10

15

20

25

180343-PCT 1

PIPELINED MATRIX MULTIPLICATION AT A GRAPHICS PROCESSING UNIT

BACKGROUND
Description of the Related Art

Modern processor applications often require relatively complex manipulation of
vectors, matrices, and similar structures. For example, vector and matrix
manipulation is useful in graphics operations, digital signal processing applications,
neural network applications, and the like. To enhance processing efficiency for these
applications and operations, a processor can include a graphics processing unit
(GPU). The GPU includes specialized hardware to perform parallel processing for
relatively large blocks of data. Accordingly, the GPU can support graphics
applications, as well as other operations that require vector and matrix manipulation.
To further enhance processing efficiency, a scheduler at the GPU schedules the
operations, such as matrix multiplication, at the CUs to ensure parallel processing.
However, conventional approaches to scheduling can, for some sets of operations,
require a large number of memory fetch cycles relative to the number of compute

cycles, thereby negatively impacting processor performance.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its numerous features
and advantages made apparent to those skilled in the art by referencing the
accompanying drawings. The use of the same reference symbols in different

drawings indicates similar or identical items.

FIG. 1 is a block diagram of a graphics processing unit (GPU) that schedules
sets of matrix multiplication operations at different subsets of CUs and pipelines

results between the different subsets in accordance with some embodiments.

FIG. 2 is a block diagram illustrating an example of decomposing matrices for

matrix multiplication at the GPU of FIG. 1 in accordance with some embodiments;

FIG. 3 is a diagram illustrating an example of pipelining matrix multiplication

operations at subsets of the CUs of FIG. 1 in accordance with some embodiments;

10

15

20

25

30

180343-PCT 2

FIG. 4 is a flow diagram of a method of pipelining matrix multiplication

operations at a CPU in accordance with some embodiments.

DETAILED DESCRIPTION

FIGs. 1-4 illustrate techniques for scheduling recurrent matrix multiplication
operations at different subsets of CUs of a GPU to enhance processing efficiency.
The GPU includes a scheduler that receives sets of recurrent matrix multiplication
operations, such as multiplication operations associated with a recurrent neural
network (RNN). The multiple operations associated with, for example, an RNN layer
are fused into a single kernel, which is scheduled by the scheduler such that one
work group is assigned per compute unit, thus assigning different ones of the
recurrent matrix multiplication operations to different subsets of the CUs of the GPU.
In addition, via software synchronization of the different workgroups, the GPU
pipelines the assigned matrix multiplication operations so that each subset of CUs
provides corresponding multiplication results to a different subset, and so that each
subset of CUs executes at least a portion of the multiplication operations

concurrently, thereby enhancing the efficiency of matrix multiplication at the GPU.

In contrast to the techniques described herein, the conventional approach the
result area of a matrix is sliced across all the CUs of a GPU at a time. With the
increasing number of CUs in a GPU, keeping all the CUs busy with the matrix
multiplication operations is inefficient. For example, the ratio of memory fetch cycles
to compute cycles is relatively poor. By employing the techniques described herein,
the GPU is able to get more work done in parallel, and to have a larger result area of
a matrix to work with per CU. This approach masks bandwidth limitations as well as

latency of the fetch operations to fetch matrix data.

FIG. 1 illustrates a GPU 100 of a processor that employs shared loads in
accordance with some embodiments. In at least one embodiment, the GPU 100 is
part of a processor that is generally configured to execute sets of instructions in order
to carry out operations on behalf of an electronic device. Accordingly, in different
embodiments the GPU 100 is part of an electronic device such as a desktop or laptop
computer, a server, a handheld electronic device such as a smartphone or tablet, a

game console, and the like. The GPU 100 is generally configured to execute

10

15

20

25

30

180343-PCT 3

graphics and vector processing operations on behalf of the processor. For example,
in some embodiments, a central processing unit (CPU, not shown at FIG. 1) of the
processor provides the GPU 100 with sets of operations for execution, whereby the

sets of operations are associated with graphics or vector processing.

