DOCUMENT MADE AVAILABLE UNDER THE PATENT COOPERATION TREATY (PCT)

International application number: PCT/KR2018/004205

International filing date: 10 April 2018 (10.04.2018)

Document type: Certified copy of priority document

Number: 10-2017-0046973
Filing date: 11 April 2017 (11.04.2017)

Date of receipt at the International Bureau: 17 April 2018 (17.04.2018)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a),(b) or (b-bis)
This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

Application Number: 10-2017-0046973

Filing Date: APR 11, 2017

Applicant(s): 삼성전자주식회사

SAMSUNG ELECTRONICS CO., LTD.
【서지사항】

【서류명】 특허출원서
【참조번호】 2078
【출원구분】 특허출원
【출원인】
【명칭】 삼성전자주식회사
【특허고객번호】 1-1998-104271-3
【대리인】
【명칭】 특허법인 태평양
【대리인번호】 9-2006-100042-1
【지정된변리사】 이은경, 이종욱, 양성욱, 성진수
【포괄위임등록번호】 2013-064444-1
【발명의 국문명칭】 생체 센서를 포함하는 전자 장치
【발명의 영문명칭】 ELECTRONIC DEVICE COMPRISING BIOMETRIC SENSOR
【발명자】
【성명】 김주한
【성명의 영문표기】 KIM, Joo Han
【주민등록번호】 820107-1XXXXX
【우편번호】 39171
【주소】 경상북도 구미시 산호대로39길 25, 옥계e-편한세상아파트 101-1302
【국적】 KR
【발명자】

【성명】 김진만
【성명의 영문표기】 KIM, Jin Man
【주민등록번호】 780914-1XXXXX
【우편번호】 39204
【주소】 경상북도 구미시 봉곡북로7길 25, 봉곡코아루아파트 108-202
【국적】 KR

【발명자】

【성명】 김병규
【성명의 영문표기】 KIM, Byung Kyu
【주민등록번호】 741009-1XXXXX
【우편번호】 39183
【주소】 경상북도 구미시 욱계북로 69, 현진에버빌일아파트 101-303
【국적】 KR

【발명자】

【성명】 박진우
【성명의 영문표기】 PARK, Jin Woo
【주민등록번호】 751019-1XXXXX
【우편번호】 39171
【주소】 경상북도 구미시 산호대로39길 25, e-편한세상아파트 107-404

【국적】 KR

【발명자】 심영배

【성명의 영문표기】 SIM, Young Bae

【주민등록번호】 740428-1XXXXX

【우편번호】 39182

【주소】 경상북도 구미시 해마루공원로 111, 구미옥계우미린아파트 104-3001

【국적】 KR

【발명자】 임연욱

【성명의 영문표기】 LIM, Yeun Wook

【주민등록번호】 791207-1XXXXX

【우편번호】 42015

【주소】 대구광역시 수성구 범어천로 190, 범어동월드메르디앙이 스타운티아파트 103-403

【국적】 KR

【출원언어】 국어
【취지】 위와 같이 특허청장에게 제출합니다.

대리인 특허법인 태평양 (서명 또는 인)

【수수료】

<table>
<thead>
<tr>
<th></th>
<th>0 면</th>
<th>46,000 원</th>
</tr>
</thead>
<tbody>
<tr>
<td>【출원료】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>【가산출원료】</td>
<td>59 면</td>
<td>0 원</td>
</tr>
<tr>
<td>【우선권주장료】</td>
<td>0 건</td>
<td>0 원</td>
</tr>
<tr>
<td>【심사청구료】</td>
<td>0 항</td>
<td>0 원</td>
</tr>
<tr>
<td>【합계】</td>
<td></td>
<td>46,000원</td>
</tr>
</tbody>
</table>
【발명의 설명】

【발명의 명칭】

생체 센서를 포함하는 전자 장치(ELECTRONIC DEVICE COMPRISING BIOMETRIC SENSOR)

【기술분야】

【0001】본 발명은 사용자의 생체 정보를 감지하는 생체 센서를 포함하는 장치에 관한 것이다.

【발명의 배경이 되는 기술】

【0002】최근에는 생체 센서에 의해 획득된 사용자의 생체 정보(예: 지문, 홍채 등)를 이용하여 사용자 인증을 수행하는 기술이 개발되고 있다. 지문 인식을 위한 생체 센서의 경우 지문 정보를 획득하는 방법에 따라 광학적 초음파 방식 및 정전 방식으로 구분될 수 있다.

【발명의 내용】

【해결하고자 하는 과제】

【0003】광학적 센서의 경우 디스플레이와 센서 사이에 일정한 거리가 유지되어야하며 디스플레이와 센서 사이에 이물(예: 먼지) 유입을 방지할 필요가 있다. 그러나, 전자 장치를 사용하는 과정에서 외부 충격이나 노후화로 인해 디스플레이와 생체 센서 사이의 거리가 변경되거나 디스플레이와 센서 사이에 유입된 이물에 의해 센서 성능이 저하될 수 있다.
본 발명의 다양한 실시에는 디스플레이와 센서와의 거리를 안정적으로 유지하고 디스플레이와 센서 사이에 이물 유입을 방지하기 위한 구조를 가지는 생체 센서 및 생체 센서를 포함하는 장치를 제공한다.

[좌계의 해결 수단]

본 발명의 다양한 실시 에에 따른 전자 장치는, 디스플레이 패널, 상기 디스플레이 패널의 배면에 배치된 생체 센서 모듈, 상기 디스플레이 패널 및 상기 생체 센서 모듈과 전기적으로 연결되고, 상기 생체 센서 모듈을 이용하여 생체 정보를 획득하도록 설정된 프로세서, 상기 디스플레이 패널의 상기 배면과 상기 생체 센서 모듈 사이에 형성된 갭을 채우는 제1 접착 부재 및 상기 제1 접착 부재상에 도포된 제2 접착 부재를 포함하고, 상기 생체 센서 모듈이 상기 디스플레이 패널의 상기 배면에 상기 제2 접착 부재를 이용하여 부착될 수 있다.

[발명의 효과]
본 발명의 다양한 실시 예에 따르면 디스플레이와 센서와의 거리를 안정적으로 유지하고 디스플레이와 센서 사이에 이물 유입을 방지하여 센서의 성능 저하를 방지할 수 있다.

도면의 간단한 설명

도 1은 다양한 실시예들에 따른 네트워크 환경 내의 전자 장치의 블록도이다.

도 2는 일 실시 예에 따른 전자 장치의 외관을 나타낸다.

도 3은 일 실시 예에 따른 전자 장치의 분해 사시도를 나타낸다.

도 4a 및 도 4b는 일 실시 예에 따른 전자 장치의 결합 구조를 나타낸다.

도 5는 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

도 6은 일 실시 예에 따른 생체 센서 모듈의 패키지 구조를 나타낸다.

도 7a는 일 실시 예에 따른 생체 센서 모듈의 단면도를 나타낸다.

도 7b는 일 실시 예에 따른 생체 센서 모듈의 단면도를 나타낸다.

도 7c는 일 실시 예에 따른 광학 필터층의 단면도를 나타낸다.

도 8는 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

도 9는 일 실시 예에 따른 생체 센서 모듈의 패키지 구조를 나타낸다.

도 10은 일 실시 예에 따른 생체 센서 모듈의 패키지 구조의 일부를 나타낸다.

도 11은 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.
도 12는 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

【발명을 실시하기 위한 구체적인 내용】

【0009】이하, 본 발명의 다양한 실시 예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 실시 예의 다양한 변경(modification), 균등물(equivalent), 및/또는 대체물(alternative)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.

【0010】도 1은 다양한 실시예들에 따른 네트워크 환경내의 전자 장치의 불리도이다.

【0011】도 1을 참조하여, 네트워크 환경(100)에는 전자 장치(101)는 근거리 무선 통신(198)을 통하여 전자 장치 (102)와 통신하거나, 또는 네트워크(199)를 통하여 전자 장치 (104) 또는 서버(108)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 서버(108)를 통하여 전자 장치(104)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 프로세서(120) 메모리(130), 입력 장치(150) (예: 마이크 또는 마우스), 표시 장치(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 헐커 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 및 가입자 식별 모듈(196)을 포함할 수 있다. 어떤 실시예에서는, 전자 장치(101)에는, 이 구성요소들 중 적어도 하나(예: 표시 장치(160) 또는 카메라 모듈(180))이 생략되거나 다른 구성 요소가 추가될 수 있다. 어떤 실시예에
서는, 예를 들면, 표시 장치(160) (예: 디스플레이)에 임베디드 센서 모듈(176) (예: 지문 센서, 홍채 센서, 또는 조도 센서)의 경우와 같이, 일부의 구성요소들이 통합되어 구현될 수 있다.

