The invention relates to a method for surface reconstruction, at least one object (O) being lit simultaneously by a plurality of spaced-apart lamps (a-d), a photographic sequence comprising a plurality of individual images (EBr-EBr+n) of the at least one object (O) being captured and at least one visible object surface (OS1, OS2) of the object (O) being reconstructed by means of photometric stereo analysis, the light (La-Ld) emitted by the lamps (a-c; a-d) being modulated by various modulation frequencies (fa-fc; fa-fd), the light components of the respective lamps (a-d) reflected by the object (O) being identified on the basis of the modulation frequencies (fa-fd) thereof and being assigned to respective partial images (TBa-TBd) and the partial images (TBa-TBd) being used as input images for the photometric stereo analysis. A device (S1, S2) is designed for carrying out the method according to any of the preceding claims.
The invention can be applied in particular to room monitoring of interiors and/or exteriors and/or for object identification, in particular in conjunction with general lighting.

(57) Zusammenfassung: Ein Verfahren dient zur Oberflächenrekonstruktion, wobei mindestens ein Objekt (O) von mehreren voneinander beobachteten Leuchten (a-d) gleichzeitig beleuchtet wird, eine fotografische Sequenz mit mehreren Einzelbildern (EBr-EBr) des mindestens einen Objekts (O) aufgenommen wird und mindestens eine sichtbare Objektoberfläche (OS1, OS2) des Objekts (O) mittels fotometrischer Stereozoomanalyse rekonstruiert wird, wobei das von den Leuchten (a-c; a-d) abgestrahlte Licht (La-Ld) mit unterschiedlichen Modulationsfrequenzen (fa-fc; fa-fd) moduliert wird, die von dem Objekt (O) reflektierten Lichtanteile der jeweiligen Leuchten (a-d) anhand ihrer Modulationsfrequenzen (fa-fd) erkannt und jeweiligen Teilbildern (TBr-TBr) zugeordnet werden und die Teilbilder (TBr-TBr) als Eingangsbilder für die fotometrische Stereozoomanalyse verwendet werden. Eine Vorrangrichtung (S1; S2) ist zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche eingerichtet. Die Erfindung ist insbesondere anwendbar zur Räumüberwachung von Innen- und/oder Außenräumen und/oder zur Objekterkennung, insbesondere im Zusammenhang mit einer Allgemeinelementebeleuchtung.
BESCHREIBUNG

Die Einzelbilder einer Bildsequenz werden den jeweiligen Leuchten zugeordnet und als Eingangsbilder der fotometrischen Stereoanalyse verwendet. Da die durch die Kamera nicht sichtbaren Oberflächen nicht rekonstruiert werden können, wird diese Methode auch als "2½ D"-Rekonstruktion bezeichnet.

Unter Berücksichtigung, dass eine beobachtete oder gemessene Helligkeit eines Oberflächenbereichs mit einem Wert eines entsprechenden Bildpunkts (auch als Bildpunkthelligkeit oder Luminanzwert bezeichnenbar) der Kamera korrespondiert, können die Oberflächenvektoren an entsprechenden Oberflächenbereichen oder Oberflächenpunkten als auch das dortige diffuse Rückstrahlvermögen (Albedo) bestimmt werden, falls mehrere Einzelbilder des Objekts unter unterschiedlichen Beleuchtungsbedingungen aufgenommen werden.

Zur klassischen fotometrischen 2½ D-Rekonstruktion können beispielsweise folgende Schritte durchgeführt werden:

Dann wird eine gegenseitige Kalibration der Leuchten in Bezug auf ihre Stärke und Beleuchtungsrichtung durchgeführt. Dies kann beispielsweise dadurch erreicht werden, dass die Lichtintensität mittels eines Luxmeters gemessen wird oder durch Auswerten eines
Bilds eines kalibrierten Objekts mit bekannter Geometrie und bekanntem Albedowert (z.B. einer Saphirkugel) bestimmt wird. Das Ergebnis der Kalibrierung kann in Form eines Satzes von Beleuchtungsvektoren L_i ausgedrückt werden, wobei der Betrag des Beleuchtungsvektors L_i einer relativen Intensität der zugehörigen Leuchte i entspricht und die Richtung des Beleuchtungsvektors L_i den Einfallswinkel bestimmt.

2. Ein Objekt wird unter einer vorgegebenen Beleuchtung jeweils einer der Leuchten mittels einer herkömmlichen 2D-Kamera aufgenommen. Die Blickrichtung der Kamera ist grundsätzlich beliebig, aber vorteilhafterweise so, dass eine gute Perspektive auf eine Objetoberfläche mit einer möglichst geringen Abschattung erreicht wird.

3. Die Bildpunktewerte (Pixelmesswerte) $PM_w(x,y)$ der Bildpunkte $BP(x,y)$ der aufgenommenen Einzelbilder (auch als "Capture Pixel Values" bezeichnet) hängen von der beobachteten Leuchtdichte oder Luminanz jeder der Oberflächenbereiche oder Oberflächenpunkte der Objetoberflächen ab.

Dies kann für jeden der einem Oberflächenbereich oder Oberflächenpunkt an der Stelle (x,y) entsprechenden Bildpunkte $BP(x,y)$ auch so ausgedrückt werden, dass

$$PM_w(x,y);i = \rho_d(x,y) \cdot (L_i \cdot n(x,y))$$

gilt, wobei $PM_w(x,y);i$ den Bildpunktewert dieses Bildpunkts $BP(x,y)$ unter Beleuchtung nur der Leuchte i, $\rho_d(x,y)$ die Albedo des zugehörigen Oberflächenbereichs bzw. der zugehörigen Stelle (x,y), L_i den (normierten) Beleuchtungsvektor des zugehörigen Oberflächenbereichs /
Oberflächenpunkts bzw. der Stelle \((x,y)\) darstellt. Jedes
Oberflächenelement bzw. jede Stelle \((x,y)\) trägt also mit seiner
Albedo \(p_d(x,y)\) und mit seiner Normale \(n(x,y)\) genau zum
Pixelmesswert \(PM_w(x,y)\) bei, und zwar in Abhängigkeit von der
Beleuchtungsintensität \(L_i\).

\((L_i \cdot n)\) ist folglich ein Vektorprodukt, das den Betrag des
Beleuchtungsvektor \(L_i\) und den Kosinus des Einfallswinkels \(\Theta_i\)
umfasst, nämlich gemäß \((L_i \cdot n) = |L_i| \cdot \cos(\Theta_i)\).

4. Es ergibt sich also für drei Leuchten \(i = 1, 2, 3\) für einen
Bildpunkt und damit auch einen zugehörigen Oberflächenbereich
das Gleichungssystem

\[
PM_w(x,y); 1 = p_d \ast (L_1 \cdot n(x,y)) \\
PM_w(x,y); 2 = p_d \ast (L_2 \cdot n(x,y)) \\
PM_w(x,y); 3 = p_d \ast (L_3 \cdot n(x,y))
\]

Aus diesem Gleichungssystem lassen sich die Albedo \(p_d(x,y)\) und
der Normalenvektor \(n(x,y)\) unter Berücksichtigung der
Normalisierungsbedingung \(|n|=1\) bestimmen.

Dies kann für jeden der Bildpunkte \(BP(x,y)\) gesondert durchgeführt
werden.

Es kann also ein Objekt mit unbekannter (Oberflächen-)Albedo \(p_d\)
mit Hilfe von drei unterschiedlichen Beleuchtungsszenarien
rekonstruiert werden. Für den Fall, dass die Albedo einer
Objektoberfläche bereits bekannt ist (beispielsweise das Objekt
mit definierter Farbe vorbehandelt und/oder angestrichen worden
ist), kann die klassische fotometrische Stereoanalyse auch mit nur zwei Leuchten durchgeführt werden.