One type of set of operations that is provided by the CPU is referred to herein as
a set of recurrent matrix multiplication operations. As used herein, recurrent matrix
multiplication operations refer to sets of matrix multiplication operations wherein the
results of at least one of the matrix multiplication operations of the set is provided to
at least one other matrix multiplication operation of the set. An example of a set of
matrix multiplication operations is a set associated with a recurrent neural network
(RNN). As will be appreciated by one skilled in the art, an RNN is implemented via a
series of general matrix multiply (GEMM) operations followed by activation functions
(e.g., a tanh activation function), The weight matrix associated with the recurrent
GEMM operations is constant across all hidden layers. This property of the weight
matrix can be used to preload this matrix in registers and thereby reduce fetch in
every iteration of the multiplication operation. Thus, the RNN employs a set of
recurrent matrix multiplication operations to implement the RNN, as described further

herein.

To facilitate execution of the provided operations, the GPU 100 includes a
plurality of CUs (e.g. CUs 105-108). Each of the CUs is configured to execute
assigned operations independently of, and concurrent with, the other CUs to allow
the GPU 100 to execute complex operations, such as matrix multiplication, relatively
quickly. Accordingly, in some embodiments, each of the CUs includes a plurality of
Single-Instruction Multiple-Data (SIMD) processing units, fetch and decode logic to
fetch and decode instructions for the SIMD units, a register file to store operands for
the SIMD units, and the like.

To support efficient execution of operations at the CUs, the GPU 100 includes a
scheduler 104 that is generally configured to assign operations to different ones of
the CUs according to specified scheduling criteria. In some embodiments, the criteria
are set in part by the sets of operations, referred to as a kernel, provided to the GPU
100. To support recurrent matrix multiply operations, the scheduler 104 logically
divides the CUs of the GPU into subsets, designated CU subsets 110-113. It will be

10

15

20

25

30

180343-PCT 4

appreciated that in other embodiments the scheduler 104 logically divides the CUs
into more or fewer subsets. As used herein, a subset refers to a set including some,
but not all, of the CUs of a GPU. Thus, for example, in an embodiment wherein the
GPU 100 includes a total of 128 CUs, each of the CU subsets 110-113 includes a
different set of 32 CUs, and each of the 128 CUs is in a different one of the CU
subsets 110-113.

In some embodiments, a kernel logically divides each CU subset 110-113 into
smaller subsets, referred to herein as CU clusters for clarity. It will be appreciated
that in some embodiments, different operations of the scheduler 104 can be
performed by a hardware scheduler, by software scheduling operations, or a
combination thereof. As used herein, a CU cluster is a set of CUs that includes
some, but not all of the CUs of a CU subset. For example, the CU subset 110
includes CUs 105-108, wherein CUs 105 and 106 are included in one CU cluster
(designated CU cluster 109) while CUs 107 and 108 are included in a different CU
cluster of the CU subset 110. In the above example where each of the CU subsets
110-113 includes 32 CUs, each CU cluster includes 8 CUs of the corresponding CU

subset, with each CU included in a different CU cluster.

By logically dividing the CUs into subsets and clusters, the kernel schedules
recurrent matrix multiply operations to reduce data fetches to the different CUs. To
illustrate, each CU of the GPU 100 includes registers, buffers, or other storage
elements (not shown at FIG. 1) to store the operands employed in matrix
multiplication. For recurrent matrix multiplication operations, at least one matrix is
used repeatedly in the corresponding matrix multiplications. Accordingly, and as
described further herein, the GPU 100 divides the at least one matrix into
submatrices, with the different submatrices used repeatedly to calculate the final
result of the recurrent matrix multiplication operations. Accordingly, to perform
recurrent matrix multiplication operations, the scheduler 104 assigns different ones of
the corresponding matrix multiplication operations to different ones of the CU subsets
110-113. Each of the CUs 110-113 loads the corresponding submatrices into its
corresponding storage elements (e.g. registers) and maintains at least some of the
submatrices in the storage elements for multiple matrix multiplications. Thus, as

described further herein, the same submatrices are not fetched to all of the CUs of

10

15

20

25

30

180343-PCT 5

the GPU 100, but only to the corresponding CU subsets and CU clusters. In contrast,
under a conventional matrix multiplication approach, the matrix multiplications would

be divided among all the CUs of the GPU 100, reducing efficiency.