【0012】프로세서(120)는, 예를 들면, 운영 체제 또는 응용 프로그램을 구동하여 프로세서(120)에 연결된 전자 장치(101)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 및 연산을 수행할 수 있다. 프로세서(120)는 다른 구성요소(예: 센서 모듈(376) 또는 통신 모듈(190))로부터 수신된 명령 또는 데이터를 휘발성 메모리(132)에 로드하여 처리하고, 결과 데이터를 비휘발성 메모리(134)에 저장할 수 있다. 프로세서(120)는 중앙 처리 장치, 어플리케이션 프로세서, 그래픽 처리 장치, 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서 중 하나 또는 그 이상을 포함할 수 있다. 일정시계에 따르면, 프로세서(120)는 메인 프로세서(121) (예: 중앙 처리 장치 또는 어플리케이션 프로세서), 및 이와는 독립적으로 운영되고, 추가적으로 또는 대체적으로, 메인 프로세서(121)보다 저전력을 사용하거나, 또는 지정된 기능에 특화된 보조 프로세서(123) (예: 그래픽 처리 장치, 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 이런 경우, 예를 들면, 메인 프로세서(121)가 인액티브 (예: 슬립) 상태에 있는 동안 메인 프로세서(121)를 대신하여, 또는 메인 프로세서(121)가 액티브 (예: 어플리케이션 수행) 상태에 있는 동안 메인 프로세서(121)와 함께, 전자 장치(101)의 구성요소들(130-196) 중 적어도 하나의 구성요소 (예: 표시 장치(160), 센서 모듈(176),
또는 통신 모듈(190)과 관련된 기능 또는 상대들의 적어도 일부를 제어할 수 있다. 일시시에 따라면, 보조 프로세서(123)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성 요소(예: 카메라 모듈(180) 또는 통신 모듈(190))의 일부 구성 요소로서 구현될 수 있다. 일시시에 따라면, 프로세서(120)는 SoC(system on chip) 또는 SiP(system in package)으로 구현될 수 있다.

【0013】메모리(130)는, 전자 장치(101)의 적어도 하나의 구성요소(예: 프로세서(120) 또는 센서모듈(176))에 의해 사용되는 다양한 데이터, 예를 들어, 소프트웨어 구성요소(예: 프로그램(140)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 저장할 수 있다. 메모리(130)는, 휘발성 메모리(132) 또는 비휘발성 메모리(134)를 포함할 수 있다. 휘발성 메모리(132)는, 예를 들면, RAM(random access memory)(예: DRAM, SRAM, 또는 SDRAM)로 구성될 수 있다. 비휘발성 메모리(134)는, 예를 들면, OTPROM(one time programmable read-only memory(ROM)), PROM(programmable read-only memory), EPROM(erasable programmable read-only memory), EEPROM(electrically erasable programmable read-only memory), mask ROM, flash ROM, 플래시 메모리, 하드 드라이브, 또는 솔리드 스테이트 드라이브(SSD))로 구성될 수 있다. 또한, 비휘발성 메모리는, 전자 장치(101)와의 연결 형태에 따라, 그 안에 배치된 내장 메모리(136), 또는 필요시 예외 연결하여 사용 가능한 스탠드-올론 형태의 외장 메모리(138)로 구성될 수 있다. 외장 메모리(138)는, 예를 들면, 하드디스크, 플로피디스크, 마그네틱
매체(예: 자기테이프), 광기록 매체(예: CD-ROM, DVD, 자기-광 매체 (예: 플롭티커리스 드리브(Flash drive), CF(compact flash), SD(secure digital), Micro-SD, Mini-SD, xD(extreme digital), MMC(multi-media card), 또는 메모리 스틱을 포함할 수 있다. 외장 메모리(138)는 유선(예: USB(universal serial bus)) 또는 무선(예: 블루투스)을 통하여 전자 장치(101)와 기능적으로 또는 물리적으로 연결될 수 있다.

【0014】프로그램(140)은 메모리(130)에 저장되는 소프트웨어 구성요소로서, 예를 들면, 커널(141), 라이브러리(143), 어플리케이션 프레임워크(145), 또는 어플리케이션 프로그램(interchangeably "어플리케이션") (147)을 포함할 수 있다.

【0015】입력 장치(150)는, 전자 장치(101)의 구성요소(예: 프로세서(120))에 사용될 명령 또는 데이터를 전자 장치(101)의 외부(예: 사용자)로부터 수신하기 위한 장치로서, 예를 들면, 마이크, 마우스, 또는 키보드를 포함할 수 있다. 일상 시에 따르면, 키보드는 물리적인 키보드, 또는 표시 장치(160)를 통해 표시되는 가상 키보드를 포함할 수 있다.

【0016】표시 장치(160)는 전자 장치(101)의 사용자에게 정보를 시각적으로 제공하기 위한 장치로서, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 디스플레이는, 예를 들면, 액정 디스플레이(LCD), 발광 다이오드(LED) 디스플레이, 유기 발광 다이오드 (OLED) 디스플레이, 마이크로 전자기계 시스템(MEMS) 디스플레이, 또는 전자 종이 (electronic paper) 디스플레이를 포함할 수 있다. 디스플레이는, 일시에
따르면, 유연하게, 투명하게, 또는 신체의 일부에 착용할 수 있게 구현될 수 있다. 일시시에 따르면, 디스플레이에 사용자의 터치, 제스처, 근접, 또는 호버링 입력을 감지할 수 터치 회로(touch circuitry) 또는 터치에 대한 압력의 세기를 측정할 수 있는 압력 센서(interchangeably 포스 센서)를 포함할 수 있다. 상기 터치 회로 또는 압력 센서는 디스플레이와 일체형으로 구현되거나, 또는 디스플레이와는 별도의 하나 이상의 센서들로 구현될 수 있다. 휴로그램 장치는 빛의 간섭을 이용하여 입체 영상을 허공에 보여줄 수 있다. 프로젝터는 전자 장치(101)의 내부 또는 외부에 위치한 스크린에 빛을 투사하여 영상을 표시할 수 있다.

【0017】오디오 모듈(170)은 소리와 전기 신호를 상방향으로 변환시킬 수 있다. 일시시에 따르면, 오디오 모듈(170)은, 입력 장치(150)(예: 마이크)를 통해 소리를 획득하거나, 전자 장치(101)에 포함된 음향 출력 장치(미도시)(예: 스피커 또는 라디버), 또는 전자 장치(101)와 유선 또는 무선으로 연결된 외부 전자 장치(예: 전자 장치(102)(예: 스피커 또는 헤드폰))를 통해 소리를 출력할 수 있다.

【0018】센서 모듈(176)은 전자 장치(101)의 내부의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 고도, 습도, 또는 밝기)를 계측 또는 감지하여, 그 계측 또는 감지된 상태 정보에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 센서 모듈(176)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그림 센서, 근접 센서, 컬러(color) 센서(예: RGB(red, green, blue) 센서), IR(infrared) 센서, 생체 센서(예: 홍채센서, 지문 센서, 또는 HRM(heartbeat rate monitoring), 후각(e-nose) 센서, 일렉트로마이오
그라피(EMG) 센서, 일렉트로엔져팔로그램(EEG) 센서, 일렉트로카디오그램(ECG) 센서, 온도 센서, 습도 센서, 조도 센서, 또는 UV(ultra violet) 센서를 포함할 수 있다. 센서 모듈(176)은 그 안에 속한 적어도 하나 이상의 센서들을 제어하기 위한 제어 회로를 더 포함할 수 있다. 어떤 실시예에서는, 센서 모듈(176)은 메인 프로세서(121)(예: 어플리케이션 프로세서), 또는 메인 프로세서(121)와는 독립적으로 운영되는 보조 프로세서(123)(예: 센서 허브 프로세서)에 의하여 제어될 수 있다. 이런 경우, 예를 들면, 메인 프로세서(121)(예: 어플리케이션 프로세서)가 습립(sleep) 상태에 있는 동안, 메인 프로세서(121)(예: 어플리케이션 프로세서)를 깨우지 않고 별도의 저전력 프로세서의 작동에 의하여 센서 모듈(176)의 동작 또는 상태의 적어도 일부를 제어할 수 있다.

【0019】인터넷페이스(177)는 지정된 규격에 따라 외부 전자 장치(예: 전자 장치(102))와 연결할 수 있는 수단을 제공할 수 있다. 일시시예에 따르면, 인터페이스(177)는 HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, 광 인터페이스(optical interface), RS-232(recommended standard232) 인터페이스, D-sub(D-subminiature) 인터페이스, MHL-mobile high-definition link) 인터페이스, SD카드 인터페이스, MMC(multi-media card) 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.

【0020】 연결 단자(178)는 전자 장치(101)와 외부 전자 장치(예: 전자 장치(102))를 물리적으로 연결시킬 수 있다. 일시시예에 따르면, 연결 단자(178)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드, MMC 커넥터, 또는 오디오 커넥터(예:
헤드폰 커넥터)를 포함할 수 있다.

【0021】헬틱 모듈(179)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 운동임) 또는 전기적인 자극으로 변환할 수 있다. 헬틱 모듈(179)은 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.

【0022】카메라 모듈(180)은 정지 영상 및 동영상을 활용할 수 있다. 일식시 예에 따르면, 카메라 모듈(180)은 하나 이상의 렌즈(예: 광각 렌즈 및 망원 렌즈, 또는 전면 렌즈 및 후면 렌즈), 이미지 센서, 이미지 시그널 프로세서, 또는 플래시(예: 발광 다이오드 또는 xenon lamp 등)를 포함할 수 있다.

【0023】전력 관리 모듈(188)은 전자 장치(101)에 공급되는 전력을 관리하기 위한 모듈로서, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구성될 수 있다.

【0024】배터리(189)는 전자 장치(101)의 적어도 하나의 구성 요소에 전력을 공급하기 위한 장치로서, 예를 들면, 재충전 불가능한 1차 전지, 또는 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.

【0025】통신 모듈(190)은 전자 장치(101)와 외부 전자 장치(예: 전자 장치(102), 전자 장치(104), 또는 서버(108)) 간의 유선 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 일식시예에 따르면, 통신 모듈(190)은 무선 통신 모듈(192) 또는 유선 통신 모듈(194)을 포함하고, 그 중
해당하는 통신 모듈을 이용하여 제 1 네트워크(198)(예: 블루투스, WiFi direct 또는 IrDA(infrared data association) 같은 근거리 통신 네트워크) 또는 제 2 네트워크(199)(예: 셀룰러 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부 전자 장치(예: 제 1 외부 전자 장치(102), 제 2 외부 전자 장치(104) 또는 서버(108))와 통신할 수 있다.

