly, see details in Figure 1.

Severe circulation losses are often encountered when drilling naturally fractured
formations, particularly carbonate (limestone, dolomite, etc.). Lost circulation and
losses are also encountered when drilling in highly depleted reservoirs where the
fraction pressure in the pay zone may be lower than the pore pressure in the
overlying layers. The same phenomenon is also encountered when drilling in some
special areas such as the “Pre-salt” layers outside Brazil, in particular in the gouge
zones below the salt and other naturally fractured and unconsolidated formations.
In conjunction with drilling in these types of formations, a special type of Managed
Pressure Drilling (MPD) called “Mud Cap Drilling” is used to overcome the
challenge with a sudden drop in pore and fraction pressure. A sacrificial fluid (often
water) is pumped through the drill string and lost to the formation while the annulus
is filled from the top, typically with a light mud (LAM, Light Annular Mud). In these
situations, gas kick from a high pressure overlying layer, can happen
simultaneously with lost circulation in the low pressure zone. Hydrocarbon influx
may also be caused by swap out (no gain or loss observed) as light hydrocarbons are
displaced with the more heavier drilling fluid. Kick detection based on volume
control (gain/loss) is therefore a challenge. To avoid that the gas migrates up the
annulus, LAM will be pumped down the annulus at a greater speed then the gas
migration velocity to “bullhead” any potential gas back into a lower pressure zone.
As any potential gas influx are bullheaded down and mix with the relative cold
sacrificial fluid (water), hydrates may form, making kick detection based on
traditional method such as volume control and “flow check” impossible. When hydrates form, the displaced volume of the influx is reduced by approximately 50%.

This means that gas influx behavior when the well is shut-in will be observed different from what is expected. When dense gas and water form, the total volume is reduced and the density increases. Hence the observed loss of drilling fluid may be an indication of hydrocarbon influx. This phenomenon can also be observed as slight reductions of shut-in pressure over the time period were hydrates are forming. If hydrates have already formed, it is difficult to detect because the hydrates will have almost the same density as the water it has replaced, and the well can incorrectly be interpreted as “dead”, because the well may not flow or shut-in pressure will not increase.

Other early gas detection systems have also been tried out based on Measurement While Drilling (MWD) based on different physical properties between mud and influx. In one such system the measurements are based on the fact that a pressure pulse (or sound waves) have a different speed depending on whether the pulse travels through mud, water, oil or gas and this can be registered in a sudden change or variation in phase and/or amplitude of the pressure wave (pulse). However, since the gas is in dense phase at the time of influx, it will form an almost perfect homogeneous fluid and mix easily with the mud. Especially with oil based mud, because some of the base oils in use have similar physical properties as the influx in dense phase.

Other early kick detection systems have been based on the different physical properties between mud (mud base fluid) and influx. Documents US 4.733.233 A and EP 2.417.432 A1 are examples of this. The challenge in these solutions is that the influx tends to form a homogeneous mixture with the mud base fluids. Additionally, under high pressure, the density difference etc. between the influx and the base fluids are not so large (especially with oil based mud), and the difference is therefore hard to detect. An analogue to this is that it is hard to detect your CO₂ “bubbles” in a bottle of champagne before you release the pressure by opening the bottle.

WO 2013/055706 A1 focus on the change in density or pressure and states that if the annular pressure gradient decreases, then you have a wellbore influx (cf. Figure 5 in said publication). However, this is not always true due to the fact that as the influx travels up the annulus the gas expansion (and hence change in density) is very small under the high pressure typically present deep down in the well. As the influx is further cooled down when it reaches the colder annulus fluid in the wellhead and riser (especially in deep water), the gas may react with water and form hydrates resulting in that the measured pressure and density will increase rather than decrease, see Figure 1. Additionally, a decrease in density may result from a number
of other reasons, such as a reduction in cuttings content in the annulus due to low or now rate of penetration (ROP), giving a “false alarm” even if influx is not actually present.

In US 2013/0090855 A1 a method for computing a density of an inflow constituent is claimed. The method evaluates the density of the inflow constituent computed to identify the inflow constituent (i.e. gaseous, oil or water). However the disclosure does not consider the risk of hydrates forming in the wellbore. Such hydrates formed in the wellbore are difficult to detect because the hydrates will have almost the same density as the water it has replaced, and the density of the inflow constituent computed may have almost the same density as wellbore annulus constituent prior to the influx.

An objective of the present invention is to overcome the shortcoming of previous early kick detection systems which are based on flow control and gas expansion, as well as to prevent “false alarm” of influxes which are actually not present.

Another objective is to give guidelines for correct remedial action to be taken to avoid incidents with hydrate plugs.

The invention is set forth in the independent claims, while the dependent claims describe other characteristics of the invention.

Summary of the invention

The present invention relates to a method of early detection of a wellbore influx by comparing calculated expected wellbore annulus density based on ROP, estimated rock density and mud density and comparing this with actual downhole measured density, in a “Fuzzy logic” control system, in order to prevent “false alarm” of influxes which are actually not present.

Typical densities are given below:
- Rock density is typically in the order of 2.2 – 2.8 Specific Gravity (SG).
- Base Oil (OBM) has typically a specific gravity SG of 0.78 – 0.86 depending of type.
- Water (WBM) has a typically specific gravity SG of 1 and a little higher if salt is present.
- Influx with will typically have a specific gravity SG of 0.25 – 0.5, depending of reservoir pressure (P), temperature (T) and gas content.