To illustrate via an example, in the illustrated embodiment the GPU 102
implements an RNN kernel 102 that defines a set of recurrent matrix multiplication
operations wherein a matrix A is multiplied by a matrix B to generate a matrix C. An
example is illustrated at FIG. 2 in accordance with some embodiments wherein matrix
222 is matrix A, matrix 224 is matrix B, and the resulting matrix 226 is designated

matrix C. The multiplication of A and B is expressed by the following formula:
C=A*B

In some embodiments, matrix A is a set of neural network weights, matrix B is a
set of initial inputs, and C is the output of an activation function for the neural
network. Because the neural network is a recurrent neural network, the RNN kernel

102 also defines a matrix multiplication operation for C’ wherein:
C=A*C

In some embodiments defines additional matrix multiplication operations for
matrices C”, C”, and so on, for a specified number of C" matrices, where each C"
matrix is a function of the previous C matrix, except for the initial C matrix, which is a
function of the matrix B as indicated above. Referring again to FIG. 1, hardware
barriers are configured to assign the generation of each C" matrix to one of the CU
subsets 110-113. For example, the scheduler 104 assigns the matrix multiplication
operation that generates matrix C, designated operation 103, to the CU subset 110
and assigns the matrix multiplication operation that generates matrix C’, designated
operation 114, to the CU subset 111. Each CU subset executes the assigned matrix
multiplication operation to generate the corresponding C" matrix and provides the C"
matrix to another CU subset for generation of the next C" matrix until all of the matrix
multiplication operations for the RNN kernel 102 are complete. Thus, for example, in
some embodiments the CU subset 110 provides the matrix C to the CU subset 111 to
calculate the matrix C’, the CU subset 111 provides the matrix C’ to the CU subset
112 to calculate the matrix C”, the CU subset 112 provides the matrix C” to the CU

10

15

20

25

180343-PCT 6

subset 113 to calculate the matrix C”, the CU subset provides the matrix C” to the

CU subset C””, and so on until the final C" matrix is calculated.

Further, in some embodiments the CU subsets 110-113 perform the
corresponding matrix multiplication operations via a series of multiplications, with
each multiplication in the series generating a portion of the corresponding C" matrix.
Each of the CU subsets 110-113 provides the generated portion of the corresponding
C" matrix to the next CU subset, which uses the provided portion to generate a
corresponding portion of the next C" matrix. Scheduling matrix multiplications in this
way allows the GPU 100 to pipeline the different multiplications to enhance
processing efficiency, as described further below. In addition, in some embodiments
the scheduler 104 schedules the individual matrix multiplications at different CU

clusters to improve the ratio of compute cycles to memory fetch cycles for each CU.

To illustrate, and referring to FIG. 2, to multiply matrix A and matrix B, the GPU
100is generally configured to decompose the matrices A and B into submatrices
(e.q., submatrix 225), with each submatrix being a portion of the corresponding
matrix. Thus, the GPU 100 decomposes the matrix A into the illustrated submatrices
A0-A3, and the matrix B into the illustrated submatrices BO-B3. The GPU 100 uses
the submatrices to calculate corresponding submatrices C0-C3 according to the

following formulas:
C0 = A0*BO + A2*B1
C1=A1*B0 + A3*B1
C2 = A0O*B2 + A2*B3
C3 =A1*B2 + A3*B3

The GPU 100 uses the resulting submatrices of C to calculate corresponding

submatrices CO’-C3’ according to the following formulas:
CO = A0*CO + A2*C1
C1 = A1*CO + A3*C1

C2’ = A0*C2 + A2*C3

10

15

20

25

180343-PCT 7

C3 = A1*C2 + A3*C3
The GPU 100 calculates each C" matrix using similar formulas.