5. Die Oberflächenrekonstruktion kann mit den Normalenvektoren n der Bildpunkte bzw. Oberflächenbereiche durchgeführt werden, um eine volle Information über die dreidimensionale Struktur oder Form der Objektoberfläche zu erlangen, z.B. über Gradientenbetrachtungen und anschließende Integration.

Mit der Umkalibrierung der ermittelten Normalenvektoren

$$ n(x, y) = (n_x(x, y), n_y(x, y), n_z(x, y)) $$

zu

$$ N_x(x, y) = \frac{-n_x(x, y)}{n_z(x, y)} $$

und

$$ N_y(x, y) = \frac{-n_y(x, y)}{n_z(x, y)}, $$

lässt sich die Oberfläche durch Integration

$$ z(x, y) = \int_{x_0}^{x} N_x(x, y_0)dx + \int_{y_0}^{y} N_y(x_0, y)dy + z_0 $$

rekonstruieren.

Ein Nachteil der konventionellen fotometrischen Stereoanalyse ist, dass die Beleuchtung des Objekts zusammen mit der Bildaufnahme viel Zeit benötigt, so dass sie für Echtzeitanwendungen im Bereich einer Allgemeinbeleuchtung kaum

Es ist die **Aufgabe** der vorliegenden Erfindung, die Nachteile des Standes der Technik zumindest teilweise zu überwinden und insbesondere eine verbesserte Möglichkeit einer Oberflächenrekonstruktion auf Basis der fotometrischen Stereoanalyse bereitzustellen.

Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.

Die Aufgabe wird gelöst durch ein Verfahren zur Oberflächenrekonstruktion, bei dem (i) mindestens ein Objekt von mehreren voneinander beabstandeten Leuchten gleichzeitig beleuchtet wird, (ii) eine fotografische Sequenz mit mehreren Einzelbildern des mindestens einen Objekts aufgenommen wird und (iii) mindestens eine sichtbare Objektoberfläche mittels einer fotometrischen Stereoanalyse rekonstruiert wird.

Dabei wird das von den Leuchten abgestrahlte Licht mit unterschiedlichen Modulationsfrequenzen moduliert. Dann werden die von dem Objekt reflektierten Lichtanteile der jeweiligen Leuchten anhand ihrer Modulation erkannt und jeweiligen Teilbildern zugeordnet. Anschließend werden die Teilbilder als Eingangsbilder für die fotometrische Stereoanalyse verwendet.

Das Verfahren zur Oberflächenrekonstruktion kann auch als ein Verfahren zur Bestimmung oder Berechnung einer bzw. der Form und Ausrichtung von fotografisch aufgenommenen Oberflächen im Raum angesehen oder bezeichnet werden.

Die auf einen Punkt einer Objektoberfläche einfallenden Lichtbündel der voneinander beabstandeten Leuchten weisen dort insbesondere unterschiedliche Einstrahlwinkel (auch als Beleuchtungseinfallswinkel bezeichnet) und ggf. unterschiedliche Beleuchtungsstärken auf. Die Leuchten können
insbesondere unterschiedliche Ausrichtungen bzw. Beleuchtungsrichtungen aufweisen.

Mittels des Verfahrens können eine oder auch mehrere Objektoberflächen rekonstruiert werden. Dazu ist es insbesonders vorteilhaft, wenn (beispielsweise vorher oder während des Verfahrens) die Positionen oder Koordinaten der mehreren Objekte bzw. Objektoberflächen im Raum ermittelt werden, beispielsweise durch Methoden der Bilddatenverarbeitung. Dies ist deshalb vorteilhaft, weil dann die jeweiligen Beleuchtungseinfallswinkel der drei Leuchten bekannt sind bzw. ermittelt werden können, um anschließend die photometrische Stereoanalyse durchzuführen.

Ist die Samplingrate oder Abtastrate f_s der Kamera hoch genug, können die in den Einzelbildern einer Sequenz vorhandenen Objekte auch dann noch als praktisch stationär angenommen werden, wenn sie sich nicht zu schnell bewegen. Die Zahl der für eine Sequenz verwendeten Einzelbilder ist nicht beschränkt.

Es ist eine Weiterbildung, dass die Einzelbilder einer Sequenz zeitlich äquidistant voneinander beabstandet sind.
Die Sequenz kann grundsätzlich beliebig sein. So kann die Sequenz eine Auswahl einer vollständigen Aufnahmereihe von Einzelbildern sein. Die vorgegebene Sequenz entspricht jedoch insbesondere einer vollständigen Aufnahmereihe von Einzelbildern bzw. allen Einzelbildern einer vorgegebenen Zeitdauer. Die Sequenzen können "laufende" Sequenzen einer Folge von 1 bis m Einzelbildern EB sein: \{EB_1, EB_2, \ldots, EB_n\}, \{EB_2, EB_3, \ldots, EB_{n+1}\} usw. mit \(n < m \).

Es ist eine für eine besonders einfache Oberflächenrekonstruktion vorteilhafte Weiterbildung, dass die Leuchten identisch aufgebaut sind. Die Leuchten können ein oder mehrere Lichtquellen (z.B. ein oder mehrere LEDs) aufweisen.

Die fotometrische Stereoanalyse ist grundsätzlich bekannt und dient zur Rekonstruktion der räumlichen Objektoberfläche mittels Auswertung von zweidimensionalen (Eingangs-)Bildern des Objekts, die jeweils aus drei unterschiedlichen bekannten Beleuchtungsrichtungen aufgenommen wurden. Den unterschiedlichen bekannten Beleuchtungsrichtungsrichtungen können jeweilige nicht parallel zueinander verlaufende Beleuchtungsvektoren L_1, L_2 bzw. L_3 zugeordnet sein.

Zur Nutzung der fotometrischen Stereoanalyse werden bisher drei (oder bei Kenntnis der Albedo zwei) voneinander beabstandete Leuchten nacheinander eingeschaltet und bei eingeschalteter Leuchte ein jeweiliges Bild aufgenommen. Die resultierenden Bilder dienen als Eingangsbilder für die fotometrische Stereoanalyse.

Es ist eine Weiterbildung, dass das ausgestrahlte Licht der unabhängigen beabstandeten Leuchten charakteristisch (individuell) moduliert ist. Insbesondere stellen die

Die Modulation kann allgemein als eine Kodierung des von der Leuchte abgestrahlten Lichts verstanden werden, welche es ermöglicht die Lichtanteile dieser Leuchte in einem digitalem Bild zu identifizieren bzw. zu extrahieren, obwohl das Objekt gleichzeitig von mehreren bzw. den anderen Leuchten gleichzeitig angestrahlt wird.

Es ist eine Weiterbildung, dass die Modulationsfrequenzen in einem Bereich zwischen 50 Hz und 1000 Hz, insbesondere zwischen 100 Hz und 1000 Hz, insbesondere zwischen 100 Hz und 500 Hz liegen. Die untere Grenze von 50 Hz oder sogar 100 Hz ist vorteilhaft, damit die Leuchten nicht für das menschliche Auge sichtbar flackern. Die obere Grenze ist vorteilhaft, damit eine Auswertung auch bei begrenzten oder geringen Abtastraten f_s noch mit geringen Fehlern durchführbar ist, was wiederum eine Nutzung einer preiswerten Videotechnik bzw. Kameratechnik ermöglicht (z.B. in Bezug an Anforderung an die Framerate).
Dass die von dem Objekt reflektierten Lichtanteile der jeweiligen Leuchten anhand ihrer Modulation erkannt und jeweiligen ("extrahierten") Teilbildern zugeordnet werden, ermöglicht es insbesondere, dass die extrahierten Teilbilder Bildern entsprechen (insbesondere genau entsprechen), die nur noch die Lichtanteile einer bestimmten Leuchte aufweisen. Die Teilbilder weisen insbesondere das gleiche Format auf wie die fotografisch aufgenommenen Einzelbilder.