The main difference between prior art and the present invention is that in the present invention the difference in physical properties between the influx and the
solid rock density is measured/calculated, while in prior art it is focused on changes of the physical properties of the drilling fluid only.

The density of the mix of cuttings and oil based mud/water based mud (ρ_{Calc}) returning in the wellbore annulus (the return flow) will depend on flow rate (Q_{in}), mud density (ρ_{mud}), rate of penetration (ROP), diameter of the drilled well bore (D_{well}) and rock density (ρ_{Rock}), given in the formula below:

$$\rho_{\text{Calc}} = \frac{Q_{\text{in}} \rho_{\text{Mud}} + 0.25 \pi D_{\text{Well}}^2 \text{ROP} \rho_{\text{Rock}}}{Q_{\text{in}} + 0.25 \pi D_{\text{Well}}^2 \text{ROP}}$$

This formula is used, according to the present invention, for calculation of an expected density for the return flow and is compared with the measured actual return flow density. The measured actual return flow density is calculated/measured by in-situ pressure measurements with pressure transmitters arranged at different locations in the well, i.e. if the pressure in the annulus is monitored using pressure transmitter as part of a Measurement While Drilling (MWD) tool, the actual mud density (ρ_{mud}) can be calculated based on true vertical depth (TVD) at the location of the pressure transmitter(s) and be compared with the theoretical or expected density for the return flow (ρ_{Calc}) calculated by the formula above.

However, with only one pressure transmitter (P_1) down at the well, the system will respond slow to changes in the overall mud density (ρ_{mud}) in the annulus since the overall ρ_{mud} will depend on the total volume and also change higher up in the annulus. Especially in the riser annulus where the diameter are larger and often booster mud are introduced in the annulus in addition to the cuttings and mud coming from the well.

In case of mud cap drilling, the invention should be based on fluid pumped down the annulus taken into account that cuttings and fluid is pumped into the formation.

The preferred solution will therefore be to add a second pressure transmitter in a distance (h) higher up in the well, e.g. on the drill string or in the casing wall, wired etc. Then the true density of the return flow (ρ_{mud}) can be calculated based on true vertical distance between the two pressure transmitters (P_1) and (P_2).

When calculating the true density of the return flow (ρ_{mud}) based on the first pressure transmitter (P_1) and the second pressure transmitter (P_2), correction should be made for differential pressure (ΔP) due to friction and angle on the drill pipe in case of directional drilling.
In an aspect of the invention, pressure transmitters \((P_1, P_2)\) may be located on the drill string using MWD tools. However, this will not detect kicks that may enter the well higher up in the well, below the last/lowest casing. This is important in a kick/loss scenario where equivalent circulating density (ECD) is lowered in order to limit the loss of mud in the lower section of the well simultaneously as kicks enter the wellbore from a high pressure zone higher up in the well. A better alternative is to install pressure transmitter \((P_1, \ldots, P_n)\) with fixed vertical distance in the casing, alternative with multiple sensors along the drill string. This will also allow the migration of the kick to be followed after the circulation has stopped.

The present invention relates to a method for early detection of a wellbore influx using at least a first pressure transmitter \((P_1)\) arranged in a first position in the well and a second pressure transmitter \((P_2)\) arranged in a second position in the well, the at least first and second pressure transmitters \((P_1, P_2)\) being arranged in a fixed vertical distance in relation to each other, the method comprising the steps:

A) calculating an expected density of a return flow between the at least first and second pressure transmitters \((P_1, P_2)\) by measuring or predicting mud or sacrificial fluids density, rock density, flow rate \((Q_{m})\), true vertical depth \((TVD)\), rate of penetration \((ROP)\) and wellbore diameter \((D_{wall})\),

B) continuous measuring of the actual density of a return flow based on a measured pressure at each of the at least first and second pressure transmitters \((P_1, P_2)\), the actual density being computed based on vertical distance \((h)\) between the first and second pressure transmitters \((P_1, P_2)\) and adjusted for frictional pressure drop between each of the at least first and second pressure transmitters \((P_1, P_2)\) based on direction and the flow rate \((Q)\) in annulus, and

C) comparing the calculated expected return flow density and the measured actual return flow density to determine a wellbore influx, and

D) by means of at least a first temperature transmitter \((T_1)\) arranged in a section of the well adjacent the at least first and/or second pressure transmitter \((P_1, P_2)\), measuring the temperature at the at least first temperature transmitter \((T_1)\), and using said temperature together with the measurements from the first and second pressure transmitters \((P_1, P_2)\) to predict the probability of hydrates forming in the well.

The at least first and second pressure transmitters \((P_1, P_2)\) can be arranged in an open-hole section of the well.

The at least first temperature transmitter \((T_1)\) may be arranged in an open-hole section of the well.

In an aspect of the method one may use a plurality of pressure transmitters \((P_1, P_2, \ldots, P_n)\) in fixed vertical distance in the well, and wherein the method further may
comprise repeating steps A), B) and C) between two adjacent pressure transmitters (P₁, P₂, ..., Pₙ).

In an aspect, the method according to the present invention may further comprise a step E) – to confirm a wellbore influx if the measured actual return flow density is significantly less than the calculated expected return flow density.