To enhance processing efficiency, the scheduler 100 schedules individual matrix
multiplication operations at CU clusters such that the A submatrix used by the CU
cluster does not change. For example, in some embodiments, the CU subset 110 is

EEER)

assigned to calculate the matrix C and the matrix C””. Calculating the matrix C

requires the following multiplications with the A0 submatrix:
AO0*BO

A0*B2

EEEE)

Calculating the matrix C”” requires the following multiplications with the A0

submatrix;
AO0*CO™”
AQ0*C2”

Accordingly, to keep the number of data fetches relatively low, the scheduler
100 schedules all multiplication operations for a given A submatrix at a given CU
subset to the same CU cluster. Thus, for example, in some embodiments the
scheduler 104 assigns each matrix multiplication that requires the A0 submatrix and
is used to calculate the submatrices assigned to the CU subset 110, to the same CU
cluster (e.g., CU cluster 109). Similarly, the scheduler 104 the scheduler 104 assigns
each matrix multiplication that requires the A0 submatrix and is used to calculate the
submatrices assigned to the CU subset 111, to the same CU cluster at the CU subset
111, and so on for each CU subset. Each CU cluster is thus able to maintain the
corresponding A submatrix in the corresponding register file (or other storage

modules) for multiple different matrix multiplications.

In addition, it can be seen from the above formulas that only some of the
submatrices of a given C" matrix are needed to calculate corresponding submatrices
for the next C"matrix. For example, once the CU subset 110 has calculated the

submatrices CO and C1, all the data needed to calculate the submatrices CO and C1’

10

15

20

25

30

180343-PCT 8

is calculated. Accordingly, after calculating the CO and C1 submatrices, the CU
subset 110 provides the submatrices to the CU subset 111 to calculate CO’ and C1’.
In some embodiments, the CU subset 110 provides the CO and C1 submatrices prior
to (or concurrent with) calculating the C2 and C3 matrices. The matrix multiplications
are thereby pipelined across the CU subsets 110-113 to enhance processing

efficiency.

An example of such pipelining of matrix multiplications is illustrated at FIG. 3 in
accordance with some embodiments. FIG. 3, illustrates a sequence of time periods,
designated T+ through Ts, wherein during each time period a portion of a C" matrix is
calculated by at least one of the CU subsets 110-113. It will be appreciated that in
some embodiments each time period includes multiple processing cycles or clock
cycles of the CU subsets 110-113. In the depicted example, during time period T+,
the CU subset 110 calculates the CO and C1 submatrices and provides the

submatrices to the CU subset 111.

During the succeeding time period T2, the CU subset 110 calculates the C2 and
C3 submatrices and provides the submatrices to the CU subset 111. In addition,
because all of the submatrices needed to calculate CO’ and C1’ are available, during
the time period T2 the CU subset 111 calculates the submatrices CO’ and C1’ and
provides the submatrices. That is, during time period T2 the CU subset 110 and the
CU subset 111 concurrently calculate the submatrices CO and C1, and C0O’ and C1,

respectively.

During the succeeding time period T3, the CU subset 111 calculates the C2’ and
C3 submatrices and the CU subset 112 calculates the C0” and C1” submatrices.
During the next time period T4, the CU subset 112 calculates the C2” and C3”
submatrices and the CU subset 113 calculates the CO™” and C1’” submatrices.
During the next time period Ts the CU subset 113 calculates the C2”” and C3””
submatrices. Thus, as illustrated, the matrix multiplication operations are pipelined
across the CU subsets 110-113 to enhance processing efficiency. In some
embodiments, the A, B, and C matrices are larger matrices, with a higher number of
submatrices, further enhancing the efficiency of the illustrated pipeline. For example,
for a larger C matrix, the CU subset 11 can calculate C4 and C5 submatrices during

time period T3 and C6 and C7 submatrices during time Ta.