Wie bei der Fourieranalyse üblich, definiert die Abtastrate den detektierbaren Frequenzbereich, während die Zahl der aufgenommenen Einzelbilder bzw. die Beobachtungszeit die messbare Frequenzauflösung bestimmt. Beide Parameter können angepasst werden, um die schnellsten Ergebnisse für ein bestimmtes Modulationsschema zu bekommen.

Unter einer Fourieranalyse kann insbesondere die Durchführung einer Fourier-Transformation verstanden werden, beispielsweise einer schnellen Fourier-Transformation (FFT).

Es ist auch eine Ausgestaltung, dass mehr als drei bzw. mindestens vier voneinander beabstandete Leuchten mit jeweiligen Modulationsfrequenzen verwendet werden. Dies ergibt den Vorteil, dass durch eine Überbestimmung eine räumliche Überdeckung oder Abschattung einer zu rekonstruierenden Oberfläche verringert oder sogar ganz vermieden werden kann.

Es ist eine für eine genauere Rekonstruktion besonders vorteilhafte Ausgestaltung, dass das mindestens eine Objekt von mehr als drei unterschiedlich kodierten, insbesondere modulierten, Leuchten gleichzeitig beleuchtet wird, entsprechend mehr als drei zu den jeweiligen Leuchten gehören Teilbilder erzeugt werden, dann fotometrische Stereoanalysen für unterschiedliche Leuchten-Kombinationen mit jeweils drei

Beispielsweise kann dann, wenn vier Leuchten a, b, c und d gleichzeitig verwendet werden, eine jeweilige fotometrische Stereoanalyse für die Leuchten-Kombinationen (abc), (abd), (acd) und (bcd) durchgeführt werden. Dabei kann zumindest eine der sich jeweils ergebenden rekonstruierten Objektoberflächen an bestimmten Stellen keine sinnvolle Rekonstruktion zurückgeben. Durch Überlagerung von mindestens zwei der vier rekonstruierten Objektoberflächen lassen sich die fehlerhaften (glänzenden) Stellen finden und beheben.

Wie das Kombinieren bzw. Überlagern der rekonstruierten Objektoberflächen durchgeführt wird, ist grundsätzlich nicht beschränkt. So können in einer Weiterbildung alle rekonstruierten Objektoberflächen übereinandergelegt und/oder gemittelt werden. Insbesondere zur Unterdrückung von
Glanzeffekten ist es jedoch vorteilhaft, nur eine Untermenge der rekonstruierten Objektoberflächen zu kombinieren, insbesondere eine solche Untermenge, welche den Glanzeffekt nicht oder nicht so stark zeigt.

Es ist eine Weiterbildung, dass zur Auswahl einer solchen Untermenge eine Mehrheitsentscheidung durchgeführt wird. Es werden dazu diejenigen Oberflächenrekonstruktionswerte verwendet (ggf. auch gemittelt oder gewichtet verwendet), die in mehreren (z.B. zwei oder drei) rekonstruierten Objektoberflächen zumindest innerhalb einer vorgegebenen Bandbreite übereinstimmen. Alternativ oder zusätzlich können Ausreißertests durchgeführt werden, z.B. Ausreißertests nach Grubbs oder Nalimov.

Es ist besonders vorteilhaft, wenn das Kombinieren bzw. Überlagern der zuvor rekonstruierten Objektoberflächen für jeden Oberflächenpunkt oder Oberflächenbereich der Objektoberfläche individuell durchgeführt wird. Dies kann auch als punktweises Kombinieren bezeichnet werden.

Bei ausreichend hoher Kamerabildrate bzw. Abtastrate ist das Nyquist-Shannon-Abtasttheorem erfüllt, und es treten nach Durchführung einer Fourieranalyse genauso viele Fourier-Komponenten auf wie Modulationsfrequenzen / modulierte Leuchten vorhanden sind. Dieser Fall kann auch als "Standard-Fourieranalyse" bezeichnet werden. Die Bildrate ist in diesem Fall mindestens doppelt so hoch wie die Modulationsfrequenzen der Leuchten. Denn bei ausreichend langer Videosequenz (d.h., einer ausreichend großen Anzahl der aufgenommenen Einzelbilder) ist die Frequenzauflosung ausreichend, um zwischen den unterschiedlichen
Modulationsfrequenzen noch unterscheiden zu können. Häufig wird eine Auflösung von 1 Hz bis 10 Hz benötigt, was einer Videosequenzlänge von einer Sekunde entspricht. Jedoch ist die vorliegende Erfindung nicht auf diesen Frequenzbereich beschränkt.

Es ist eine insbesondere zur Anwendung mit einer Standard-Fourieranalyse vorteilhafte Ausgestaltung, dass die Modulationsfrequenzen zeitlich konstant gehalten werden, die mehreren Einzelbildern mit einer Bildrate aufgenommen werden, die höher ist als die Modulationsfrequenzen der Leuchten, und die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der maximal bis zur halben Abtastrate reicht (Nyquist-Frequenzlimit). In anderen Worten liegt die Abtastrate \(f_s \) mindestens zweifach über der zu messenden Modulationsfrequenz (die auch als Lichtsignalfrequenz oder Nyquist-Frequenz bezeichnet werden kann).

Die Fourieranalyse erfasst dabei an jedem Bildpunkt bzw. Pixel direkt die zu den Modulationsfrequenzen zugehörigen Fourierbeträge (d.h., die Magnitude bzw. Höhe der gemessenen Linie), welche den Bildpunktmesswert (Pixelwert) infolge der Bestrahlung mit der entsprechenden Leuchte widersieht.

Diese Ausgestaltung weist den Vorteil auf, dass die Fourieranalyse (für jeden Pixel) besonders einfach umsetzbar ist und besonders genaue Teilbilder erzeugt.

Unter einer konstanten Modulationsfrequenz kann insbesondere eine Modulationsfrequenz verstanden, die eine Frequenzschwankung \(\Delta f_{\text{signal}} \) von weniger als 10 Hz, insbesondere von weniger als 5 Hz, insbesondere von weniger als 2 Hz, insbesondere von weniger als 1 Hz, aufweist.
Es ist auch eine Ausgestaltung, dass die Lichtsignal- bzw. Modulationsfrequenzen zeitlich konstant gehalten werden, die mehreren Einzelbildern mit einer Bildrate aufgenommen werden, die niedriger ist als zumindest eine Modulationsfrequenz der Leuchten (insbesondere als alle Modulationsfrequenzen der Leuchten), und die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der maximal bis zu der halben Abtastrate reicht.

Diese Ausgestaltung ergibt den Vorteil, dass eine Rekonstruktion von Objektoberflächen auch mit Kameras oder anderen Bildaufnahmeeinrichtungen durchgeführt werden kann, die eine vergleichsweise geringe Abtastrate aufweisen, z.B. von ca. 30 Bildern pro Sekunde ("frames per second", fps). Solche Kameras o.ä. sind vergleichsweise kostengünstig.