【0026】무선 통신 모듈(192)은, 예를 들면, 셀룰러 통신, 근거리 무선 통신, 또는 GNSS(global navigation satellite system) 통신을 지원할 수 있다. 셀룰러 통신은, 예를 들면, LTE(Long-Term Evolution), LTE-A(LTE Advance), CDMA(code division multiple access), WCDMA(wideband CDMA), UMTS(universal mobile telecommunications system), WiBro(Wireless Broadband), 또는 GSM(Global System for Mobile Communications)을 포함할 수 있다. 근거리 무선 통신은, 예를 들면, WiFi(wireless fidelity), WiFi Direct, LiFi(light fidelity), 블루투스, 블루투스 저전력(BLE), 지그비(Zigbee), NFC(near field communication), 자력 시큐어 트랜스미션(Magnetic Secure Transmission), 라디오 프리랜서(RF), 또는 보디 에너지 네트워크(BAN)을 포함할 수 있다. GNSS는, 예를 들면, GPS(Global Positioning System), Glonass(Global Navigation Satellite System), Beidou Navigation Satellite System(이하 "Beidou") 또는 Galileo, the European global satellite-based navigation system)을 포함할 수 있다. 이하, 본 문서에서 는, "GPS"는 "GNSS"와 상호 호환적으로 사용될 수 있다.
【0027】일반시에 따르면, 상기 무선 통신 모듈(192)은, 셀룰러 통신을 지원하는 경우, 예를 들어, 가입자 식별 모듈(예: SIM 카드)(196)을 이용하여 통신 네트워크 내에서 전자 장치(101)를 구별 및 인증할 수 있다. 일반시에 따르면, 무선 통신 모듈(192)은 프로세서(120)(예: 어플리케이션 프로세서 (AP))와 독립적으로 운영되는 커뮤니케이션 프로세서(CP)를 포함할 수 있다. 이런 경우, 커뮤니케이션 프로세서는, 예를 들어, 프로세서(120)가 인덱트브(예: 슬립) 상태에 있는 동안 프로세서(120)를 대신하여, 또는 프로세서(120)가 포스터 상태에 있는 동안 프로세서(120)가 떨어지게 되면, 전자 장치(101)의 구성요소들(130-196) 중 적어도 하나의 구성 요소와 관련된 기능들의 적어도 일부 기능을 수행할 수 있다. 일반시에 따르면, 무선 통신 모듈(192)은 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS 통신 모듈 중 해당하는 통신 방식만을 지원하는 복수의 통신 모듈들로 구성될 수 있다.

【0028】유선 통신 모듈(194)은, 예를 들어, LAN(local area network), 전력 통신 또는 POTS(plain old telephone service)와 같이 유선 통신 방식을 지원하는 커뮤니케이션 프로세서를 포함할 수 있다.

【0029】상기 구성요소들(120-196) 중 일부 구성요소들은 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input/output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))을 통해 서로 연결되어 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.
일실시예에 따르면, 상기 명령 또는 상기 데이터는 상기 제 2 네트워크에 연결된 서버(108)를 통해서 상기 전자 장치(101)와 제 2 외부 전자 장치(102, 104) 각각의 전자 장치(101)와 동일한 또는 다른 종류의 장치일 수 있다. 일실시예에 따르면, 전자 장치(101)에서 실행되는 동작들의 전부 또는 일부는 다른 하나 또는 복수의 외부 전자 장치(예: 전자 장치(102, 104), 또는 서버(108))에서 실행될 수 있다. 일실시예에 따르면, 전자 장치(101)가 어떤 기능이나 서비스를 자동으로 또는 요청에 의하여 수행해야 할 경우에, 전자 장치(101)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 그와 연관된 적어도 일부 기능을 다른 장치(예: 전자 장치(102, 104), 또는 서버(108))에게 요청할 수 있다. 상기 요청을 수행한 다른 전자 장치(예: 전자 장치(102, 104), 또는 서버(108))는 요청된 기능 또는 추가 기능을 실행하고, 그 결과를 전자 장치(101)로 전달할 수 있다. 전자 장치(101)는 수신된 결과를 그대로 또는 추가적으로 처리하여 요청된 기능이나 서비스를 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다.

도 2는 일 실시 예에 따른 전자 장치의 외관을 나타낸다.

도 2를 참조하면, 일 실시 예에 따르면 전자 장치(201)의 전면에는 디스플레이(또는, 디스플레이 패널)(210) 및 하우징(220)이 노출될 수 있다. 일 실시 예에 따르면, 상기 전자 장치(201)는 도시되지 않은 다양한 하드웨어 모듈을 포 함할 수 있다. 예를 들어, 상기 디스플레이(210)의 배면에는 사용자의 터치 입력의
세기(또는, 압력)을 측정하는 압력 센서 및/또는 사용자의 지문을 측정하는 생체 센서가 배치될 수 있다.

【0033】일 실시 예에 따르면, 상기 디스플레이(210)의 제2 영역(212)를 통해, 전자 장치(201)는 사용자의 지문을 측정할 수 있다. 이를 위해 상기 디스플레이(210)의 제2 영역(212)의 배면에는 상기 지문을 측정하기 위한 생체 센서가 배치될 수 있다.

【0034】본 발명의 다양한 실시 예에 따르면, 상기 생체 센서는 디스플레이(210)의 배면에 배치되더라도, 디스플레이(210)와의 적절한 거리를 유지하여 사용자의 지문 정보를 정확하게 획득할 수 있으며 생체 센서 외부 이론들은 유입에 의한 성능 저하를 방지할 수 있는 센서 패키지 구조를 제공할 수 있다.

【0035】도 2에서 전자 장치(201)는 일 예시로서 상기 설명된 예에 제한되지 않는다. 예컨대, 디스플레이(210)의 배면에는 리시버, 카메라 모듈, 홍채 센서, 기타 생체 센서 등이 배치될 수도 있다.

【0036】도 3은 일 실시 예에 따른 전자 장치의 분해 사시도를 나타낸다.

【0037】도 3을 참조하면, 일 실시 예에 따른 전자 장치(301)(예: 전자 장치(201))는 커버 클래스(310), 디스플레이(또는, 디스플레이 패널)(320)(예: 디스플레이(210)), 압력 센서(330), 생체 센서 모듈(340)(예: 지문 센서), 하우징(350)(예: 하우징(220)), 회로기판(360), 배터리(370), 및 후면 커버(back cover)(380)를 포함할 수 있다. 다양한 실시 예에 따르면, 전자 장치(301)는 도 3에 도시된 일
부 구성의 포함하지 않을 수도 있고, 도 3에 도시되지 않은 구성은 추가로 포함할 수도 있다.

【0038】커버 글래스(310)는 디스플레이(320)에 의해 생성된 빛을 투과시킬 수 있다. 또한, 상기 커버 글래스(310) 상에서 사용자는 신체의 일부(예: 손가락)를 접촉하여 터치(전자 펜을 이용한 접촉을 포함함)를 수행할 수 있다. 상기 커버 글래스(310)는, 예컨대, 강화 유리, 강화 폴라스틱, 구부러질 수 있는(flexible) 고분자 소재 등으로 형성되어, 디스플레이(320) 및 상기 전자 장치(301)에 포함된 각 구성의 외부 충격으로부터 보호할 수 있다. 다양한 실시 예에 따르면, 상기 커버 글래스(310)는 글래스 윈도우(glass window)로도 참조될 수 있다.

【0039】디스플레이(320)는 상기 커버 글래스(310) 밑에 배치 또는 결합되어, 상기 커버 글래스(310)의 적어도 일부를 통해 노출될 수 있다. 상기 디스플레이(320)는 콘텐츠(예: 텍스트, 이미지, 비디오, 아이콘, 위젯, 또는 심볼 등)를 출력하거나, 사용자로부터 터치 입력 또는 전자 펜 입력을 수신할 수 있다.

【0040】일 실시 예에 따르면, 상기 디스플레이(320)는 디스플레이 패널, 터치 센서, 및/또는 전자 펜 센서를 포함할 수 있다. 상기 디스플레이 패널은, 예를 들어, 액정 디스플레이(LCD) 패널, 발광 다이오드(LED) 디스플레이 패널, 유기 발광 다이오드(OLED) 디스플레이 패널, 또는 마이크로 전자기계 시스템(MEMS) 디스플레이 패널, 또는 전자 종이 디스플레이 패널을 포함할 수 있다. 상기 터치 센서는, 정전식 터치 패널, 잠재식 터치 패널, 저항식 터치 패널, 적외선 방식 터치 패널, 또는 초음파 방식 터치 패널을 포함할 수 있다. 상기 터치 센서는 디스플레이 패널
사이에 삽입되거나(에도 온(add-on) 터치 패널), 디스플레이 패널 위에 직접 형성되거나(온-셀(on-cell) 터치 패널), 또는 디스플레이 패널 내부에 포함될 수 있다(인-셀(in-cell) 터치 패널). 상기 전자 펜 센서(예: 디지타이저)는 전자 펜으로부터의 접촉, 제스처, 호버링 등을 검출할 수 있다.

【0041】일 실시 예에 따르면, 상기 디스플레이(320)는 평탄 영역(planar area)(321) 및 상기 평단 영역(321)의 일측(예: 상측(upper side), 하측(lower side), 좌측(left side), 우측(right side))으로부터 확장되는 벤딩 영역(bending area)(322)을 포함할 수 있다. 상기 평단 영역(321)에는 디스플레이 패널의 화소들(pixels)(예: OLED 등), 터치 센서의 도전 패턴, 및/또는 전자 펜 센서의 도전 패턴 등이 배치될 수 있다. 상기 벤딩 영역(322)은 상기 디스플레이(320)의 배면에 위치하는 FPCB(323)와 다양한 도전 패턴(배선)을 통해 전기적으로 연결될 수 있다.