10

15

20

25

30

180343-PCT 9

FIG. 4 illustrates a block diagram of a method 400 of pipelining matrix
multiplication operations at a GPU in accordance with some embodiments. The
method 400 is described with respect to an example implementation at the GPU 100
of FIG. 1. At block 402 the GPU 100 receives the RNN kernel 102, indicating the
matrix multiplication operations to be performed as well as the matrices A and B. At
block 404 the scheduler 104 schedules the multiplication of the different CN matrices
at the CU subsets 110-113, and further schedules the multiplications for each
submatrix for each CN matrix at CU clusters of the CU subsets 110-113, so that the A
submatrices can be maintained at the internal storage modules of the assigned
clusters. At block 406 the CU subsets 110-113 calculate submatrices of the
corresponding CN matrix and provide the results to the next CU subset as illustrated
at FIG. 1 and FIG. 3. At block 408 the GPU provides results for the recurrent neural

network to a CPU based on the matrix multiplications.

As disclosed herein, in some embodiments a method includes: receiving at a
graphics processing unit (GPU) a set of commands for execution, the GPU including
a plurality of compute units (CUs) the set of commands including a plurality of matrix
multiplication operations; in response to receiving a set of commands, scheduling a
first matrix multiplication operation of the plurality of matrix multiplication operations at
a first subset of CUs and a second matrix multiplication operation of the plurality of
matrix multiplication operations at a second subset of the CUs, the second subset of
CUs different from the first subset of CUs; and executing the first and second matrix
multiplication operations at the respective first subset and second subset of CUs. In
one aspect, the method includes providing results of the first matrix multiplication
operation from the first subset of CUs to the second subset of CUs to perform the
second matrix multiplication operation. In another aspect, the method includes
providing results of the second matrix multiplication operation to a third subset of CUs
of the plurality of CUs to perform a third matrix multiplication operation, the third
subset of CUs different from the first subset and the second subset of CUs. In still
another aspect, the method includes providing results of the third matrix multiplication
operation from the third subset of CUs to the first set of CUs to perform a fourth

matrix multiplication operation.

10

15

20

25

30

180343-PCT 10

In one aspect the first matrix multiplication operation includes a first
multiplication and a second multiplication; the second matrix multiplication operation
includes a third multiplication; and executing the first and second matrix multiplication
operations includes executing the second multiplication concurrent with the third
multiplication. In another aspect, the third multiplication multiplies a result of the first
multiplication. In yet another aspect, the first matrix multiplication operation includes
a first multiplication and a second multiplication; and executing the first matrix
multiplication operation includes executing the first multiplication at a first cluster of
the first subset of CUs and the second multiplication at a second cluster of the first
subset of CUs. In still another aspect, executing the first matrix multiplication
operation includes executing the first multiplication concurrent with the second
multiplication. In yet another aspect, the method includes generating an output of a
recurrent neural network (RNN) based on the first and second matrix multiplication

operations.

In some embodiments, a method includes receiving, at a graphics processing
unit (GPU) including a plurality of compute units (CUs), a plurality of matrix
multiplication operations; in response to receiving the plurality of matrix multiplication
operations, scheduling different ones of the plurality of matrix multiplication
operations at different corresponding subsets of the plurality of CUs; and pipelining
results of the plurality of matrix multiplication operations between the different
subsets of the plurality of CUs. In one aspect, the method includes concurrently
executing portions of the plurality of matrix multiplication operations at different

subsets of the plurality of CUs.

In some embodiments, a graphics processing unit (GPU), includes: a plurality of
CUs, including a first subset of CUs and a second subset of CUs, the second subset
of CUs different from the first subset of CUs; a scheduler configured to: receive a set
of commands for execution, the set of commands including a plurality of matrix
multiplication operations; in response to receiving the set of commands, schedule a
first matrix multiplication operation of the plurality of matrix multiplication operations at
the first subset of CUs and a second matrix multiplication operation of the plurality of
matrix multiplication operations at the second subset of the CUs; and the first subset

of CUs and second subset of CUs are configured to execute the first and second

10

15

20

25

30

180343-PCT 11

matrix multiplication operations. In one aspect, the first subset of CUs is configured
to provide results of the first matrix multiplication operation to the second subset of

CUs to perform the second matrix multiplication operation.