The method according to the present invention may further comprise monitoring possible rapid gas expansion in the well and automatically regulate a riser gas handling (RGH) or managed pressure drilling (MPD) choke by a constant value of applied surface back pressure (P_{ASHP}), and, if high risk of hydrates, setting the applied surface back pressure P_{ASHP} as low as possible and inject hydrate inhibitor below a rotating control device (RCD).

In an aspect of the method according to the present invention, the method may further comprise the step of:
- always displacing the riser if temperature in riser is below hydrate formation temperature T_{H_{yd}}.
- pumping fresh mud down at least one booster line and circulating out gas cut mud,
- monitoring possible rapid gas expansion (as hydrates “melt” at low pressure),
- be prepared to divert overboard to avoid “riser blow-out” on drill floor.

The method according to the present invention may further comprise, in case the wellbore influx has inadvertently passed a subsea blowout preventer (BOP), pumping mud down at least one booster line and circulating out gas cut mud, and monitoring possible rapid gas expansion and be prepared to divert overboard to avoid “riser blow-out” on drill floor.

The method according to the present invention may further comprise to use a plurality of temperature transmitters (T₁, ..., Tₙ) adjacent any pressure transmitter (P₁, P₂, ..., Pₙ) in the well, the method further comprises using readings from said temperature transmitters (T₁, ..., Tₙ) together with the measurements from the first and second pressure transmitters (P₁, P₂) to predict the probability of hydrates forming in the well.

In an aspect, the method according to the present invention may further comprise a step F) – to confirm a possible hydrate formation, and generating a warning if the temperature (T₁, ..., Tₙ) is less than, or lower than, a predefined safety margin to the corresponding hydrate formation temperature T_{H_{yd}}.

The method according to the present invention may further comprise the steps of filling at least one kill line with hydrate inhibitor fluid, injecting said hydrate inhibitor fluid present in the at least one kill line in the blow out preventer (BOP), and, simultaneously pumping fresh mud down the drill string to circulate out the wellbore fluids and inhibitor up at least one choke line and divert to a mud gas separator.
In an aspect, the method according to the present invention may further comprise a step G) - deciding that a choke line shut-in pressure (P_c) is showing abnormal pressure decrease, and generate a wellbore influx and hydrate alarm.

The method according to the present invention may further comprise a step H) - identifying a stuck pipe situation as a possible result of hydrate formation by observing increased drag trend or torque oscillation during connections and/or abnormal pressure increase or pressure oscillation during circulation, and confirming that all of the following conditions are fulfilled:

- drilling in a permeable formation, which permeable formation is identified to have the ability to act as a reservoir rock as well as having a pressure close to or higher than a bottom hole pressure or measured pressure at a pressure transmitter (P_f-P_a) in the well,

- observing that the temperature in the wellbore is below hydrate formation temperature T_{Hydr},

- observing circulation restriction or pressure peak.

In an aspect of the method, in case of a stuck pipe situation caused by hydrate formation, the method may further comprise the steps of:

- injecting hydrate inhibitor fluid close to a wellhead,

- stop circulation allowing the temperature in the formation to increase the temperature of the fluids in the well thereby melting or dissociating the hydrates into water and dense gas,

- perform flow check to verify hydrate dissociation process has started,

- shut-in the well if well starts to flow and monitor shut-in pressure increase to determine size of hydrate plug/kick.

These and other characteristics of the invention will be clear from the following description of a preferential form of embodiment, given as a non-restrictive example, with reference to the attached drawings wherein:

Brief description of the drawings

Figure 1 is a schematic showing the gas influx volume expansion as it travels up the wellbore and riser;

Figure 2 is a simplified schematic of a subterranean well and drilling riser showing multiple sensors for transmitting downhole information, such as pressure and temperature, to a floating drilling unit;

Figure 3 discloses schematically an embodiment of a method according to the present invention;

Figure 4 discloses schematically a method for determine the correct remedial action to be taken based on a hydrate warning;

Figure 5 discloses schematically a method for determine the correct remedial action to be taken based on a wellbore influx alarm; and
Figure 6 discloses schematically a method according to the present invention for determining the correct remedial action to be taken based on stuck pipe warning.