Dass die mehreren Einzelbilder mit einer Bildrate aufgenommen werden, die niedriger ist als zumindest eine Modulationsfrequenz der Leuchten, kann auch als "Unterabtastung" oder "Undersampling" bezeichnet werden. Bei einer Unterabtastung ergeben sich als Ergebnis einer Fourieranalyse mehrere Fourier-Komponenten pro Modulationsfrequenz. Diese Fourier-Komponenten liegen bei den zugehörigen Aliasfrequenzen f_alias, die sich gemäß

\[f_{\text{alias}} = f_{\text{signal}} - n \times f_s > 0 \text{ mit } n = 0, 1, 2, 3 \text{ usw.} \]

ergeben, wobei f_signal die zugehörige Modulationsfrequenz und f_s die Sampling- oder Abtastrate ist. Bei der Anwendung der Fourieranalyse auf die abgetastete Signalsequenz werden die Parameter vorteilhafterweise so gewählt, dass die Nyquist-Frequenz der Fourieranalyse nur die niedrigste zu
erwartende Aliasfrequenz umfasst, während die Aliasfrequenzen höherer Ordnung unberücksichtigt bleiben. Analog kann die Samplingrate so gewählt werden, dass die Frequenzauflosung zur Erfassung der zu erwartenden niedrigsten Aliasfrequenz ausreicht, um sie von den benachbarten niedrigsten Aliaskomponenten der anderen Leuchten trennen zu können. Typischerweise wird zur Parametrisierung der Fourieranalyse die Nyquist-Frequenz auf \(f_s/2 \) (z.B. auf 30 Hz/2 = 15 Hz) eingestellt und die Beobachtungszeit auf z.B. 1 sec, um eine Frequenzauflosung von 1 Hz zu erreichen. Die Fourieranalyse erfasst für den Fall der Unterabtastung also nur die Größen (z.B. Intensitäten) der niedrigsten Aliasfrequenzen der tatsächlichen Modulationsfrequenzen bzw. Lichtsignalfrequenzen.

Es ist eine Weiterbildung, dass als "richtige" Fourier-Komponente (deren Wert zur Erstellung der Teilbilder weiterverwendet wird) jeweils die Fourier-Komponente mit der kleinsten Aliasfrequenz \(f_{alias} \) pro Modulationsfrequenz verwendet wird. Die frequenztechnisch niedrigste Aliasfrequenz wird auch als Basisbandsignal bezeichnet.

Die Fourier-Komponente der kleinsten Aliasfrequenz enthält die Information der zugehörigen Signalamplitude (als hier die Information über den Messwert des Bildpunkts für eine bestimmte Modulationsfrequenz), wobei nur eine Phaseninformation verloren geht. Alle anderen Fourier-Komponenten bei höheren Aliasfrequenz werden unterdrückt und nicht berücksichtigt.

Dies kann zusätzlich oder alternativ mittels Anwendung eines digitalen Tiefpassfilters auf die abgetastete Signalsequenz erreicht werden, der auch als Anti-Aliasingfilters bezeichnet werden kann.
Die kleinste Fourier-Komponente pro Modulationsfrequenz kann dann weiterverwendet werden, um wie bereits oben beschrieben Werte für die Bildpunkte der Teilbilder bereitzustellen.

Ein möglicher Fall des Unterabtastung-Konzepts kann wie folgt umgesetzt sein:

Die Modulationsfrequenzen \(f_{\text{signal}} = f_a, f_b \) und \(f_c \) der Leuchten \(i = a, b \) bzw. \(c \) lauten beispielsweise:

\[
\begin{align*}
 f_a &= 150 \text{ Hz} + 3 \text{ Hz} = 153 \text{ Hz} \\
 f_b &= (2 \cdot 150 \text{ Hz}) + 6 \text{ Hz} = 306 \text{ Hz} \\
 f_c &= (3 \cdot 150 \text{ Hz}) + 12 \text{ Hz} = 462 \text{ Hz}
\end{align*}
\]

oder

\[
\begin{align*}
 f_a &= 150 \text{ Hz} + 3 \text{ Hz} = 153 \text{ Hz} \\
 f_b &= 150 \text{ Hz} + 6 \text{ Hz} = 156 \text{ Hz} \\
 f_c &= 150 \text{ Hz} + 12 \text{ Hz} = 162 \text{ Hz}
\end{align*}
\]

Die Abtastrate \(f_s \) von z.B. 30Hz ist viel kleiner als die Modulationsfrequenzen \(f_a, f_b \) bzw. \(f_c \). Eine Aufnahmezeit \(T \) von ca. einer Sekunde ermöglicht es, eine Abtastsequenz von 30 Einzelbildern einzulesen.

Aufgrund der Unterabtastung ergibt sich nach der Fourieranalyse ein Satz von Fourier-Komponenten bei Aliasfrequenzen \(f_{\text{sub}} \) in den Fourierspektren der jeweiligen Bildpunkte. Die Aliasfrequenzen \(f_{\text{alias}} \) liegen bei

\[
f_{\text{alias}} = f_{\text{signal}} - n \cdot f_s, \text{ mit } n = 1, 2, 3, \ldots
\]
Die Aliasfrequenzen, die am nächsten an der Null liegen (Basisband-Frequenzen), sind

\[fa_{\text{alias}_5} = 3 \text{ Hz}, \quad (\text{mit } n=5) \]
\[fb_{\text{alias}_10} = 6 \text{ Hz}, \quad (\text{mit } n=10) \]
\[fc_{\text{alias}_15} = 12 \text{ Hz} \quad (\text{mit } n=15) \]

Durch Anwendung eines digitalen Tiefpass- oder Anti-Aliasing-Filters mit einer Abschneidefrequenz bei 15 Hz werden alle anderen, höherfrequenten Aliasfrequenzen unterdrückt. Die Abschneidefrequenz des – z.B. digitalen – Filters ist dabei so gelegt worden dass, nur noch die niedrigsten Aliaskomponenten gesehen werden. Es verbleiben nach der digitalen Filterung nur noch die Basisbandsignale.

Wenn das digitale Filter angewendet wird, bevor die Fourieranalyse durchgeführt wird, braucht nicht mehr oder nicht mehr aufwändig darauf geachtet zu werden, dass deren Parameter der Nyquistfrequenz nicht zu hoch ist. Insbesondere braucht mit der Fourieranalyse dann nicht mehr gefiltert zu werden.

Die Basisbandsignale können mittels üblicher Fourieranalyse analysiert werden, um die Position und Größe der Fourier-Komponenten zu finden.

Es ist also möglich, entweder "aktiv" ein digitales Antialiasing-Filter anzuwenden und/oder die Fourieranalyse so parametrisieren, damit die höheren Aliases oberhalb der gewählten Nyquistfrequenz liegen und somit auch nicht mehr analysiert werden. Die zusätzliche Anwendung des digitalen Antialias-Filter ist vorteilhafterweise sicherer, da dabei nicht wie bei der Fourieranalyse mit Spiegelphänomen gerechnet
zu werden braucht, die möglicherweise von Frequenzen oberhalb der Nyquistfrequenz durchgreifen können.

Es ist außerdem eine Ausgestaltung, dass die Modulationsfrequenzen zeitlich konstant gehalten werden, die Einzelbilder mit einer Bildrate aufgenommen werden, die niedriger ist als die Modulationsfrequenzen der Leuchten, die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der mindestens bis zu der jeweiligen Modulationsfrequenz reicht und gemessene Fourier-Komponenten aus mehreren wiederholten Messungen gemittelt werden, wobei die Abtastrate und die Modulationsfrequenz nicht synchronisiert sind.