【0042】일 실시 예에 따르면, 벤딩 영역(322)의 일부는, 평탄 영역(321)의 배면을 향하여 접히할 수 있다. 다양한 실시 예에 따르면, 상기 FPCB(323)의 배선은 지정된 커넥터를 통하여 회로기판(360)과 전기적으로 연결될 수 있다. 다양한 실시 예에 따르면, 벤딩 영역(322)에는, 전자 장치(301)의 설계에 의존하여, 평탄 영역(321)과 유사하게, 다양한 정보를 표시하기 위한 화소들이 배치될 수도 있다.

【0043】압력 센서(330)는 디스플레이(320) 밑에 배치 또는 결합될 수 있다. 예를 들어, 압력 센서(330)는 디스플레이(320)의 평탄 영역(321) 및 FPCB(323) 사이에 배치될 수 있다. 상기 압력 센서(330)는 커버 글래스(310)에 대한 외부(예: 사용자의 손가락)의 압력(혹은, 힘)을 검출 또는 감지할 수 있다. 일 실시 예에 따
르면, 상기 압력 센서(330)는 복수의 전극 및 유전층(dielectric layer)을 포함할 수 있다. 예를 들어, 상기 압력 센서(330)는 사용자의 터치에 의해 변화하는 제1 전극 및 제2 전극 사이의 정전용량에 기초하여 상기 터치의 압력을 감지할 수 있다.

【0044】생체 센서 모듈(340)(예: 지문 센서)는 디스플레이(320) 밑에 배치 또는 결합될 수 있다. 예를 들어, 생체 센서 모듈(340)는 디스플레이(320)의 평판 영역(321)에 부착될 수 있다. 일 실시 예에 따르면, 압력 센서(330)는 생체 센서 모듈(340)의 배치를 위해 전후면이 판통된 센서 배치 영역(또는, 개구부)을 포함할 수 있다. 생체 센서 모듈(340)은 압력 센서(330)의 센서 배치 영역 내에 삽입되어 압력 센서(330)와 나란하게 배치될 수 있다.

【0045】상기 생체 센서 모듈(340)는 사용자의 생체 정보(예: 지문 정보)를 측정할 수 있다. 생체 센서 모듈(340)은, 예를 들어, 광학식 생체 센서를 포함할 수 있다. 예를 들어, 생체 센서 모듈(340)은 내장된 이미지 센서(예: CMOS(complementary metal oxide semiconductor image sensor), CCD(complementary metal oxide semiconductor image sensor))를 이용하여 사용자의 지문 이미지를 획득(capture)할 수 있다. 상기 지문 이미지로부터 지문의 유니크(unique)한 지문 특징점(fingerprint minutiae)이 추출될 수 있으며, 지문 특징점은 기 등록된 지문 특징점과 대조됨으로써 사용자 인증에 이용될 수 있다.

【0046】상기 생체 센서 모듈(340)은 디스플레이(320)에 포함된 적어도 하나의 발광 소자로부터 출력된 광 중 적어도 일부 광(예: 사용자의 손가락에 의해 반
사된 광 등)을 수량하여 지문 정보를 획득할 수 있다. 다양한 실시 예에 따르면, 상기 생체 센서 모듈(340)는 발광부와 수광부를 포함하고, 발광부를 이용하여 광을 출력하고, 외부 객체(예: 손가락)에 반사된 광을 수광하여 상기 지문 정보를 획득할 수도 있다.

[0047] 하우징(350)은 전자 장치(301)의 외관의 적어도 일부를 형성하고, 전자 장치(301)에 포함된 각각의 구성품을 수납할 수 있다. 예를 들어, 하우징(350)은 전자 장치(301)의 측면(예: 상측면, 하측면, 좌측면 및/또는 우측면) 외관을 형성할 수 있다. 다양한 실시 예에 따르면, 상기 하우징(350)은 복수의 하우징을 포함할 수 있다. 상기 하우징(350)은 후면 케이스(rear case), 또는 리어 플레이트(rear plate) 등으로도 참조될 수 있다. 일 실시 예에 따르면, 상기 하우징(350)의 측면 중 적어도 일부는 금속 재질로 형성되어 안테나 구조체로 이용될 수도 있다.

[0048] 일 실시 예에 따르면, 상기 하우징(350)은 브래킷을 포함할 수 있다. 브래킷(bracket)은 예를 들어, 마그네슘 합금으로 구성되어, 디스플레이(320)의 아래, 및 회로기판(360) 위에 배치될 수 있다. 상기 브래킷은 상기 디스플레이(320) 및 상기 회로기판(360)과 결합되어 이들을 물리적으로 지지할 수 있다.

[0049] 일 실시 예에 따르면, 회로기판(360)은 상기 하우징(350)의 아래(또는, 하우징(350)의 위)에 배치될 수 있다. 회로기판(360)은 전자 장치(301)의 각종 전자 부품, 소자, 인쇄회로 등(예: 프로세서, 메모리, 통신 회로 등)이 배치(mount) 또는 배치(arrange)될 수 있다. 다양한 실시 예에 따르면, 회로기판(360)은 메인보드, PBA(printed board assembly)또는, 단순히 PCB로 참조될 수 있다. 회
로기관(360)은 예를 들어, 메인(main) 회로기관, 및 서브(sub) 회로기관을 포함할 수 있다. 일 실시 예에 따르면, 상기 메인 회로기관과 상기 서브 회로기관은 지정된 커넥터 또는 지정된 배선을 통해 서로 전기적으로 연결될 수 있다. 상기 회로기관(360)은, 예를 들어, 경성 인쇄회로기관(rigid PCB; rigid printed circuit board) 및/또는 FPCB로 구현될 수 있다.

【0050】배터리(370)는 화학 에너지와 전기 에너지를 양 방향으로 변환할 수 있다. 예를 들어, 배터리(370)는 화학 에너지를 전기 에너지로 변환하여, 상기 전기 에너지를 디스플레이(320), 압력 센서(330), 생체 센서 모듈(340) 및 회로기관(360)에 연결된 다양한 구성을 또는 모듈에 공급할 수 있다. 일 실시 예에 따르면, 회로기관(360)에는 배터리(370)의 충방전을 관리하기 위한 전력 관리 모듈(예: PMIC(power management integrated circuit))이 포함될 수 있다.

【0051】후면 커버(380)는 전자 장치(301)의 후면에 결합할 수 있다. 상기 후면 커버(380)는, 강화유리, 플라스틱 사출물, 및/또는 금속 등으로 형성될 수 있다. 다양한 실시예에 따르면, 후면 커버(380)는 상기 하우징(350)과 일체로 구현되거나, 또는 사용자에 의해 착탈 가능(detachable)하도록 구현될 수도 있다.

【0052】도 4a 및 도 4b는 일 실시 예에 따른 전자 장치의 결합 구조를 나타낸다.

【0053】도 4a 및 도 4b에 도시된 전자 장치(401)는, 예를 들어, 전자 장치(401)를 후면을 바라볼 때의 사시도를 나타낸다.

【0055】일 실시 예에 따르면, 디스플레이(420)는 패널층(예: 디스플레이 패널)(421) 및 레이어(425)를 포함할 수 있다. 일 실시 예에 따르면, 패널층(421)은 적어도 하나의 발광 소자를 포함할 수 있다. 일 실시 예에 따르면, 패널층(421)은 적어도 하나의 홈(hole)을 포함할 수 있다. 예를 들어, 패널층(421)은 복수의 픽셀들 사이에 적어도 하나의 겹을 포함할 수 있다. 패널층(421)으로부터 출력되어 사용자의 손가락에 반사된 반사광은 패널층(421)에 포함된 적어도 하나의 홈을 통과하여 생체 센서 모듈(440)에 도달할 수 있다. 일 실시 예에 따르면, 레이어(425)는 패널층(421)의 후면과 마주보도록 배치될 수 있다. 일 실시 예에 따르면, 레이어(425)은 생체 센서 모듈(예: 도 3의 생체 센서 모듈(340))을 수용하기 위한 센서 배치 영역(427)을 포함할 수 있다. 센서 배치 영역(427)은 생체 센서 모듈이 삽입된 상태에서 패널층(421)의 일부 영역과 대면하도록 전후면이 정착된 형태일 수 있다.

【0056】레이어(425)의 일부 영역(3)을 확대한 이미지(5)를 참조하면, 레이어(425)는 제1 레이어(425-1) 및 제2 레이어(425-2)를 포함할 수 있다. 일 실시 예에 따르면, 제1 레이어(425-1)과 제2 레이어(425-2) 각각에 형성된 관통
영역(또는, 개구부)의 크기는 서로 상이할 수 있다. 예를 들어, 제2 영역(425-2)의
관통 영역의 면적은 제1 레이어(425-1)의 관통 영역의 면적보다 클 수 있다.

【0057】일 실시 예에 따르면, 디스플레이(420)는 디스플레이 IC 및/또는 터치
센서 IC 등이 배치된 회로기판(423)(예: 도 3의 FPCB(323))을 포함할 수 있다.
일 실시 예에 따르면, 회로기판(423)은 페널층(421)의 밀착면(예: 하측면)으로부터
연장되고 페널층(421)과 전기적으로 연결될 수 있다.

【0058】일 실시 예에 따르면, 압력 센서(430)는 생체 센서 모듈(340)를 수
용하기 위한 센서 배치 영역(431)을 포함할 수 있다. 압력 센서(430)의 센서 배치
영역(431)은 생체 센서 모듈이 삽입된 상태에서 페널층(421)의 일부 영역과 대면하
도록 진후면이 관통된 형태일 수 있다. 일 실시 예에 따르면, 압력 센서(430)의 센
서 배치 영역(431)의 면적은 레이어(425)의 센서 배치 영역(427)의 면적보다 크거
나 같을 수 있다.