Detailed description of a preferential form of embodiment

Figure 1 shows how a specific volume of gas influx will expand as it travels up the wellbore and riser towards a floating drilling unit, e.g. a rig. The X-axis indicates travel distance, or more correctly pressure reduction, as the influx travels from the bottom of the wellbore where influx may enter the wellbore at a position A, to the floating drilling unit at a position D. The pressure used in the simulated gas influx at position A is 1000 bara. Position B indicates the seabed and the subsea BOP located at 3000 meter water depth, where the pressure is reduced to 500 bara due to reduction of static column of mud with specific gravity SG1,5 ($\rho=1500$kg/m3). Position C is in the drilling riser annulus 100 meters below sea level, where the pressure is reduced to 31 bara. Position D is on board the drilling unit upstream a managed pressure drilling (MPD) choke, where the pressure is approximately 16 bara. Boyle's law (line 1) says that when the pressure of a gas is reduced by 50% the volume will expand by 100%. In other words, if the pressure is reduced from 1000 bara (position A) to 500 bara (position B), the volume should increase from 1,0 m3 to 2,0 m3, according to Boyle's law (line 1). However, under these high pressures currently experienced in deep water, the natural gas influx will be in dense phase and have a density behavior similar to a liquid. The real gas expansion (line 2) below the subsea blow out preventer BOP located at seabed at position B is insignificantly higher than the mud expansion (line 3). For this reason early kick detection based on changes in density or volume, as the undetected kick travels up the wellbore will not work. In deep water it is also another challenge that the annulus fluid in the wellhead, subsea blow out preventer BOP and lower part of the riser has a temperature that often are well below the temperature where hydrates form (T_{liq}). When the gas influx then reaches the wellhead at the position B, it will be cooled by the cold surrounding seawater and hydrates may form in the riser (line 4). For kick detection based on gas expansion (line 2), this will be catastrophic, because when hydrates are forming in the riser (line 4), the total volume will decrease rather than increase. When the hydrates is transported to upper part of the riser (position C), they may dissociate (melt) into water and gas as the pressure in the riser get lower, causing a rapid gas expansion. However, the dissociation time (how rapid the hydrates melt) is very uncertain, and depends on many factors. The most important factor is how much applied surface back pressure (P_{asb}) that the riser annulus will see upstream the MPD choke (position D). In the worst case scenario the hydrate dissociation time will be so long that there is a risk that outlets from the drilling and top of the riser plug up with hydrates before the hydrates dissociate when the riser is equipped with MPD or riser gas handling (RGH) choke (MPD/RGH choke) capable of applying back pressure to the riser annulus. For conventional drilling with atmospheric riser and conventional flow line, a rapid gas
expansion associated with hydrates dissociate in the upper part of the riser, with a possible gas and mud "blow-out" on drill floor or through the diverter system most likely is to be the scenario. This shows how important it is to have an early kick detection system that works, to ensure that wellbore influx is detected before it get passed the wellhead and the subsea blow out preventer BOP at position B.

Figure 2 shows a simplified schematic of a subterranean well and lower part of a drilling riser 20. A well is cased with casing 12 in the upper part and a liner 13 in the middle part, which are cemented 14 to an earth formation 22. A lower part of the well is an open-hole section 15, with a diameter D_{well}. A drill string 10 extends from the top of the riser 20 to the bottom of the well having a drill bit 11 in its lowermost end, for drilling into the earth formation 22. Drilling fluids flow on the inside of the drill string 10, down to the drill bit 11 and flows back up towards the surface in the annulus 16 formed between the drill string 10 and the formation 22, liner 13 or the casing 12. A larger annulus 21 is formed between the drill string 10 and the marine drilling riser 20. A first pressure transmitter P_1 is arranged in the open hole section 15. A second pressure transmitter P_2 is arranged above the first pressure transmitter P_1 in a fixed vertical distance h. At least a first temperature transmitter $T_{1.2}$ is arranged between or close to the pressure transmitters P_1 and P_2. A plurality of pressure transmitter sets $(P_1-P_2), (P_3-P_4), \ldots, (P_{n-1}-P_n)$ in fixed vertical distance h in the well is arranged in order to measure and transmit downhole annulus density. Likewise, a plurality of temperature transmitters $T_{1.2}, T_{3.4}, \ldots, T_{(n-1)n}$ is arranged close to the pressure transmitter sets $(P_1-P_2), (P_3-P_4), \ldots, (P_{n-1}-P_n)$. Above the seabed 17 a wellhead 18 and a subsea BOP 19 is connected to the marine drilling riser 20.

In the Figures 3-6, it is made reference to the specific boxes in the decision trees, i.e. the text and required actions identified in these boxes shall be considered as a part of this written detailed description. These Figures are self-explanatory.

Figure 3 discloses schematically an embodiment of the present invention. Based on existing technology that can transmit downhole real time data, commonly named as measurement while drilling (MWD) tools, either wireless or by wired drill pipe or other solution for transmitting downhole measurements, the present invention utilize a new method for predicting wellbore influx. The measured downhole annulus fluid density (box 30), is calculated based on a fixed vertical distance h between two pressure transmitters P_1 and P_2, based on standard gravity given in SI units as 9,807 m/s2. Note that if the present invention should be used for directional drilling the vertical distance h, needs to be corrected based on the angle of the drill pipe between the two pressure transmitters P_1 and P_2. During normal drilling operations drilled cuttings and mud is returning to the rig, and the measured density (box 30) needs to be adjusted for frictional pressure drop between pressure transmitters P_1 and P_2, based on annular
flow Q_{in} (box 32). In some special cases when total loss is experienced, fluids may be pumped down the annulus in the opposite direction, typically used in pressurized mud cap drilling. In these cases the measured density (box 30) needs to be adjusted for frictional pressure drop between pressure transmitters P_1 and P_2 based on annular flow but in a reversed direction Q_{rev} (box 34). Then the measured density ρ_M (box 30) can be calculated adjusted for pressure drop between pressure transmitters P_1 and P_2, if applicable (box 35).

The calculated density ρ_{calc} (box 50) is calculated based on the flow rate Q_{in} being pumped down the drill string (box 51), the density ρ_{mud} pumped down the drill string (box 53) and rate of penetration (ROP) (box 55). In addition, an expected diameter of the well D_{well} and expected density of the formation ρ_{rock} is used to calculate the expected calculated density (box 50).

If the flow rate Q_{in} being pumped down the drill string changes, the new calculated density ρ_{calc} has to be recalculated (box 52).