Die fehlende Synchronisation kann auch als zufällige Abtastung ("Random Sampling") oder stochastische Abtastung ("Stochastic Sampling") bezeichnet werden.

Beim Random Sampling wird ausgenutzt, dass dann, wenn das von einem Objekt reflektierte Licht (d.h., gemessene "Lichtsignale") mit einer niedrigen Abtastrate (Unterabtastung) erfasst wird, es noch teilweise Anteile bzw. Information der frequenztechnisch höherliegenden Modulationsfrequenz (Signalfrequenz) enthält. Die verbleibende Restinformation in der abgetasteten Signalsequenz hängt dabei von der zufälligen Phasenlage zwischen der Abtastfrequenz und zu messenden Modulationsfrequenz ab. Beträgt die Samplingfrequenz beispielsweise 30 Hz, ist die abgetastete Signalsequenz mit einem 30 Hz-Raster gerastert.

Diese gerastete Signalsequenz ist fourieranalysierbar, insbesondere mittels einer Standard-Fourieranalyse (ohne Berücksichtigung der Unterabtastung) bis zu einer Grenzfrequenz oberhalb der Abtastrate, insbesondere bis zu einem Halben der
höchsten Modulationsfrequenz (z.B. 500Hz) oder bis zu der
überwiegend Modulationsfrequenz (z.B. 1000Hz).

Aus der Fourieranalyse ergeben sich rudimentäre bzw.
abgeschwächte Werte der echten Fourier-Komponenten bei der
Grenzfrequenz. Weil die geringe bzw. langsame Abtastrate mit der
Modulationsfrequenz nicht synchronisiert ist, lässt sich durch
wiederholtes Messen (entsprechend der Bereitstellung
unterschiedlichen Sequenzen) das Signal/Rausch-Verhältnis
verbessern. Es wird also für den Fall der zufälligen Abtastung
ausgenutzt, dass jede Bildaufnahmesequenz Fourier-analysierbar
ist, aber aufgrund der Unterabtastung von Einzelbildern nur einen
bestimmten Bruchteil zu dem "wahren" Wert oder Höhenniveau der
Fourier-Komponenten beisteuert. Durch Aufnahme einer
ausreichend hohen Zahl \(n \) von Sequenzen kann der wahre Wert durch
einfache Summation erlangt werden.

Unter der dem Random Sampling zugrundeliegenden Annahme, dass die
Aufnahmen der Sequenzen unkorreliert sind und zu zufälligen
Zeitpunkten erfolgen (was z.B. dadurch erreicht werden kann, dass
die Samplingrate unabhängig von den Modulationsfrequenzen ist),
wird sich der Wert der Fourier-Komponenten linear mit der Zahl
\(n \) der aufgenommenen Sequenzen erhöhen. Das Rauschen erhöht sich
jedoch nur mit der Wurzel von \(n \). Dies führt zu einem
Signal-zu-Rausch-Verhältnis \(\text{SNR} \) mit

\[
\text{SNR}(n) = \left(\frac{f_s}{f_{\text{nyquist}}}\right) \cdot \frac{n}{\sqrt{n}}
\]

wobei \(f_s \) die Abtastrate ist, z.B. 30 Hz, \(f_{\text{nyquist}} \) das Zweifache
der Modulationsfrequenz ist, z.B. 1000 Hz, und \(n \) die Zahl der
aufgenommenen Sequenzen ist. Da das Nutzsignal mit dem Faktor \(n \)
ansteigt, während das Rauschen nur mit dem Faktor \(\sqrt{n} \) ansteigt, steigt das SNR mit \(n / \sqrt{n} = \sqrt{n} \) an. Durch
Festsetzen der Zahl n auf einen ausreichend hohen Wert, z.B. auf n = 100, für alle Messungen kann die gemessene Fourier-Komponente als ein repräsentativer Wert angenommen werden und zur Erzeugung der Teilbilder usw. herangezogen werden.

Es ist zudem eine Ausgestaltung, dass eine jeweilige Modulationsamplitude der Leuchten konstant gehalten wird. Dies erleichtert eine Durchführung des Verfahrens und steigert dessen Genauigkeit, weil eine Modulationstiefe der Intensität der einzelnen Leuchten entspricht.

Es ist eine zum gleichen Zweck vorteilhafte Weiterbildung, dass die Modulationsamplitude der Leuchten gleich hoch ist. Dies erleichtert insbesondere eine Kalibrierung.

Es ist eine Weiterbildung, dass die Amplitudentiefe (d.h., ein Verhältnis des Amplitudenhubs zu einer maximalen Amplitude A_{max}, also \([A_{max}-A_{min}]/A_{max}\)) mindestens 5% beträgt, insbesondere mindestens 10%. Dies ermöglicht eine besonders gute Detektierbarkeit durch eine Kamera.

Die Aufgabe wird auch gelöst durch eine Vorrichtung, die zur Durchführung des Verfahrens eingerichtet ist.

Die Vorrichtung kann insbesondere mehrere voneinander abstande Leuchten, mindestens eine Kamera, deren Sichtfeld in einen durch die Leuchten beleuchtbaren Raumbereich gerichtet ist, und eine Auswerteeinrichtung aufweisen.

Die Vorrichtung ist insbesondere dazu eingerichtet, das von den Leuchten abgestrahlte Licht mit unterschiedlichen Modulationsfrequenzen zu modulieren (beispielsweise über geeignete Treiber).
Mittels der Kamera ist eine fotografische Sequenz mit mehreren Einzelbildern aufnehmbar.

Mittels der Auswerteeinrichtung ist die fotografische Sequenz auswertbar, um eine sichtbare Objektoberfläche eines im Sichtfeld der Kamera befindlichen Objekts mittels fotometrischer Stereoanalyse zu rekonstruieren. Die Auswerteeinrichtung kann auch dazu eingerichtet sein, auf der Grundlage der rekonstruierten Objektoberflächen eine Objekterkennung durchzuführen.

Es ist eine Weiterbildung, dass die Leuchten jeweils mindestens eine Leuchtdiode aufweisen.

Es ist eine Weiterbildung, dass die Vorrichtung ein Überwachungssystem oder ein Teil eines Überwachungssystems ist, beispielsweise zur Überwachung von Innen- und/oder Außenräumen. Das Überwachungssystem kann ein verteiltes System sein, bei dem die Auswerteeinrichtung entfernt von den Leuchten und der Kamera angeordnet ist.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden schematischen Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei können zur Übersichtlichkeit gleiche oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sein.

Fig.1 zeigt ein Überwachungssystem gemäß einem ersten Ausführungsbeispiel;
Fig. 2 zeigt eine Sequenz von Einzelbildern, die von einer Kamera des Überwachungssystems gemäß dem ersten Ausführungsbeispiel aufgenommen wurden;

Fig. 3 zeigt eine Zeitreihe von Messwerten eines Bildpunkts der Sequenz;

Fig. 4 zeigt ein Ergebnis einer Standard-Fourieranalyse der Zeitreihe von Messwerten;

Fig. 5 zeigt aus der Fourieranalyse gewonnene Teilbilder.

Fig. 6 zeigt ein Überwachungssystem gemäß einem zweiten Ausführungsbeispiel;

Fig. 7 zeigt eine Zeitreihe von Messwerten eines Bildpunkts einer Sequenz von Einzelbildern,

Fig. 8 zeigt ein Ergebnis einer Standard-Fourieranalyse der Zeitreihe von Messwerten, die von der Kamera des Überwachungssystems gemäß dem zweiten Ausführungsbeispiel aufgenommen wurden; und

Fig. 9 zeigt eine Bestimmung einer Oberflächenpunkts einer rekonstruierten Oberfläche aus einer Menge von mehreren Oberflächenpunkten.