【0059】일 실시 예에 따르면, 회로 기판(423)은 레이어(425) 및 압력 센서
(430)의 격어도 일부와 오버랩되도록 레이어(425)의 후면 방향으로 풀림되어 상기
레이어(425) 및 압력 센서(430)에 부착될 수 있다.

【0060】도 4b를 참조하면, 생체 센서 모듈(440)(예: 도 3의 생체 센서 모듈
(340))는 디스플레이(420)의 후면에 부착될 수 있다. 예를 들어, 생체 센서 모듈
(440)의 앞면은 압력 센서(430) 및 레이어(425)의 제2 레이어(425-2)를 통과하여
레이어(425)의 제1 레이어(425-1)에 부착될 수 있다.
도 5는 일 실시 예에 따른 전자 장치의 단면도를 나타낸다. 도 5에 도시된 단면도는
생체 센서 모듈(예: 도 3의 생체 센서 모듈(340))가 디스플레이(520)에 부착되지 않은 상태에서의 단면도에 해당한다. 도 5를 참조하면, 전자 장치(501)(예: 도 3의 전자 장치(301))는 커버 글래스(510)(예: 도 3의 커버 글래스(310)), 디스플레이(또는, 디스플레이 패널(520)(예: 도 3의 디스플레이(320)) 및 압력 센서(530)(예: 도 3의 압력 센서(330))를 포함할 수 있다.

커버 글래스(510)는 전자 장치(501)의 최상층(top layer)에 위치할 수 있다. 디스플레이(520)는 커버 글래스 아래에 배치될 수 있다. 디스플레이(520)는 패널층(521)(예: 패널층(421)) 및 레이어(525)(예: 레이어(425))을 포함할 수 있다. 패널층(521)은 일 실시 예에 따르면, 패널층(521)은 적어도 하나의 발광 소자를 포함할 수 있으며 커버 글래스(510) 아래에 배치될 수 있다. 일 실시 예에 따르면, 레이어(525)은 패널층(521) 아래에 배치될 수 있다. 일 실시 예에 따르면, 레이어(525)은 제1 레이어(525-1)(예: 제1 레이어(425-1)) 및 제2 레이어(525-2)(예: 제2 레이어(425-2))를 포함할 수 있다. 상기 제1 레이어(515-1)는, 예를 들어, 패턴이 형성된 지지 부재(51), 전자 핀으로부터의 입력을 수신하는 디지타이저(또는, 전자 핀 센서)(53) 및 금속층(55)(예: 구리층)을 포함할 수 있다. 상기 지지 부재(51)는 패널층(521)에 대한 외부 충격을 흡수하고 광학적 특성을 향상시키고, 디지타이저(53)에 포함된 패턴을 시각적으로 가릴 수 있다. 상기 제2 레이어(515-2)는, 예를 들어, 방열 기능을 수행하는 방열층(57) 및 외부 충격을 흡수하기 위한 쿠션층(59)을 포함할 수 있다. 도 5에 도시된 제1 레이어(515-1) 및 제2 레이어(515-2)는, 예를 들어, 방열 기능을 수행하는 방열층(57) 및 외부 충격을 흡수하기 위한 쿠션층(59)을 포함할 수 있다. 도 5에 도시된 제1 레이어(515-1) 및 제2 레이어(515-2)는, 예를 들어, 방열 기능을 수행하는 방열층(57) 및 외부 충격을 흡수하기 위한 쿠션층(59)을 포함할 수 있다.
어(515-2)의 적층 구조는 일 예외 불과하며 레이어(525)은 도 5에 도시된 복수의 충돌 중 일부를 포함하지 않거나, 적어도 하나의 다른 충이 더 포함되거나 또는 복수의 충돌 중 적어도 일부의 위치가 변경되어 배치될 수 있다. 예를 들어, 레이어(515)는 도 5에 도시된 디지타이저(53) 및 금속층(55)을 포함하지 않을 수 있다. 다른 예를 들어, 레이어(515)는 지지 부재(51) 및 방열시트(57)를 포함하지 않을 수 있다.

【0064】일 실시 예에 따르면, 제1 레이어(525-1)와 제2 레이어(525-2) 각각에 형성된 판통 영역(또는, 개구부)의 크기는 서로 상이할 수 있다. 예를 들어, 제2 영역(525-2)의 판통 영역의 너비(w2)는 제1 레이어(525-1)의 판통 영역의 너비(w1)보다 클 수 있다. 이에 따라, 레이어(525)는 제1 레이어(525-1)와 제2 레이어(525-2)에 의한 단차 구조를 형성할 수 있다.

【0065】일 실시 예에 따르면, 압력 셀서(530)는 레이어(525) 아래에 배치될 수 있다. 일 실시 예에 따르면, 압력 셀서(530) 아래에 회로 기판(523)이 배치될 수 있다. 회로 기판(523)은, 예를 들어, 도 4a를 참조하여 설명한 바와 같이 디스플레이(520)(예: 패널형(521))의 일측면으로부터 연장되어 레이어(525)의 후면 방향으로 폴딩되어 압력 셀서(530)에 부착될 수 있다. 일 실시 예에 따르면, 전자 장치(501)는 압력 셀서(530)를 포함하지 않을 수도 있다.

【0066】도 6은 일 실시 예에 따른 생체 셀서 모듈의 폐기지 구조를 나타낸다.

【0067】도 6의 <61> 이미지는 생체 셀서 모듈(예: 지문 셀서)(640)(예: 도
3의 생체 센서 모듈(340)의 사시도의 예를 나타내고, <62> 이미지는 생체 센서 모듈(640)의 정면도의 예를 나타내고, <63> 이미지는 생체 센서 모듈(640)의 배면도의 예를 나타낸다.

【0068】도 6을 참조하면 생체 센서 모듈(640)는 회로기판(641), 광학층(644), 광학 필터층(645), 자기 차폐층(magnetic screen layer)(648)(예: magnetic metal powder sheet) 및 보호 부재(649)를 포함할 수 있다. 다양한 설계 예에 따라면, 생체 센서 모듈(640)는 도 6에 도시된 일부 구성품을 포함하지 않을 수도 있고, 도 6에 도시되지 않은 구성품을 추가로 포함할 수도 있다. 예를 들어, 상기 회로기판(641)과 광학층(644) 사이에는 지문 정보를 획득하기 위한 이미지 센서(예: 이미지 센서(743)) 및/또는 상기 회로기판(641)과 이미지 센서를 전기적으로 연결하는 도전성 와이어(예: 도전성 와이어(747))를 포함할 수 있다.

【0069】일 실시 예에 따르면, 회로기판(641)은 경성 인쇄회로기판(RPCB)(641-1) 및 연성 인쇄회로기판(FPCB)(641-2)을 포함할 수 있다. 경성 인쇄회로기판(641-1)은 수동소자, 인쇄회로 및 생체 센서를 제어하기 위한 센서 IC를 포함할 수 있다. 상기 수동소자, 인쇄회로 및 센서 IC는, 예를 들어, 경성 인쇄회로 기판(641)의 배면에 배치될 수 있다. 연성 인쇄회로기판(641-2)은 경성 인쇄회로기판(641-1)의 일측면으로부터 연장될 수 있다. 연성 인쇄회로기판(641-1)(또는, 연결부)은 디스플레이(예: 도 4a의 디스플레이(420))에 부착된 상태에서 다른 회로 기판(예: 도 4a의 회로 기판(423))와 전기적으로 연결될 수 있다.
일실시예에따르면,광학필터층(645)은광학층(644)위에배치될수 있다.예를들어,광학층(644)은회로기판(641)상에배치된이미지센서위에배치될수있다.광학층(644)은,예를들어,외부객채(예:손가락)에반사된반사광의광학특성을개선시키고반사광을굴절시키며이미지센서의수광효율을향상시킬수있다.

일실시예에따르면,광학필터층(645)은광학층(644)의적어도일부영역상에배치될수있다.광학필터층(645)은,예를들어,외부객채(예:손가락)에반사된반사광중특정파장의광(예:가시광)만을투과시킬수있다.예를들어,광학필터층(645)은지면정보획득을위해이미지센서(643)가필요하하는

파장또는디스플레이의패널층(예:도4a의패널층(421))에형성된홀을잘통과할수있는파장의광(예:녹색광)만을투과시킬수있다.일실시예에따르면,광학필터층(645)은PET(polyethylene terephthalate)필름을포함할수있다.

일실시예에따르면,자기차폐층(648)은회로기판(641)의

일면(예:후면)에부착될수있다.자기차폐층(648)은,예를들어,자성분말(magnetic powder)및/ 또는금속분말(metal powder)을포함할수있다.자기차폐

층(648)은디스플레이의레이어(예:도4a의레이어(425))에센서배치영역을형성함에따라레이어에포함된디지타이저의일부영역에홀이발생할수있다.자

기차폐층(648)은레이어에형성된홀에의한자기장의변화를보상하여디지타이지

저의성능변화를방지할수있다.레이어가디지타이저를포함하지않는경우에는
자기 차폐층(648)은 생략될 수도 있다.

【0073】일 실시 예에 따르면, 보호 부재(649)는 회로기판(641) 상에 배치되어 회로기판(641)의 적어도 일부 영역을 덮을 수 있다. 보호 부재(649)는 생체 센서 모듈(640)의 가장자리로 갈수록 높이가 낮아지도록 기울어진 구조를 가질 수 있다. 예를 들어, 보호 부재(649)는 광학층(944)과 근접할수록 높이가 높고 광학층으로부터 멀어질수록 높이가 낮아질 수 있다.