If the mud density ρ_{mud} pumped down the drill string changes, new calculated density ρ_{calc} has to be recalculated with new mud density ρ_{mud} after time delay t_{density} (box 54).

The time delay t_{density} needs to be calculated based on the time mud takes to travel from the density meter located topside to the pressure transmitters P_1 and P_2 downhole in the annulus.

If the rate of penetration (ROP) changes, new calculated density ρ_{calc} has to be recalculated with new ROP after time delay t_{ROP} (box 56). The time delay t_{ROP} needs to be calculated based on the time mud and cuttings take to travel from the drilling bit 11 at the bottom of the wellbore to the pressure transmitter P_1 and P_2 in the annulus. Time delay t_{density} and t_{ROP} can be “tuned” based on real time measurements and experience during connection and change in mud density.

Since the mud density (ρ_{mud}) is taken from close to atmospheric pressure, typically from a topside located density meter upstream the high pressure (HP) mud pumps, it should be adjusted based on downhole temperature $T_{1,2}$ and pressure P_1 (box 57). Mud density ρ_{mud} will typically increase with increased pressure. The compressibility will also depend on type of mud (OBM or WBM) and the water content. If the pressure measured at pressure transmitter P_1 is 1000 bara, the change in density will typically be in the order of 4 to 6 % depending on type of mud being used.

Since the expected diameter of the well (D_{well}) and expected density of the formation ρ_{rock} is unknown, the calculated density ρ_{calc} (box 50) is calibrated with measured density ρ_M (box 35) and a correction factor (f) is calculated (box 58). If the calculated
correction factor (f) changes (box 59), a warning should be given to evaluate possible cause for change (box 60).

After all the correction has been done, the measured density \(\rho_M \) is compared with the calculated density \(\rho_{Calc} \) (box 36), if the difference is significant (box 37), a wellbore influx alarm will be given (box 38).

The downhole hydrate formation temperature \(T_{Hyd} \) is calculated based on the actual pressure measured at the pressure transmitters \(P_1, P_2, P_3, P_4, P_n, P_{n+1} \), etc. and checked against the corresponding real downhole temperature measured at the temperature transmitters \(T_{1-2} \), etc. (box 39). If the temperature measured by the temperature transmitter \(T_{1-2} \) etc. is less than hydrate formation temperature \(T_{Hyd} \), then a hydrate warning will be given (box 40). The hydrate warning is given to alert an operator of the increased risk associated with drilling ahead with temperatures in the wellbore below the hydrate formation temperature \(T_{Hyd} \), as will be more detailed described with reference to Figure 4.

Figure 4 shows schematically a method for determining the correct remedial action to be taken based on hydrate warning. In deep water it is not unusual to have low temperature below the hydrate formation temperature \(T_{Hyd} \) in the wellhead, subsea BOP and lower part of the riser annulus (box 90). In these cases it is important that a dedicated chemical injection line or, if this is not available, the kill line can be used for injecting hydrate inhibitor (fluid), e.g. ethylene glycol (MEG). The amount of MEG required for hydrate suppression must be calculated based on mud type in use and ambient seawater temperature or, in worst case scenario, for annulus mud temperature. It is important that the chemical injection line (or kill line) is filled up with MEG prior to drilling in formation that potentially can give gas influx (box 92), since hydrates may form quickly and potentially plug the subsea BOP and choke line when the kick is circulated out through the kill and choke (K&C) manifold. It should also be noted that under normal drilling operation the fluid in the kill and choke lines will normally be stagnant (continuous circulation not possible) and the temperature is therefore permanently below the hydrate formation temperature \(T_{Hyd} \) in these lines (box 91). Hydrate inhibitor for hydrate suppression is therefore required in these kill and choke lines to reduce risk of plugging the lines when they are used for circulating out gas in a kick scenario.

After longer periods without circulation in the wellbore annulus, typically after a casing cement job and/or tripping operation, it is not unusual for the fluid temperature in the wellhead annulus to drop below the hydrate formation temperature \(T_{Hyd} \). Prior to drilling ahead a driller shall perform the following actions; Start circulation and perform dynamic flow check (box 94), is dynamic flow check indicating gain OR loss? (box 95), if no; Continue to circulate until hydrate formation temperature in wellhead and marine drilling riser, is above hydrate formation temperature \(T_{Hyd} \) (box 96). If the dynamic
flow check (box 94) indicates gain OR loss (box 95), these signals must not be ignored. Hydrates may form when the gas mixes with the colder fluids in the upper part of the wellbore, so even if the flow check or shut-in pressure test (box 97), apparently shows normal values (box 98), it is important that circulation is continued (box 94), until temperature is above hydrate formation temperature T_{Hyd} (box 96) and “bottoms-up” has been circulated out. Any abnormal pressure, increase or decrease after shut-in pressure test (box 98), is a strong indication that the well is taking a kick (box 99).

In the open wellbore deep down in the earth formation 22 it is not usual to have low temperature below the hydrate formation temperature T_{Hyd} (box 70), because of the general high formation temperature. However, since pressure also generally increase with depth, the hydrate formation temperature T_{Hyd} can be above 30°C, so with high mud circulation the annulus fluid might not get time to heat up enough to get above these temperatures (box 71). To drill ahead with permanent temperature below the hydrate formation temperature T_{Hyd} deep down in the well should be avoided (details in boxes 73, 75, 78, 77, 79, 82, 82 and 84).