Fig. 1 zeigt ein Überwachungssystem S1 gemäß einem ersten Ausführungsbeispiel. Das Überwachungssystem S1 weist drei voneinander beabstandete Leuchten a, b bzw. c auf. Die Leuchten a bis c sind voneinander beabstandet, so dass von ihnen abgestrahltes Licht unter unterschiedlichen Einfallswinkeln auf ein Objekt O fällt. Das Überwachungssystem S1 weist ferner eine Digitalkamera K auf, deren Sichtfeld in einen durch die Leuchten a bis c beleuchtbaren Raumbereich gerichtet ist.

Die Kamera K ist in der Lage, zeitliche Sequenzen von Einzelbildern EB (siehe Fig. 2) mit einer bestimmten Abtastrate f_s aufzunehmen. In den Einzelbildern EB ist das Objekt O vorhanden bzw. abgebildet. Jedem Bildpunkt BP(x,y) eines
Einzelbilds EB ist ein entsprechender Oberflächenbereich oder Oberflächenpunkt OP(x,y) zugeordnet.

Das Überwachungssystem S1 weist außerdem eine Auswerteeinrichtung A auf, mittels der die fotografische Sequenz auswertbar ist, um eine für die Kamera K sichtbare Objektoberfläche OS1, OS2 des Objekts O mittels fotometrischer Stereoanalyse zu rekonstruieren. Die Auswerteeinrichtung A kann auch dazu eingerichtet sein, auf der Grundlage der rekonstruierten Objektoberflächen OS1, OS2 eine Objekterkennung und/oder Aktivitätserkennung durchzuführen.

Das Überwachungssystem S1 ist insbesondere dazu eingerichtet, das von den Leuchten a bis c abgestrahlte Licht La, Lb bzw. Lc mit unterschiedlichen Modulationsfrequenzen fa, fb bzw. fc zu modulieren (beispielsweise über geeignete Treiber). Die Modulationsfrequenzen fa, fb und fc sind insbesondere teilerfremd, so dass ein Auftreten einer Intermodulation besonders effektiv verhindert werden kann. Die Leuchten a, b, und c können jeweils mindestens eine Leuchtdiode (o. Abb.) aufweisen, insbesondere mindestens eine weißes Licht La bis Lc abstrahlende Leuchtdiode. Die Leuchten a, b und c können einen gleichen Aufbau aufweisen.

Fig.2 zeigt eine Folge oder Sequenz von n Einzelbildern EB_r, EB_r+1, EB_r+2, ..., EB_r+n, die von der Kamera K des Überwachungssystems S aufgenommen wurden. Jedes der Einzelbilder EB weist mehrere Bildpunkte BP(x,y) auf, z.B. mit x und/oder y aus einer Menge {1024 x 640}.

Aufgrund der Modulation der Leuchten a bis c unterscheiden sich die Beleuchtungssituationen der Bildpunkte BP(x,y) zur Zeit der Aufnahmen der Einzelbilder EB_r bis EB_r+n.
Fig. 3 zeigt eine Zeitreihe von Messwerten eines bestimmten Bildpunkts \(BP(x,y) \) aus der Sequenz der Einzelbilder \(EB_r \) bis \(EB_r+n \). Die Größe bzw. der Wert des Bildpunkts \(BP(x,y) \) zu einem jeweiligen Zeitpunkts ist ein ("Pixel-")Messwert \(PMw(x,y) \) und kann z.B. einem Helligkeitswert entsprechen.

Fig. 4 zeigt Fourier-Komponenten \(FT_a, FT_b, FT_c \) als ein Ergebnis einer Standard-Fourieranalyse der Zeitreihe von Messwerten \(PMw(tr), ..., PMw(tr+n) \) zu Zeitpunkten \(tr, ..., tr+n \) aus Fig. 3. Die Standard-Fourieranalyse kann beispielsweise eine schnelle Fouriertransformation (FFT) sein.

Die Magnituden oder Werte der Fourier-Komponenten \(FT_a, FT_b \) und \(FT_c \) entsprechen repräsentativen Intensitätsmesswerten \(Iw \), die nur die Anteile der Lichtanteile \(La, Lb \) bzw. \(Lc \) der Leuchten \(a, b \) bzw. \(c \) umfassen.

Fig. 5 zeigt aus der Fourieranalyse gewonnene drei Teilbilder \(TBa, TBB \) und \(TBC \). Die Teilbilder \(TBa, TBB \) und \(Tc \) umfassen bzw. beinhalten jeweils die Intensitätsmesswerte \(Iw \) der zugehörigen Fourier-Komponenten \(FTA, FTB \) und \(FTC \) an den jeweiligen Bildpunkten \(BP(x,y) \).

Die drei Teilbilder \(TBa, TBB \) und \(TBC \) entsprechen Einzelbildern, die nur bei Beleuchtung durch jeweils eine der Leuchten \(a, b \) bzw. \(c \) aufgenommen worden wären. Wie durch den Pfeil angedeutet, können diese drei Teilbilder \(TBa, TBB \) und \(TBC \) als Eingangsbilder für eine fotometrische Stereoanalyse verwendet werden, um die Objektoberflächen \(OS1, OS2 \) zu rekonstruieren.

Fig. 6 zeigt ein Überwachungssystem \(S2 \) gemäß einem zweiten Ausführungsbeispiel. Das Überwachungssystem \(S2 \) ist ähnlich zu
dem Überwachungssystem S1 aufgebaut, weist aber nun eine weitere Leuchte d auf, die moduliertes Licht Ld einer Modulationsfrequenz fd abstrahlt.

Fig. 7 zeigt analog zu Fig. 4 ein Ergebnis einer Standard-Fourieranalyse der Zeitreihe von Messwerten eines Bildpunkts BP(x, y) einer Sequenz von Einzelbildern EB_r, ..., Eb_r+n, die von der Kamera K des Überwachungssystems S2 aufgenommen wurden. Es ergeben sich nun vier Fourier-Komponenten FT_a bis FT_d, die den Modulationsfrequenzen fa bis fd entsprechen.

Aus den vier Fourier-Komponenten FT_a bis FT_d aller Bildpunkte lassen sich entsprechende vier Teilbilder T Ba bis TBd (siehe Fig. 8) erzeugen.

Fig. 8 zeigt die aus vier nutzbaren unterschiedlichen Triplet-Gruppen von Leuchten-Kombinationen mittels Fourier-Transformationen erzeugten entsprechenden Teilbildern T Ba bis TBd. Dies sind die Teilbilder T Ba, TBb und Tc der Leuchten-Kombination {a, b, c}, die Teilbilder T Ba, TBb und TBd der Leuchten-Kombination {a, b, d}, die Teilbilder T Ba, T Bc und TBd der Leuchten-Kombination {a, c, d} und die Teilbilder T Bb, T Bc und TBd der Leuchten-Kombination {b, c, d}. Aus den jeweiligen Triplets der Teilbilder.

Da aber für eine fotometrische Stereoanalyse nur drei Teilbilder benötigt werden, lässt sich aus den Triplets der Teilbilder T Ba bis TBd jeweils eine unabhängige fotometrische Oberflächenrekonstruktion der Objektoberflächen OS1, OS2 des Objekts O durchführen.