【0074】일 실시 예에 따르면, 보호 부재(649)는 회로기판(641)과 이미지 센서를 전기적으로 연결하는 도전성 와이어(예: 도 7a 또는 도 7b의 도전성 와이어(747))를 감싸서 도전성 와이어를 고정시키고 외부로부터 보호할 수 있다. 도전성 와이어는 보호 부재(649)에 의해 외부와 완전히 차단될 수 있다. 보호 부재(649)는, 예를 들어, 애폭시 수지 또는 실리콘을 포함할 수 있다.

【0075】도 7a는 일 실시 예에 따른 생체 센서 모듈의 단면도를 나타낸다.


【0077】일 실시 예에 따르면, 이미지 센서(743)는 회로기판(741) 위에 배치될 수 있다. 예를 들어, 이미지 센서(743)는 제1 접착 필름(예: DAF(die attach
film))에 의해 회로기판(741)에 부착될 수 있다. 이미지 센서(743)는 예를 들어, 복수의 이미지 센서가 지정된 간격으로 배치된 어레이형 이미지 센서일 수 있다. 이미지 센서(743)는 사용자의 손가락에 반사된 반사광을 이용하여 지문 정보(또는, 지문 이미지)를 획득할 수 있다.

【0078】일 실시 예에 따르면, 광학 필터층(745)은 광학층(744)의 적어도 일부 영역 상에 배치될 수 있다. 예를 들어, 광학 필터층(745)은 제2 접착 필름(예: OCA(optically clear adhesive) 필름, OCR(optically clear resin) 필름, DAF(die attached film)(73)에 의해 광학층(744)에 부착될 수 있다. 제2 접착 필름(73)은 광학 특성을 보장하기 위해 투명할 수 있다.

【0079】일 실시 예에 따르면, 도전성 와이어(747)는 회로 기판(741)과 이미지 센서(743)를 전기적으로 연결할 수 있다. 도전성 와이어(747)는, 예를 들어, 회로기판(741)과 이미지 센서(743)를 연결하는 복수개의 와이어를 포함할 수 있다. 이미지 센서(743)에 의해 획득된 지문 정보는 도전성 와이어(747)를 통해 회로기판(741)에 배치된 센서 IC로 전달될 수 있다.

【0080】일 실시 예에 따르면, 보호 부재(749)는 회로기판(741) 상에 이미지 센서(743)와 광학층(744)의 측면에 배치되어 이미지 센서 및 광학층(744)을 고정시키고 외부로부터 보호할 수 있다. 일 실시 예에 따르면, 보호 부재(749)는 도전성 와이어(747)를 감싸도록 형성되어 도전성 와이어(747)를 고정시키고 외부로부터 보호할 수 있다. 도전성 와이어(747)는 보호 부재(749)에 의해 외부와 완전히 차단될 수 있다. 보호 부재(749)는, 예를 들어, 실리콘을 포함할 수 있다.
【0081】도 7b는 일 실시 예에 따른 생체 센서 모듈의 단면도를 나타낸다.

【0082】도 7b를 참조하면 생체 센서 모듈(703) (예: 도 6의 생체 센서 모듈(640))는 메인 회로기판(741) (예: 도 6의 회로기판(641)), 서브 회로기판(742), 이미지 센서(또는, 이미지 센서 어레이)(743), 광학층(744), 광학 필터층(745), 도전성 와이어(747), 자기 차폐층(magnetic screen layer)(748) 및 보호 부재(749)를 포함할 수 있다.

【0083】일 실시 예에 따르면, 서브 회로기판(742)은 메인 회로기판(741) 상에 배치될 수 있다. 예를 들어, 서브 회로기판(742)은 적어도 하나의 제3 접착 필름(75)에 의해 메인 회로기판(741)에 부착될 수 있다. 일 실시 예에 따르면, 제3 접착 필름(75)은, 예를 들어, 도전성 물질을 포함할 수 있으며, 메인 회로기판(741)과 서브 회로기판(742)을 전기적으로 연결할 수 있다. 예를 들어, 제3 접착 필름(75)은 도전성 액체시 또는 빨납(solder)을 포함할 수 있다.

【0084】일 실시 예에 따르면, 이미지 센서(743)는 서브 회로기판(742) 위에 배치될 수 있다. 예를 들어, 이미지 센서(743)는 제1 접착 필름(예: DAF(die attach film))(71)에 의해 서브 회로기판(79)에 부착될 수 있다.

【0085】일 실시 예에 따르면, 보호 부재(749)는 서브 회로기판(742) 이미지 센서(743)와 광학층(744)의 측면에 배치되어 이미지 센서 및 광학층(744)을 고정시키고 외부로부터 보호할 수 있다.
【0086】도 7a 및 도 7b를 참조하여 설명한 실시 예에 따르면 생체 센서 모듈이 다른 구성과는 구별되는 별도의 회로기판(예: 회로기판(741))상에 형성되는 것으로 설명하였으나 생체 센서 모듈은 다른 회로기판 도 3에 도시된 다른 회로기판(예: 도 3의 FPCB(323)) 상에 형성될 수도 있다.

【0087】도 7c는 일 실시 예에 따른 광학 필터층의 단면도를 나타낸다.

【0088】도 7c를 참조하면, 광학 필터층(745)은 제1 필터층(예: IR 필터층)(711), PET(poly ethylene terephthalate)층(712) 및 제2 필터층(예: AR(anti reflection) 필터층)(713)을 포함할 수 있다.

【0089】일 실시 예에 따르면, 제1 필터층(711)은 특정 파장의 광(예: 적외선)을 차단할 수 있다. 제1 필터층(711)은, 예를 들어, IR 필터(Infrared cut-off filter)를 포함할 수 있다. 일 실시 예에 따르면, 제2 필터층(713)은 사용자의 신체(예: 손가락)에 반사된 반사광이 반사되어 수광 효율이 저하되는 것을 방지하기 위한 반사 방지 필름(anti reflection film)을 포함할 수 있다.

【0090】일 실시 예에 따르면, 제1 필터층(711)과 제2 필터층(713)은 PET층(712)에 부착될 수 있다. 예를 들어, 제1 필터층(711)은 PET층(712) 위에 부착되고 제2 필터층(713)은 PET층(712) 아래에 부착될 수 있다. 일 실시 예에 따르면, 광학 필터층(745)은 제1 필터층(711) 및 제2 필터층(713) 중 일부를 포함하지 않을 수도 있다. 일 실시 예에 따르면, 제1 필터층(711)과 제2 필터층(713)은 서로 위치가 변경될 수도 있다.
일 실시 예에 따르면, 광학 필터층(745)은 제2 접착 필름(73)(예: OCA(optically clear adhesive) 필름, OCR(optically clear resin) 필름 또는 DAF(die attach film))에 의해 광학층(예: 도 7a 또는 도 7b의 광학층(744))에 부착될 수 있다.

도 8은 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

도 8에 도시된 단면도는 생체 센서 모듈(840)이 디스플레이(820)에 부착된 상태에서의 단면도에 해당한다. 도 8을 참조하면, 전자 장치(801)(예: 도 3의 전자 장치(301))는 커버 글래스(810)(예: 도 3의 커버 글래스(310)), 디스플레이(또는, 디스플레이 패널)(820)(예: 도 3의 디스플레이(320)), 압력 센서(830)(예: 도 3의 압력 센서(330)) 및 생체 센서 모듈(840)(예: 도 3의 생체 센서 모듈(340))을 포함할 수 있다.

일 실시 예에 따르면, 생체 센서 모듈(840)은 디스플레이(820)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(427)) 및 압력 센서(830)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(431))을 통과하여 디스플레이(820)의 후면에 부착될 수 있다. 예를 들어, 생체 센서 모듈(840)의 광학 필터층(845)은 광학 필터층(845)과 패널층(821)(예: 패널층(421)) 사이에 배치된 제4 접착 필름(예: OCA(optically clear adhesive) 필름, OCR, DAF(87))에 의해 패널층(821)의 일면(예: 후면)에 부착될 수 있다. 제4 접착 필름(87)은 광학 특성을 보장하기 위해 투명할 수 있다.
착된 상태에서 생체 센서 모듈(예: 이미지 센서(843), 광학층(844) 및 광학 필터층(845))은 패널층(821)과 대면할 수 있다. 일 실시 예에 따르면, 생체 센서 모듈(840)의 성능을 확보하기 위해 제4 접착 필름(87)은 지정된 두께를 가질 수 있다. 제4 접착 필름(87)을 이용하여 광학 필터층(845)을 패널층(821)에 직접 부착함으로써 광학 필터층(845)과 패널층(821) 사이의 공간에 이물 유입이 차단되어 생체 센서의 성능을 확보할 수 있다.

【0096】도 9는 일 실시 예에 따른 생체 센서 모듈의 폐기지 구조를 나타낸다.

【0097】도 9의 <91> 이미지는 생체 센서 모듈(940)의 정면도의 예를 나타내고, <92> 이미지는 생체 센서 모듈(940)의 배면도의 예를 나타내고, <93> 이미지는 생체 센서 모듈(940)의 절단면도의 예를 나타낸다.

일 실시 예에 따르면, 생체 센서 모듈(940)에 제1 접착 부재(991)가 배치될 수 있다. 일 실시 예에 따르면, 제1 접착 부재(991)는 보호 부재(949)와 인접하여 배치될 수 있다. 보호 부재(949)는 생체 센서 모듈(940)의 가장자리로 갈수록 높이가 낮아지도록 기울어진 구조를 가질 수 있다. 보호 부재(949)의 구조적 특성에 따라 보호 부재(949)를 디스플레이(예: 도 3의 디스플레이(320))에 부착함에 있어 어려움이 발생할 수 있다. 이에 따라, 보호 부재(949)의 기울임 구조를 보상하기 위해 생체 센서 모듈(940)에 제1 접착 부재(991)를 배치할 수 있다. 일 실시 예에 따르면, 제1 접착 부재(991)는 보호 부재(949)의 적어도 하나의 가장자리에 배치될 수 있다. 예를 들어, 도 9의 <91> 이미지 및 <92> 이미지를 참조하면, 제1 접착 부재(991)는 연결 인쇄회로기판(941-2)이 설치하는 방향을 제외한 가장자리를 제외한 나머지 가장자리에 배치될 수 있다.