Even more likely is it that the temperature deep down in the well drops below the hydrate formation temperature T_{Hyd} due to cold fluid from the riser area after tripping, being pumped down or in the case of mud cap drilling where large amount of relative cold sacrificial fluid(s) is/are pumped down both in the annulus and drill string in large quantities (box 72). These are more temporary events and prior to drilling ahead it is important that “bottoms up” operation(s), while performing dynamic flow check is/are carried out, to check for any abnormalities (box 74).

Figure 5 shows schematically a method for determine the correct remedial action to be taken after a kick is detected (box 100). If managed pressure drilling (MPD) or riser gas handling (RGH) equipment is installed (box 101), it is important that applied surface back pressure P_{ASFP} to increase bottom hole pressure BHP and stop the influx, is activated as quickly as possible (box 102). After the blow out preventer BOP is closed (box 103), it is important that hydrate inhibitor is injected immediately into the wellhead (box 106), if the temperature in wellbore, wellhead or riser is below the hydrate formation temperature T_{Hyd} (box 104). There is also a special concern that hydrates may form. In such cases the actions identified in boxes 107, 108, 109 and 110 should be followed.

If the influx already has past the BOP (box 111), the riser gas needs to be handled depending on the available equipment topside (cf. boxes 114, 115, 116 and 117). Even if there is no sign for gas in riser, special consideration should be taken if the annulus temperature in the riser is below the hydrate formation temperature T_{Hyd}, (see boxes 112 and 113 for details).
Figure 6 discloses schematically a method for determining the correct remedial action to be taken based on stuck pipe warning. The novel part of this decision diagram is that it introduces hydrate plugging as a possible cause for stuck pipe (box 120). If permeable formation are being drilled or exposed (boxes 121 and 122), indication of a kick is observed (box 123), temperature in the wellbore is below T_{Hyd} (box 128), circulation restricted or pressure peaks observed (box 129), then this is a strong indication that hydrates may are about to create a stuck pipe event (box 131).

Further measurements and/or steps regarding the stuck pipe warning are apparent from Figure 6.

The invention has been described in non-limiting embodiments. It is clear that the person skilled in the art may make a number of alterations and modifications to the described embodiments without diverging from the scope of the invention as defined in the attached claims.
CLAIMS

1. Method for detection of a wellbore influx using at least a first pressure transmitter \((P_1) \) arranged in a first position in the well and a second pressure transmitter \((P_2) \) arranged in a second position in the well, the at least first and second pressure transmitters \((P_1, P_2) \) being arranged in a fixed vertical distance in relation to each other, the method comprising the steps:

A) calculating an expected density of a return flow between the at least first and second pressure transmitters \((P_1, P_2) \) by measuring or predicting mud or sacrificial fluids density, rock density, flow rate \((Q_{in}) \), true vertical depth \((TVD) \), rate of penetration \((ROP) \) and wellbore diameter \((D_{well}) \),

B) continuous measuring of the actual density of a return flow based on a measured pressure at each of the at least first and second pressure transmitters \((P_1, P_2) \), the actual density being computed based on vertical distance \((h) \) between the first and second pressure transmitters \((P_1, P_2) \) and adjusted for frictional pressure drop between each of the at least first and second pressure transmitters \((P_1, P_2) \) based on direction and the flow rate \((Q) \) in annulus,

C) comparing the calculated expected return flow density and the measured actual return flow density to determine a wellbore influx, and

D) using at least a first temperature transmitter \((T_1) \) arranged in a section of the well adjacent the at least first and/or second pressure transmitter \((P_1, P_2) \), measuring the temperature at the at least first temperature transmitter \((T_1) \), and using said temperature together with the measurements from the first and second pressure transmitters \((P_1, P_2) \) to predict the probability of hydrates forming in the well.

2. Method according to claim 1, wherein the at least first and second pressure transmitters \((P_1, P_2) \) are arranged in an open-hole section of the well.

3. Method according to claim 1 or 2, wherein the at least first temperature transmitter \((T_1) \) is arranged in an open-hole section of the well.

4. Method according to any of the preceding claims 1-3, using a plurality of pressure transmitters \((P_1, P_2, \ldots, P_n) \) in fixed vertical distance in the well, wherein the method further comprising repeating steps A), B) and C) between two adjacent pressure transmitters \((P_1, P_2, \ldots, P_n) \).

5. Method according to any of the preceding claims 1-4, the method further comprising a step
E) - confirming a wellbore influx if the measured actual return flow density is significantly less than the calculated expected return flow density.

6. Method according to claim 5, comprising monitoring possible rapid gas expansion in the well and automatically regulate a riser gas handling (RGH) or managed pressure drilling (MPD) choke by a constant value of applied surface back pressure (P_{ASBP}), and, if high risk of hydrates, setting P_{ASBP} as low as possible and inject hydrate inhibitor below a rotating control device (RCD).

7. Method according to claim 5, comprising the step of:
 - always displacing the riser if temperature in riser is below hydrate formation temperature T_{Hyd},
 - pumping fresh mud down at least one booster line and circulating out gas cut mud,
 - monitoring possible rapid gas expansion (as hydrates “melt” at low pressure)
 - be prepared to divert overboard to avoid “riser blow-out” on drill floor.