Die vier unabhängigen Oberflächenrekonstruktionen lassen sich durch Überlagerung zu einem konsistenten Endergebnis für die
Oberflächenrekonstruktion heranziehen. Dabei wird berücksichtigt, dass es in der Praxis zu Abweichungen der durch die verschiedenen Triplets rekonstruierten Oberflächen OS1, OS2 kommen kann, z.B. aufgrund von Abschattungen oder Glanzeffekten (spekulares Albedo).

Fig. 9 zeigt eine Bestimmung eines finalen Bildpunktwerts PMw_final für einen bestimmten Oberflächenpunkt OP(x,y) aus einer Menge von mehreren (hier: vier) Bildpunktwerten PMw_1 bis PMw_4 für diesen gleichen Oberflächenpunkt OP(x,y). Die vier Bildpunktwerte PMw_1 bis PMw_4 entsprechen somit jeweils dem nominell gleichen Oberflächenpunkt OP(x,y), der sich aus den mittels der vier verschiedenen Leuchten-Kombinationen rekonstruierten Oberflächen ergibt.

Liegt ein Bildpunktwert PMw_1 außerhalb einer vorgegebenen Bandbreite B, die hier durch den Kreis angedeutet ist, zu den anderen Bildpunktwerten PMw_2 bis PMw_4, kann er als Ausreißer angesehen werden und aus einer Betrachtung zur Bestimmung des finalen Bildpunktwerts PMw_final ausgeschlossen werden, wie in dem linken Teil von Fig.9 dargestellt.

Das Ausschlussverfahren kann grundsätzlich auch auf mehr als einen der Oberflächenpunkte OP(x,y) angewandt werden.

Sind alle Bildpunktwerte bis auf einen Bildpunktwert ausgeschlossen worden, wird der übriggebliebene Bildpunktwert als der finale Bildpunktwert PMw_final gesetzt.

Sind mehrere Bildpunktwerte PMw_2 bis PMw_4 übrig geblieben, können diese z.B. gemittelt werden, um einen gemittelten Bildpunktwert PMw_avg zu berechnen, der als der finale
Oberflächenpunkt PMw_final verwendet wird. Dies ist im rechten Teil von Fig. 9 gezeigt.

Die obigen Konsistenzkonzepte können auf alle Oberflächenpunkte OP(x,y) bzw. rekonstruierten Oberflächen OS1, OS2 angewandt werden.

Obwohl die Erfindung im Detail durch die gezeigten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht darauf eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.

So kann die Bildrate des Kamera K auch so gering sein, dass eine Unterabtastung vorliegt.

Allgemein kann unter "ein", "eine" usw. eine Einzahl oder eine Mehrzahl verstanden werden, insbesondere im Sinne von "mindestens ein" oder "ein oder mehrere" usw., solange dies nicht explizit ausgeschlossen ist, z.B. durch den Ausdruck "genau ein" usw.

Auch kann eine Zahlenangabe genau die angegebene Zahl als auch einen üblichen Toleranzbereich umfassen, solange dies nicht explizit ausgeschlossen ist.
<table>
<thead>
<tr>
<th>Auswerteeinrichtung</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuchte</td>
<td>a</td>
</tr>
<tr>
<td>5 Bandbreite</td>
<td>B</td>
</tr>
<tr>
<td>Bildpunkt an der Position (x,y)</td>
<td>BP(x,y)</td>
</tr>
<tr>
<td>Leuchte</td>
<td>b</td>
</tr>
<tr>
<td>Leuchte</td>
<td>c</td>
</tr>
<tr>
<td>Leuchte</td>
<td>d</td>
</tr>
<tr>
<td>10 Einzelbilder r, ..., r+n</td>
<td>EB_r bis EB_r+n</td>
</tr>
<tr>
<td>Fourier-Komponente</td>
<td>FT_a bis FT_d</td>
</tr>
<tr>
<td>Modulationsfrequenzen der Leuchten a bis d</td>
<td>fa bis Fd</td>
</tr>
<tr>
<td>Intensitätsmesswert</td>
<td>Iw</td>
</tr>
<tr>
<td>Digitalkamera</td>
<td>K</td>
</tr>
<tr>
<td>15 Moduliertes Licht der Leuchten a bis d</td>
<td>La bis Ld</td>
</tr>
<tr>
<td>Objekt</td>
<td>O</td>
</tr>
<tr>
<td>Oberflächenpunkt des Bildpunkts BP(x,y)</td>
<td>OP(x,y)</td>
</tr>
<tr>
<td>Messwert des Bildpunkts BP(x,y)</td>
<td>PMw(x,y)</td>
</tr>
<tr>
<td>Gemittelte Bildpunktwert</td>
<td>PMw_avg</td>
</tr>
<tr>
<td>20 Finaler Bildpunktwert</td>
<td>PMw_final</td>
</tr>
<tr>
<td>Bildpunktwerte verschiedener Triplets</td>
<td>PWM_1 bis PWM_4</td>
</tr>
<tr>
<td>Objektoberfläche</td>
<td>OS1</td>
</tr>
<tr>
<td>Objektoberfläche</td>
<td>OS2</td>
</tr>
<tr>
<td>Abtastrate</td>
<td>f_s</td>
</tr>
<tr>
<td>25 Überwachungssystem</td>
<td>S1 bis S2</td>
</tr>
<tr>
<td>Teilbild</td>
<td>TBa bis TBD</td>
</tr>
</tbody>
</table>
PATENTANSPRÜCHE

1. Verfahren zur Oberflächenrekonstruktion, bei dem
 - mindestens ein Objekt (O) von mehreren voneinander
 beabstandeten Leuchten (a-c; a-d) gleichzeitig
 beleuchtet wird,
 - eine fotografische Sequenz mit mehreren Einzelbildern
 (EB_r-EB_r+n) des mindestens einen Objekts (O)
 aufgenommen wird und
 - mindestens eine sichtbare Objektoberfläche (OS1, OS2)
 des Objekts (O) mittels fotometrischer Stereoanalyse
 rekonstruiert wird,
 wobei
 - das von den Leuchten (a-c; a-d) abgestrahlte Licht
 (La-Lc; La-Ld) mit unterschiedlichen
 Modulationsfrequenzen (fa-fc; fa-fd) moduliert wird,
 - die von dem Objekt (O) reflektierten Lichtanteile der
 jeweiligen Leuchten (a-c; a-d) anhand ihrer
 Modulationsfrequenzen (fa-fc; fa-fd) erkannt und
 jeweiligen Teilbildern (TBa-TBc; TBa-TBd) zugeordnet
 werden und
 - die Teilbilder (TBa-TBc; TBa-TBd) als Eingangsbilder für
 die fotometrische Stereoanalyse verwendet werden.

2. Verfahren nach Anspruch 1, bei dem
 - jeder Bildpunkt (BF(x,y)) der Einzelbilder
 (EB_r-EB_r+n) der Sequenz einer jeweiligen
 Fourieranalyse unterzogen wird und
 - aus der Fourieranalyse erlangte Fourier-Komponenten
 (FT_a-FT_c; FT_a-FT_d) als Werte der entsprechenden
 Bildpunkte den jeweiligen Teilbildern (TBa-TBc;
 TBa-TBd) zugeordnet werden.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem mehr als drei Leuchten (a-d) mit jeweiligen Modulationsfrequenzen (fa-fd) verwendet werden.