In one aspect, the second subset of CUs is configured to provide results of the
second matrix multiplication operation to a third subset of CUs of the plurality of CUs
to perform a third matrix multiplication operation, the third subset of CUs different
from the first subset and the second subset of CUs. In another aspect, the third
subset of CUs is configured to provide results of the third matrix multiplication
operation to the first set of CUs to perform a fourth matrix multiplication operation. In
still another aspect, the first matrix multiplication operation includes a first
multiplication and a second multiplication; the second matrix multiplication operation
includes a third multiplication; and wherein the first subset of CUs is configured to
execute the second multiplication concurrent with the second subset of CUs

configured executing the third multiplication.

In one aspect, the third multiplication multiplies a result of the first multiplication.
In another aspect, the first subset of CUs includes a first cluster of CUs and a second
cluster of CUs, the second cluster different from the first cluster; the first matrix
multiplication operation includes a first multiplication and a second multiplication; and
the first subset of CUs is configured to execute the first multiplication at the first
cluster of the first subset of CUs and the second multiplication at the second cluster
of the first subset of CUs. In yet another aspect, the first subset of CUs is configured
to execute the first matrix multiplication operation concurrent with the second
multiplication. In another aspect, the GPU is configured to: generate an output of a
recurrent neural network (RNN) based on the first and second matrix multiplication

operations.

A computer readable storage medium may include any non-transitory storage
medium, or combination of non-transitory storage media, accessible by a computer
system during use to provide instructions and/or data to the computer system. Such
storage media can include, but is not limited to, optical media (e.g., compact disc
(CD), digital versatile disc (DVD), Blu-Ray disc), magnetic media (e.g., floppy disc,
magnetic tape, or magnetic hard drive), volatile memory (e.g., random access

memory (RAM) or cache), non-volatile memory (e.g., read-only memory (ROM) or

10

15

20

25

30

180343-PCT 12

Flash memory), or microelectromechanical systems (MEMS)-based storage media.
The computer readable storage medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the computing system (e.g., a
magnetic hard drive), removably attached to the computing system (e.g., an optical
disc or Universal Serial Bus (USB)-based Flash memory), or coupled to the computer

system via a wired or wireless network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques described above may
implemented by one or more processors of a processing system executing
software. The software includes one or more sets of executable instructions stored
or otherwise tangibly embodied on a non-transitory computer readable storage
medium. The software can include the instructions and certain data that, when
executed by the one or more processors, manipulate the one or more processors to
perform one or more aspects of the techniques described above. The non-transitory
computer readable storage medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash memory, a cache,
random access memory (RAM) or other non-volatile memory device or devices, and
the like. The executable instructions stored on the non-transitory computer readable
storage medium may be in source code, assembly language code, object code, or
other instruction format that is interpreted or otherwise executable by one or more

processors.

Note that not all of the activities or elements described above in the general
description are required, that a portion of a specific activity or device may not be
required, and that one or more further activities may be performed, or elements
included, in addition to those described. Still further, the order in which activities are
listed are not necessarily the order in which they are performed. Also, the concepts
have been described with reference to specific embodiments. However, one of
ordinary skill in the art appreciates that various modifications and changes can be
made without departing from the scope of the present disclosure as set forth in the
claims below. Accordingly, the specification and figures are to be regarded in an
illustrative rather than a restrictive sense, and all such modifications are intended to

be included within the scope of the present disclosure.

10

180343-PCT 13

Benefits, other advantages, and solutions to problems have been described
above with regard to specific embodiments. However, the benefits, advantages,
solutions to problems, and any feature(s) that may cause any benefit, advantage, or
solution to occur or become more pronounced are not to be construed as a critical,
required, or essential feature of any or all the claims. Moreover, the particular
embodiments disclosed above are illustrative only, as the disclosed subject matter
may be modified and practiced in different but equivalent manners apparent to those
skilled in the art having the benefit of the teachings herein. No limitations are
intended to the details of construction or design herein shown, other than as
described in the claims below. It is therefore evident that the particular embodiments
disclosed above may be altered or modified and all such variations are considered
within the scope of the disclosed subject matter. Accordingly, the protection sought

herein is as set forth in the claims below.