8. Method according to claim 5, comprising, in case the wellbore influx has inadvertently passed a subsea blowout preventer (BOP), pumping mud down at least one booster line and circulating out gas cut mud, and monitoring possible rapid gas expansion and be prepared to divert overboard to avoid “riser blow-out” on drill floor.

9. Method according to any of the preceding claims 1-4, using a plurality of temperature transmitters (T_1, ..., T_n) adjacent any pressure transmitter (P_1, P_2, ..., P_n) in the well, the method further comprises using readings from said temperature transmitters (T_1, ..., T_n) together with the measurements from the first and second pressure transmitters (P_1, P_2) to predict the probability of hydrates forming in the well.

10. Method according to claim 9, the method further comprising a step F) – confirming a possible hydrate formation, and generating a warning if the temperature (T_1, ..., T_n) is less than or lower than a predefined safety margin to the corresponding hydrate formation temperature T_{Hyd}.

11. Method according to claim 10, comprising the steps of filling at least one kill line with hydrate inhibitor fluid, injecting said hydrate inhibitor fluid present in the at least one kill line in the blow out preventer (BOP), and, simultaneously pumping fresh mud down the drill string to circulate out the wellbore fluids and inhibitor up at least one choke line and divert to a mud gas separator.
12. Method according to any of the preceding claims 1-11, the method further comprising a step G) - deciding that a choke line shut-in pressure \(P_o \) is showing abnormal pressure decrease, and generate a wellbore influx and hydrate alarm.

13. Method according any of the preceding claims 1-12, the method further comprising a step H) - identifying a stuck pipe situation as a possible result of hydrate formation, by observing increased drag trend or torque oscillation during connections and/or abnormal pressure increase or pressure oscillation during circulation, and confirming that all of the following conditions are fulfilled:

- drilling in a permeable formation, which permeable formation is identified to have the ability to act as a reservoir rock as well as having a pressure close to or higher than a bottom hole pressure or measured pressure at a pressure transmitter \((P_r-P_a) \) in the well,

- observing that the temperature in the wellbore is below hydrate formation temperature \(T_{hydr} \),

- observing circulation restriction or pressure peak.

14. Method according to claim 13, wherein, in case of a stuck pipe situation caused by hydrate formation, the method further comprising the steps of:

- injecting hydrate inhibitor fluid close to a wellhead,

- stop circulation allowing the temperature in the formation to increase the temperature of the fluids in the well thereby melting or dissociating the hydrates into water and dense gas,

- perform flow check to verify hydrate dissociation process has started,

- shut-in the well if well starts to flow and monitor shut-in pressure increase to determine size of hydrate plug/kick.
Figure 1
HYDRATE WARNING
Temperature (T_i) below hydrate formation temperature (T_{ref}) observed in lower part of the wellbore.

70.

Is T_i below T_{ref} due to high circulation rate (Q_c)?

71.

Yes
Evaluate to reduce Q_c, or P, or add inhibitor. Check effect on T_i and hydrate margin ($T_{i} - T_{ref}$).

73.

No
Stop drilling ahead and circulate "bottoms up" while performing dynamic flow check.

74.

Is T_i still below T_{ref}?

75.

Yes
Evaluate to change mud properties. Salt and OBM decrease T_{ref}. Increased viscosity allow lower Q_c.

76.

No
Drilling ahead may be continued but be aware that T_{ref} increases with increasing TWD and increasing P.

77.

Has mud properties been changed?

78.

Yes
If T_i below T_{ref} cannot be avoided, drilling ahead may be continued but with increased risk of stuck pipe or kick.

79.

No
Increasing drag trend or torque oscillation during connection.

80.

WARNING
Stuck pipe warning! Evaluate action to prevent stuck pipe. ref. figure 9.

81.

ALARM
Wellbore influx detected. Necessary action to be taken, ref. figure 5.

82.

Positive indication of wellbore influx (kick).

83.

Abnormal pressure increase or pressure oscillation during circulation.

84.

ALARM
Abnormal pressure increase in wellbore, this well may be taken a kick, ref. figure 5.

85.

HYDRATE WARNING
Temperature (T_i) below hydrate formation temperature (T_{ref}) observed in wellhead and/or marine drilling riser.

90.

Is temp. permanently below hydrate formation temp.?

92.

Yes
Fill kill line with hydrate inhibitor fluid in order to reduce risk of plugging C&K lines.

93.

No
Start circulation and perform dynamic flow check.

94.

Is dynamic flow check indicating gain or loss?

95.

Yes
Close BOP annular and stop circulation, monitor choke line shut-in pressure (P_c).

96.

No
Is P_c showing abnormal pressure increase or decrease?

97.

Yes
Continue to circulate until hydrate formation temperature in wellhead and marine drilling riser is above hydrate formation temperature.

98.

No
WARNING
Stuck pipe warning! Evaluate action to prevent stuck pipe, ref. figure 6.

99.

Figure 4
WELLBORE INFLUX ALARM

Wellbore influx detected or positive indication that the well is taking a kick.

101

Is drilling operation performed with RGH or MPD?

Yes → 103

No → 102

Increase Applied Surface Back Pressure (P_{ABC}) to increase BHP and stop the influx.

103

Close BOP annular and stop circulation. Monitor choke line shut-in pressure (P_c).

104

Is temp in wellbore, wellhead or riser below T_{H2S}?

Yes → 106

No → 113

Inject hydrate inhibitor through kill line or other dedicated injection line for hydrate inhibitor to BOP.