도 9의 <93> 이미지를 참조하면, 광학층(944)상에 제1 접착 부재(991)가 유입되는 것을 방지하고 제1 접착 부재(991)를 평탄하게 형성하기 위해 제1 접착 부재(991)의 형성 과정에서 광학층(944)에 이형필름(release film)(99)을 부착시킨 후 보호 부재(949)와 이형 필름(99) 사이에 제1 접착 부재(991)를 형성할 수 있다. 보호 부재(949)와 이형필름(99) 사이에 제1 접착 부재(991)가 형성된 후 이형 필름(99)은 제거될 수 있다. 일 실시 예에 따르면, 제1 접착 부재(991)는 UV(ultraviolet rays) 잉크 또는 UV 경화성 수지와 같이 UV 광에 의해 경화될 수 있는 UV 접착제를 포함할 수 있다. 예를 들어, 보호 부재(949)와 이형 필름(99) 사이에 제1 접착 부재(991)가 도포된 후 UV광에 의해 중합을 개시하여 제1 접착 부재
(991)를 고착화시킬 수 있다.

【0101】도 9의 <91> 이미지를 참조하면, 생체 센서 모듈(940)에 차폐 부재(946)가 배치될 수 있다. 예를 들어, 차폐 부재(946)는 연성 인쇄회로기판(941-2)이 위치하는 가장자리에 보호 부재(949) 및 제1 접착 부재(991)와 인접하여 배치될 수 있다. 연성 인쇄회로기판(941-2)이 위치하는 가장자리에는 제1 접착 부재(991)의 형성이 용이하지 않으므로 제1 접착 부재(991)를 대신하여 차폐 부재(946)가 배치될 수 있다. 차폐 부재(946)는, 예를 들어, 폴리 우레탄(예: 포론(pon)) 및/또는 고무를 포함할 수 있다. 차폐 부재(946)는, 예를 들어, 접착 밀름(예: DAF)에 의해 보호 부재(949) 상에 부착될 수 있다.

【0102】도 10은 일 실시 예에 따른 생체 센서 모듈의 페키지 구조의 일부를 나타낸다.

【0103】도 10의 <1001> 이미지는 생체 센서 모듈(예: 생체 센서)(1040)(예: 생체 센서 모듈(940))의 후면을 바라볼 때 제1 측 모서리 부분의 시시도를 나타내고, <1002> 이미지는 생체 센서 모듈(1040)의 제1 측 모서리 부분의 배면도를 나타내고, <1003> 이미지는 생체 센서 모듈(1040)의 제2 측 모서리 부분의 배면도를 나타낸다.

【0104】도 10을 참조하면 생체 센서 모듈(1040)은 회로기판(841)(예: 회로기판(641)) 및 자기 차폐층(1048)(예: 자기 차폐층(648))을 포함할 수 있다. 일 실시 예에 따르면, 회로기판(1041)의 모서리는 내측으로 오목한 형태를 가질 수 있다. 회로기판(1041)의 모서리가 내측으로 오목한 형태를 가질에 따라 제2 접착
부재(예: 도 11 및 도 12의 제2 접착 부재(1193, 1293))를 도포할 때 제2 접착 부재를 제1 접착 부재(예: 도 11 및 도 12의 제1 접착 부재(1191, 1291)) 상에 효과적으로 도포할 수 있다.

【0105】도 11은 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

【0106】도 11에 도시된 단면도는 생체 센서 모듈(1140)이 디스플레이(1120)에 부착된 상태에서의 단면도에 해당한다. 도 11을 참조하면, 전자 장치(1101)(예: 도 3의 전자 장치(301))는 커버 글래스(1110)(예: 도 3의 커버 글래스(310)), 디스플레이(또는, 디스플레이 패널)(1120)(예: 도 3의 디스플레이(320)), 압력 센서(1130)(예: 도 3의 압력 센서(330)) 및 생체 센서 모듈(1140)(예: 도 3의 생체 센서 모듈(340))을 포함할 수 있다.

【0107】일 실시 예에 따르면, 생체 센서 모듈(1140)은 디스플레이(1120)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(427)) 및 압력 센서(1130)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(431))을 통과하여 디스플레이(1120)의 후면에 부착될 수 있다. 예를 들어, 생체 센서 모듈(1140)의 보호 부재(1149) 상에 형성된 제1 접착 부재(1191) 및 광학층(1144)의 일부 영역(예: 가장자리 영역)은 레이어(1125)의 제1 레이어(1125-1)의 배면에 부착될 수 있다.

【0108】생체 센서 모듈(1140)은 제1 접착 부재(1191) 및 광학층(1144)의 일부 영역이 제1 레이어(1125-1)의 배면에 부착된 상태에서 제2 접착 부재(1193)에 의해 디스플레이(1120)에 고정될 수 있다. 예를 들어, 제2 접착 부재(1193)는 제1 접착 부재(1191) 상에 보호 부재(1149)와 제1 레이어(1125-1)의 배면에 인접하게
도포될 수 있다. 일 실시 예에 따르면, 제2 접착 부재(1193)는 생체 센서(1140)의 가장자리 중 적어도 일부에 도포될 수 있다. 예를 들어, 제2 접착 부재(1193)는 회로기판(1141)의 모서리 영역 중 적어도 일부를 통해 도포될 수 있다. 다른 예를 들어, 제2 접착 부재(1193)는 제1 접착 부재(1191)의 모든 영역 상에 도포될 수 있다.

【0109】일 실시 예에 따르면, 생체 센서 모듈(1140)이 디스플레이(1120)에 부착된 상태에서 생체 센서 모듈(1140)(예: 이미지 센서(1143), 광학증(1144) 및 광학 필터층(1145))은 페널층(1121)과 대면할 수 있다. 일 실시 예에 따르면, 생체 센서 모듈(1140)의 성능을 확보하기 위해 광학 필터층(1145)은 페널층(1121)으로부터 지정된 거리만큼 이격되어 위치할 수 있다. 광학 필터층(1145)과 페널층(1121) 사이의 공간은 제1 접착 부재(1191) 및 제2 접착 부재(1193)(추가적으로, 차폐 부재(예: 도 9의 차폐 부재(946))에 의해 외부와 차단되어 이물 유입을 방지하고 생체 센서의 성능을 확보할 수 있다.

【0110】도 12는 일 실시 예에 따른 전자 장치의 단면도를 나타낸다.

【0111】도 12에 도시된 단면도는 생체 센서 모듈(1240)이 디스플레이(1220)에 부착된 상태에서의 단면도에 해당한다. 도 12를 참조하면, 전자 장치(1201) (예: 도 3의 전자 장치(301))는 커버 글래스(1210)(예: 도 3의 커버 글래스(310)), 디스플레이(또는, 디스플레이 패널)(1220)(예: 도 3의 디스플레이(320)), 암력 센서(1230)(예: 도 3의 암력 센서(330)) 및 생체 센서 모듈(1240)(예: 도 3의 생체 센서 모듈(340))를 포함할 수 있다.
【0112】일 실시 예에 따르면, 생체 센서 모듈(1240)은 디스플레이(1220)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(427)) 및 압력 센서(1230)에 형성된 센서 배치 영역(예: 도 4a의 센서 배치 영역(431))을 통과하여 디스플레이 (1220)의 후면에 부착될 수 있다. 예를 들어, 생체 센서 모듈(1240)의 보호 부재 (1249) 상에 형성된 제1 접착 부재(1291)(예: 제1 접착 부재(1191))는 레이어 (1225)의 제1 레이어(1225-1)의 배면에 부착될 수 있다. 예를 들어, 제1 접착 부재(1291)는 제1 접착 부재(1291)와 제1 레이어(1225-1) 사이에 배치된 제5 접착 필름(1295)에 의해 제1 레이어(1225-1)의 배면에 부착될 수 있다. 제5 접착 필름 (1295)은, 예를 들어, 제1 접착 부재(1291)뿐만 아니라 광학층(1244)의 일부 영역 상에도 부착될 수 있다.

【0113】생체 센서 모듈(1240)은 제1 접착 부재(1291)가 제5 접착 필름 (1295)에 의해 제1 레이어(1225-1)의 배면에 부착된 후 제2 접착 부재(1293)에 의해 디스플레이(1220)에 고정될 수 있다. 예를 들어, 제2 접착 부재(1293)(예: 제2 접착 부재(1193))는 제1 접착 부재(1291) 상에 보호 부재(1249)와 제1 레이어 (1225-1)의 배면에 인접하게 도포될 수 있다. 일 실시 예에 따르면, 제2 접착 부재 (1293)는 생체 센서(1240)의 가장자리 중 적어도 일부에 도포될 수 있다. 생체 센서 모듈(1240)이 제5 접착 필름(1295) 및 제2 접착 부재(1193)에 의해 디스플레이 (1220)에 이중으로 부착되어 생체 센서 모듈(1240)의 부착력이 향상될 수 있다.