10

15

20

25

180343-PCT 14

WHAT IS CLAIMED IS:

1. A method comprising:

receiving at a graphics processing unit (GPU) [100] a set of commands for
execution, the GPU comprising a plurality of compute units (CUs) [105,
106, 107, 108], the set of commands including a plurality of matrix
multiplication operations [103, 114];

in response to receiving a set of commands, scheduling a first matrix
multiplication operation of the plurality of matrix multiplication operations
at a first subset of CUs [110] and a second matrix multiplication
operation of the plurality of matrix multiplication operations at a second
subset of the CUs [111], the second subset of CUs different from the
first subset of CUs; and

executing the first and second matrix multiplication operations at the

respective first subset and second subset of CUs.

2. The method of claim 1, further comprising:
providing results of the first matrix multiplication operation from the first subset
of CUs to the second subset of CUs to perform the second matrix

multiplication operation.

3. The method of claim 2, further comprising:
providing results of the second matrix multiplication operation to a third subset
of CUs [112] of the plurality of CUs to perform a third matrix
multiplication operation, the third subset of CUs different from the first

subset and the second subset of CUs.

4. The method of claim 3, further comprising:
providing results of the third matrix multiplication operation from the third
subset of CUs to the first set of CUs to perform a fourth matrix

multiplication operation.

10

15

20

25

180343-PCT 15

5. The method of claim 2, wherein:
the first matrix multiplication operation comprises a first multiplication and a
second multiplication;
the second matrix multiplication operation comprises a third multiplication; and
wherein executing the first and second matrix multiplication operations
comprises executing the second multiplication concurrent with the third

multiplication.

6. The method of claim 5, wherein:

the third multiplication multiplies a result of the first multiplication.

7. The method of claim 2, wherein:
the first matrix multiplication operation comprises a first multiplication and a
second multiplication;
wherein executing the first matrix multiplication operation comprises executing
the first multiplication at a first cluster of the first subset of CUs and the

second multiplication at a second cluster of the first subset of CUs.

8. The method of claim 7, wherein:
executing the first matrix multiplication operation comprises executing the first

multiplication concurrent with the second multiplication.

9. The method of claim 1, further comprising:
generating an output of a recurrent neural network (RNN) [102] based on the

first and second matrix multiplication operations.

10. A method, comprising:
receiving, at a graphics processing unit (GPU) [100] comprising a plurality of
compute units (CUs) [105, 106, 107, 108], a plurality of matrix
multiplication operations [103, 114];
in response to receiving the plurality of matrix multiplication operations,
scheduling different ones of the plurality of matrix multiplication
operations at different corresponding subsets [110, 111, 112, 113] of

the plurality of CUs; and

10

15

20

25

30

180343-PCT 16

pipelining results of the plurality of matrix multiplication operations between the

different subsets of the plurality of CUs.

11. The method of claim 10, further comprising:
concurrently executing portions of the plurality of matrix multiplication

operations at different subsets of the plurality of CUs.

12. A graphics processing unit (GPU) [100], comprising:
a plurality of CUs [105, 106, 107, 108], including a first subset of CUs [110]
and a second subset of CUs [111], the second subset of CUs different
from the first subset of CUs;
a scheduler [104] configured to:
receive a set of commands for execution, the set of commands
including a plurality of matrix multiplication operations [103, 114];

in response to receiving the set of commands, schedule a first matrix
multiplication operation of the plurality of matrix multiplication
operations at the first subset of CUs and a second matrix
multiplication operation of the plurality of matrix multiplication
operations at the second subset of the CUs; and

wherein the first subset of CUs and second subset of CUs are
configured to execute the first and second matrix multiplication

operations.