106

107

Is P_c showing abnormal pressure, decresing?

Yes → 108

No → 109

Constant shut-in pressure after a wellbore influx and temperature below T_{H2S} may indicate that hydrates have formed in the wellbore.

110

Decreasing shut-in pressure after a wellbore influx and temperature below T_{H2S} indicates that hydrates are forming in the wellbore annulus.

109

111

Has the influx inadvertently passed the BOP into the riser?

Yes → 112

No → 114

Is drilling operation performed with RGH or MPD?

Yes → 115

No → 116

Displace the riser by pumping “fresh” mud down the booster line, circulating out the gas cut mud through the RGH/MPD choke with constant P_{ABC} to the MGS.

117

Displace the riser by pumping “fresh” mud down the booster lines, circulating out the gas cut mud as the potential hydrates reach surface and pressure are getting close to atmospheric pressure.

118

Be prepared for rapid gas expansion as the gas influx and potential hydrates reach surface and pressure are getting close to atmospheric pressure. For this reason the RGH/MPD choke should always be automatically regulated by a constant value of P_{ABC}. If any risk of hydrates the P_{ABC} should be set as low as possible and hydrate inhibitor should be injected in the riser below the RCD.

Although influx apparently has not reached the riser, gas may be hiding as hydrates and can be very difficult to detect because the hydrates density is almost the same as the water it is replacing. For that reason always displace the riser by pumping mud down the booster line. Be prepared for rapid gas expansion as the potential hydrates reach surface and pressure are getting close to atmospheric pressure.

To prevent possible hydrate plugging of choke line, hydrate inhibitor should be injected down through the kill line or other dedicated injection line, simultaneously with “fresh” mud being pumped down the drill string. The wellbore fluids is then circulated together with inhibitor up the choke line and via the K&C manifold to the MGS. The choke to be adjusted to give a constant BHP during circulation. Always circulate “bottoms up” even if well is not flowing.

Figure 5
STUCK PIPE WARNING

Procedure for determine possible cause of potential stuck pipe scenario:
Formation related, Hydrates, Mechanical or Differential Sticking.

120

133

Formation related stuck pipe scenarios can also be associated with non permeable formation such as reactive Montmorillonite, fractured or faulted carbonates and shales and "mobile formations" like silt and plastic shales.

121

Is permeable formation being drilled or exposed?

Yes

122

Is in order for hydrates to build up in the wellbore a permeable formation with ability to act as a reservoir rock must be exposed to the open hole. In addition the BHP or P_i must be below or close to the pore pressure (P_{Pore}) of the permeable formation.

No

134

Is P_i = P_{Pore} or any indication of kick observed?

132

Possible cause can be Formation related. High pore pressure in the formation can blow apart rock particles filling the borehole.

135

Is water loss experienced?

Yes

128

Is temp in the wellbore below T_{HIC}?

No

129

Is circulation restricted or pressure peaks observed?

130

Possible cause can be Formation related. Unconsolidated sandstone can collapse forming a bridge around the drilling.

No

131

Possible cause of stuck pipe can be Hydrates forming in the wellbore and gradually building up and plugging the wellbore annulus around the drillstring. To reduce the risk of hydrates being transported up the wellbore and potentially plugging BOP and C&S lines, hydrate inhibitor should be injected in the wellhead. Low down in the wellbore the heat from the formation will normally increase T_i to above T_{HIC} when circulation stops. Also lowering P_{AHP} will speed up the process of "melting" the hydrates.

136

Possible cause of stuck pipe can be Reactive formation. Montmorillonite clay can hydrate and swell in contact with water based mud (WBM).

124

Can drilling be moved?

Yes

125

On the other hand if differential pressure \(P_i - P_{AHP} \) is high this increases the risk of "Differential sticking".

No

137

Possible cause of stuck pipe can be Mechanical. Junk, cement related, wellbore geometry, etc. (possibly improve the situation of a stuck pipe if moved.)

Figure 6
INTERNATIONAL SEARCH REPORT

A. **CLASSIFICATION OF SUBJECT MATTER**

INV. E21B47/06 E21B47/10

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[See patent family annex.]

Date of the actual completion of the international search

19 August 2015

[Further documents are listed in the continuation of Box C.]

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV RIJSWIJK
Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer

Morrish, Susan

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2013/055706 A1 (INTELLISERV LLC [US]; VEENINGEN DANIEL MARCO [US]) 18 April 2013 (2013-04-18) cited in the application page 12, paragraph 49 - page 15, paragraph 58; figures 1,2</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>WO 2010/118342 A1 (SCHLUMBERGER TECHNOLOGY CORP [US]; RAMOS ROGERIO TADEU [GB]; KIMMINAU) 14 October 2010 (2010-10-14) cited in the application the whole document</td>
<td>1-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 20130908555 A1</td>
<td>11-04-2013</td>
<td>BR 102012021394 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2494958 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013090855 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2810248 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103154424 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201300217 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2627860 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012085544 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013269947 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015122503 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012051149 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013087388 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013055706 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012170610 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010118342 A1</td>
</tr>
<tr>
<td>US 4733233 A</td>
<td>22-03-1988</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2004065477 A1</td>
<td>08-04-2004</td>
<td>AU 2003279008 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0315021 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2500610 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1688793 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2410967 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 330919 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004065477 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004033855 A2</td>
</tr>
</tbody>
</table>