4. Verfahren nach Anspruch 3, bei dem
 - das Objekt (O) von mehr als drei unterschiedlich modulierten Leuchten (a-d) gleichzeitig beleuchtet wird,
 - zu den mehr als drei Leuchten (a-d) gehörige jeweilige Teilbilder (TBa-TBd) erzeugt werden,
 - fotometrische Stereoanalysen für unterschiedliche Leuchten-Kombinationen mit jeweils drei Teilbildern durchgeführt werden und
 - zumindest zwei der sich jeweils ergebenden Objektoberflächen (OS1, OS2) zu einer einzigen finalen Objektoberfläche kombiniert werden.

5. Verfahren nach einem der Ansprüche 2 bis 4, bei dem
 - die Modulationsfrequenzen (fa-fc; fa-fd) der Leuchten (a-c; a-d) zeitlich konstant gehalten werden,
 - die mehreren Einzelbilder (EBr-EBr+n) mit einer Abtastrate (f_s) der Kamera (K) aufgenommen werden, die höher ist als die Modulationsfrequenzen (fa-fc; fa-fd), und
 - die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der maximal bis zur halben Abtastrate (f_s) reicht.

6. Verfahren nach einem der Ansprüche 2 bis 4, bei dem
 - die Modulationsfrequenzen (fa-fc; fa-fd) der Leuchten (a-c; a-d) zeitlich konstant gehalten werden,
- die mehreren Einzelbilder (EBr-EBr+n) mit einer Abtastrate (f_s) aufgenommen werden, die niedriger ist als die Modulationsfrequenzen (fa-fc; fa-fd), und
- die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der maximal bis zur halben Abtastrate (f_s) reicht.

7. Verfahren nach einem der Ansprüche 2 bis 4, bei dem
 - die Modulationsfrequenzen (fa-fc; fa-fd) der Leuchten (a-c; a-d) zeitlich konstant gehalten werden,
 - die mehreren Einzelbilder (EBr-EBr+n) mit einer Abtastrate (f_s) aufgenommen werden, die niedriger ist als die Modulationsfrequenzen (fa-fc; fa-fd), und
 - vor der Fourieranalyse auf eine zeitliche Reihe jeweiliger Bildpunkte (BP(x,y)) ein digitales Tiefpassfilter mit einer Grenzfrequenz entsprechend einer Abtastrate (f_s) der Kamera (K) angewendet wird.

8. Verfahren nach einem der Ansprüche 2 bis 4, bei dem
 - die Modulationsfrequenzen (fa-fc; fa-fd) der Leuchten (a-c; a-d) zeitlich konstant gehalten werden,
 - die Einzelbilder mit einer Abtastrate (f_s) aufgenommen werden, die niedriger ist als die Modulationsfrequenzen (fa-fc; fa-fd),
 - die Fourieranalyse für einen Frequenzbereich durchgeführt wird, der bis zu der jeweiligen Modulationsfrequenz (fa-fc; fa-fd) reicht und
 - Fourier-Komponenten dieses Frequenzbereichs unterschiedlicher Sequenzen gemittelt werden,
 wobei
 - die Abtastrate (f_s) und die Modulationsfrequenzen (fa-fc; fa-fd) nicht synchronisiert sind.

10. Vorrichtung (S1, S2), wobei die Vorrichtung (S1, S2) zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche eingerichtet ist.

11. Vorrichtung (S1, S2) nach Anspruch 10, wobei die Leuchten (a-c; a-d) jeweils mindestens eine Leuchtdiode aufweisen.

12. Vorrichtung (S1, S2) nach einem der Ansprüche 10 oder 11, wobei die Vorrichtung (S1, S2) ein Überwachungssystem ist.
Fig. 8

Fig. 9
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G01B 11/245(2006.01)i; G06T 7/586(2017.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01B; G06T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0002], [0009], [0010], [0014], [0017], [0064], [0072]</td>
<td>2, 6-8</td>
</tr>
<tr>
<td></td>
<td>paragraphs [0077] - [0082], [0093] - [0159]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0236], [0237]</td>
<td></td>
</tr>
</tbody>
</table>
| X | JINWEI GU ET AL. "Multiplexed illumination for scene recovery in the presence of global illumination"
 | 2011 INTERNATIONAL CONFERENCE ON COMPUTER VISION, 01 January 2011 (2011-01-01), pages 691-698
 | DOI: 10.1109/ICCV.2011.6126305
 | ISSN: 1550-5499, ISBN: 978-1-45-771101-5. XP055193188
 | abstract | 1, 3 |
| | 1. Introduction, 2. Related Work, first paragraph, 4. Direct Global Separation: Multiple Sources: 4.2 Frequency Modulated Multiplexing, 5. Application to Scene recovery figures 1, 2, 5 | |

☑️ Further documents are listed in the continuation of Box C. ☑️ See patent family annex.

“*” Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“The document published prior to the international filing date but later than the priority date claimed

“T” Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

02 November 2018

Date of mailing of the international search report

12 November 2018

Name and mailing address of the ISA/EP

European Patent Office
p.b. 5818, Patentlaan 2, 2280 HV Rijswijk
Netherlands

Telephone No. (+31-70)340-2040
Facsimile No. (+31-70)340-3016

Authorized officer

Poizat, Christophe

Form PCT/ISA/210 (second sheet) (January 2015)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2012175703 A1 (TRIDENT Microsystems INC [US]; Zivkovic Zoran [NL]; Groot HuiZe Hendri) 27 December 2012 (2012-12-27)</td>
<td>1, 3</td>
</tr>
<tr>
<td>Y</td>
<td>abstract</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>page 1, line 28 - page 3, line 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 18, line 4 - page 19, line 8</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date (day/month/year)</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101383908 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4113570 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008135073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009028424 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010027879 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007020760 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012175703 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014520469 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140057522 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012175703 A1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

INV. G01B11/245 G06T7/568
ADD.

Nach der Internationalen Patenklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
G01B G06T

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Bebr. Anspruch Nr.
Y Zusammenfassung 2,6-8
Abbildungen 1-35
Absätze [0002], [0009], [0010], [0014], [0017], [0064], [0072]
Absätze [0077] - [0082], [0093] - [0159]
Absätze [0236], [0237] -/-

[X] Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

[X] Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besondere Bedeutung anzusehen ist
 "E" frühere Anmeldung oder Patent, die bzw. das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweithälfte er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

AKTUALISIERUNG

Datum des Abschlusses der internationalen Recherche

2. November 2018

Abschließendes Datum des internationalen Recherchenberichts

12/11/2018

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5618 Patentlaan 2 NL - 2280 HV Rotterdam
Tel. (+31-70) 340-5040, Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Poizat, Christophe
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Zusammenfassung 1. Introduction, 2. Related Work, first paragraph, 4. Direct Global Sparration: Multiple Sources. 4.2 Frequency Modulated Multiplexing, 5. Application to Scene recovery Abbildungen 1,2,5</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>WO 2012/175703 AI (TRIDENT MICROSYSTEMS INC [US]; ZIV KOVIC ZORAN [NL]; GROOT HULZE HENDRI) 27. Dezember 2012 (2012-12-27)</td>
<td>1,3</td>
</tr>
<tr>
<td>Y</td>
<td>Zusammenfassung Seite 1, Zeile 28 - Seite 3, Zeile 4 Seite 18, Zeile 4 - Seite 19, Zeile 8</td>
<td>2</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>US 2009028424 A1</td>
<td>29-01-2009</td>
<td>CN 101326545 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101383908 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4113570 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4154447 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008135073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009028424 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010027879 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007020760 A1</td>
</tr>
<tr>
<td>WO 2012175703 A1</td>
<td>27-12-2012</td>
<td>JP 2014520469 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140057522 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012175703 A1</td>
</tr>
</tbody>
</table>