13. The GPU of claim 12, wherein:
the first subset of CUs is configured to provide results of the first matrix
multiplication operation to the second subset of CUs to perform the

second matrix multiplication operation.

14. The GPU of claim 13, wherein:
the second subset of CUs is configured to provide results of the second matrix
multiplication operation to a third subset of CUs [112] of the plurality of
CUs to perform a third matrix multiplication operation, the third subset of

CUs different from the first subset and the second subset of CUs.

10

15

20

25

180343-PCT 17

15. The GPU of claim 14, wherein:
the third subset of CUs is configured to provide results of the third matrix
multiplication operation to the first set of CUs to perform a fourth matrix

multiplication operation.

16. The GPU of claim 13, wherein:
the first matrix multiplication operation comprises a first multiplication and a
second multiplication;
the second matrix multiplication operation comprises a third multiplication; and
wherein the first subset of CUs is configured to execute the second
multiplication concurrent with the second subset of CUs configured

executing the third multiplication.

17. The method of claim 16, wherein:

the third multiplication multiplies a result of the first multiplication.

18. The GPU of claim 13, wherein:
the first subset of CUs comprises a first cluster of CUs and a second cluster of
CUs, the second cluster different from the first cluster;
the first matrix multiplication operation comprises a first multiplication and a
second multiplication;
wherein the first subset of CUs is configured to execute the first multiplication
at the first cluster of the first subset of CUs and the second

multiplication at the second cluster of the first subset of CUs.

19. The GPU of claim 18, wherein:
the first subset of CUs is configured to execute the first matrix multiplication

operation concurrent with the second multiplication.

20. The method of claim 12, wherein the GPU is configured to:
generate an output of a recurrent neural network (RNN) based on the first and

second matrix multiplication operations.

10

180343-PCT 18

ABSTRACT OF THE DISCLOSURE

A graphics processing unit (GPU) [100] schedules recurrent matrix multiplication
operations at different subsets of CUs [110, 111, 112, 113] of the GPU. The GPU
includes a scheduler [104] that receives sets of recurrent matrix multiplication
operations [103, 114], such as multiplication operations associated with a recurrent
neural network (RNN). The multiple operations associated with, for example, an
RNN layer are fused into a single kernel, which is scheduled by the scheduler such
that one work group is assigned per compute unit, thus assigning different ones of
the recurrent matrix multiplication operations to different subsets of the CUs of the
GPU. In addition, via software synchronization of the different workgroups, the GPU
pipelines the assigned matrix multiplication operations so that each subset of CUs
provides corresponding multiplication results to a different subset, and so that each
subset of CUs executes at least a portion of the multiplication operations

concurrently.

180343-PCT

1/4

["OId

1 1388NS NO

00}
217 1339ns no TTT 13s9nsS nD 017 13s9nsS no

—_— | p—

gor | | Qoor|

< <€ no | no | |

| |

o7 _ o7 _

no | no _

c y E— M —

PIT ATILTINN D 601

vob
d31Nd3HOS

c0b
TANE3IM NNA

€0} ATdILTNN O

180343-PCT

2/4

¢ "OId

(%0)

20)

ed

ev

v

¢O

00

cd

0d

4

ov

9¢¢

444

¢el

Gee

180343-PCT

3/4

€ Old

€17 13sans no ZI7 13s4ns no 111 13s8ns NO 017 13sans no
w£0°420 AH) T S N ——
b %00 “ L £2'.20 “— T
L 40400 — £2'20 —
--- s 1900 - €920
L 1900

51

L

1

ai

180343-PCT

4/4

RECIEVE RNN KERNEL

|_—402

SCHEDULE ACTIVATION MATRIX (C)
MULTPLICATIONS AT DIFFERENT CU SUBSET

|_—404

CALCULATE C SUBMATRICES AND PIPELINE
RESULTS TO NEXT CU SUBSET

PROVIDE RNN RESULTS BASED ON
ACTVATION MATRICES

FIG. 4