【0114】일 실시 예에 따르면, 생체 센서 모듈(1240)이 디스플레이(1220)에 부착된 상태에서 생체 센서 모듈(1240)(예: 이미지 센서(1243), 광학층(1244) 및
광학 필터층(1245)은 패널층(1221)과 대면할 수 있다. 일 실시 예에 따르면, 생체 센서 모듈(1240)의 성능을 확보하기 위해 광학 필터층(1245)은 패널층(1221)으로부터 지정된 거리만큼 이격되어 위치할 수 있다. 광학 필터층(1245)과 패널층(1221) 사이의 공간은 제1 접착 부재(1191), 제2 접착 부재(1193) 및 제5 접착 필름(1295)추가적으로, 차폐 부재(예: 도 9의 차폐 부재(946))에 의해 외부와 차단되어 이를 유입을 방지하고 생체 센서의 성능을 확보할 수 있다.

[0115] 본 문서에 개시된 다양한 실시예들에 따른 전자 장치는 다양한 형태의 장치가 될 수 있다. 전자 장치는, 예를 들면, 휴대용 통신 장치 (예: 스마트폰), 컴퓨터 장치 (예: 휴대용 디지털 어시스턴트(PDA), 태블릿 휴대용 컴퓨터 (PC), 워king PC, 데스크톱 PC, 워크스테이션, 또는 서버), 휴대용 멀티미디어 장치 (예: 전자책 리더기 또는 MP3 플레이어), 휴대용 의료 기기(예: 심박, 혈당, 혈압, 또는 체온 측정기), 카메라, 또는 웨어러블 장치 중 적어도 하나를 포함할 수 있다. 웨어러블 장치는 액세서리형(예: 시계, 반지, 팔찌, 발찌, 목걸이, 안경, 콘 백트 렌즈, 또는 미리 착용형 장치(head-mounted-device(HMD)), 직물 또는 의류 일 체형(예: 전자 의복), 신체 부착형(예: 스킨 페드 또는 문신), 또는 생체 이식형 회로 중 적어도 하나를 포함할 수 있다. 어떤 실시예들에서, 전자 장치는, 예를 들면, 텔레비전, DVD(digital video disk) 플레이어, 오디오 장치, 오디오 액세서리 장치(예: 스피커, 헤드폰, 또는 헤드셋), 네장고, 에어컨, 청소기, 오븐, 전자 레인지, 세탁기, 공기 청정기, 샷탑 박스, 홈 오토메이션 컨트롤 패널, 보안 컨트롤 패널, 게임 콘솔, 전자 사전, 전자 기, 캠코더, 또는 전자 액자 중 적어도 하나
돌 포함할 수 있다.

【0116】다른 실시예에서, 전자 장치는 네비게이션 장치, 위성 항법 시스템 (GNSS(global navigation satellite system)), EDR(event data recorder(예: black box for a car, a ship, or a plane), 자동차 인포테인먼트 장치(예: 차량용 헤드 업 디스플레이), 산업용 또는 가정용 로봇, 드론(drone), automated teller machine(ATM)), POS(point of sales) 기기, 계측 기기 (예: 수도, 전기, 또는 가스 계측 기기), 또는 사물 인터넷 장치 (예: 전구, 스프링클러 장치, 화재 경보기, 온도 조절기, 또는 가로등) 중 적어도 하나를 포함할 수 있다. 본 문서의 실시예에 따른 전자 장치는 전술한 기기들에 한정되지 않으며, 또한, 예를 들면, 개인의 생체 정보 (예: 심박 또는 혈당)의 측정 기능이 구비된 스마트폰의 경우처럼, 복수의 장치들의 기능들을 복합적으로 제공할 수 있다. 본 문서에서, 사용자는 용어는 전자 장치를 사용하는 사람 또는 전자 장치를 사용하는 장치(예: 인공지능 전자 장치)를 지정할 수 있다.

【0117】본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및/또는 B 중 적어도 하나", "A, B 또는 C" 또는 "A, B 및/또는 C 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든

어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다.

【0118】본 문서에서, "-하도록 설정된(adapted to or configured to)"은 상황에 따라, 예를 들면, 하드웨어적 또는 소프트웨어적으로 "-에 적합한," "-하는 능력을 가지는," "-하도록 변경된," "-하도록 만들어진," "-로 할 수 있는," 또는 "-하도록 설계된"과 상호 호환적으로(interchangeably) 사용될 수 있다. 어떤 상황에서는, "-하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "-할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 설정된 (또는 구성된) 프로세서"는 해당 동작들을 수행하기 위한 전체 프로세서(예: 엽배디 프로세서), 또는 메모리 장치(예: 메모리 130)에 저장된 하나 이상의 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(예: CPU 또는 application processor)를 의미할 수 있다.

【0119】본 문서에서 사용된 용어 "모듈"은 하드웨어, 소프트웨어 또는 웹웨어로 구성된 유닛을 포함하며, 예를 들면, 로직, 논리 블록, 부품, 또는 회로 등의 용어와 상호 호환적으로 사용될 수 있다. 모듈은, 일체로 구성된 부품 또는 하나
또는 그 이상의 기능을 수행하는 최소 단위 또는 그 일부가 될 수 있다. 예를 들면, 모듈은 ASIC(application-specific integrated circuit) 또는 FPGAs(field-programmable gate arrays)로 구성될 수 있다.

【0120】다양한 실시예들에 따른 장치 또는 방법의 적어도 일부는 프로그램의 형태로 컴퓨터로 판독 가능한 저장 매체(예: 내장 메모리(136) 또는 외장 메모리(138))에 저장된 명령으로 구현될 수 있다. 상기 명령이 프로세서(예: 프로세서(120))에 의해 실행될 경우, 프로세서가 직접, 또는 상기 프로세서의 제어하에 다른 구성요소들을 이용하여 상기 명령에 해당하는 기능을 수행할 수 있다. 명령은 컴파일러 또는 인터프리터에 의해 생성 또는 실행되는 코드를 포함할 수 있다.

【0121】다양한 실시예들에 따른 구성 요소(예: 모듈 또는 프로그램) 각각은 단수 또는 복수의 개체로 구성될 수 있으며, 전술한 해당 서브 구성 요소들 중 일부 서브 구성 요소가 생략되거나, 또는 다른 서브 구성 요소를 더 포함할 수 있다. 대체적으로 또는 추가적으로, 일부 구성 요소들(예: 모듈 또는 프로그램)은 하나의 개체로 통합되어, 통합되기 이전의 각각의 해당 구성 요소에 의해 수행되는 기능을 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따른, 모듈, 프로그램 또는 다른 구성 요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱하게 실행되거나, 적어도 일부 동작이 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다.
【청구범위】

【청구항 1】

전자 장치에 있어서,

디스플레이 패널;

상기 디스플레이 패널의 범면에 배치된 생체 센서 모듈;

상기 디스플레이 패널 및 상기 생체 센서 모듈과 전기적으로 연결되고, 상기 생체 센서 모듈을 이용하여 생체 정보를 획득하도록 설정된 프로세서;

상기 디스플레이 패널의 상기 범면과 상기 생체 센서 모듈 사이에 형성된 갭을 체우는 제 1 접착 부재; 및

상기 제 1 접착 부재상에 도포된 제 2 접착 부재를 포함하고, 상기 생체 센서 모듈이 상기 디스플레이 패널의 상기 범면에 상기 제 2 접착 부재를 이용하여 부착된 전자 장치.

【청구항 2】

제1항에 있어서,

상기 디스플레이의 범면과 상기 제1 접착 부재 사이에 배치되어 상기 생체 센서 모듈을 상기 디스플레이의 범면에 접착시키는 제3 접착 부재;를 더 포함하는 전자 장치.

【청구항 3】

제1항에 있어서,
상기 생체 센서 모듈은,

제1 회로 기판.

상기 제1 회로 기판 상에 배치되고, 상기 생체 정보를 획득하기 위한 이미지 센서 및

상기 이미지 센서의 적어도 일부 영역 상에 배치된 광학층을 포함하고, 상

기 생체 센서 모듈에 포함된 상기 광학층의 적어도 일부가 상기 디스플레이 패널의

상기 배면에 부착된 전자 장치.

【청구항 4】

제3항에 있어서,

상기 생체 센서 모듈은,

상기 광학층의 적어도 일부 영역 상에 배치된 광학 필터층을 더 포함하고,

상기 광학 필터층이 상기 디스플레이의 상기 배면에 대면하여 배치된 전자 장치.

【청구항 5】

제4항에 있어서,

상기 광학 필터층과 상기 디스플레이의 상기 배면 사이에 시각적으로 투명한

제4 접착 부재를 더 포함하고, 상기 제4 접착 부재는 상기 광학 필터층과 상기 디스플레이의 상기 배면 사이에 배치된 전자 장치.

【청구항 6】

제5항에 있어서,
상기 생체 센서 모듈은,
상기 이미지 센서와 상기 제1 회로 기판을 전기적으로 연결하는 도전성 와이어; 및
상기 제1 회로 기판 및 상기 이미지 센서가 형성하는 공간에 상기 도전성 와이어를 커버하기 위한 보호 부재 ;를 더 포함하는 전자 장치.

【청구항 7】

제5항에 있어서,
상기 제 1 회로 기판은,
상기 제 1 회로 기판으로부터 연결되어 형성된 가요성 기판을 포함하고, 상기 가요성 기판은 상기 제 1 회로 기판을 다른 회로 기판과 전기적으로 연결하기 위한 연결부가 형성된 전자 장치.

【청구항 8】

제1항에 있어서,
상기 제1 접착 부재와 인접하여 상기 디스플레이 패널의 상기 배면과 상기 생체 센서 모듈의 상면 사이에 배치되어 상기 접을 채우는 차폐 부재;를 더 포함하는 전자 장치.

【청구항 9】

제 1 항에 있어서,
상기 디스플레이 패널은,
상기 디스플레이 패널의 적어도 일부로 형성된 기판층으로부터 상기 디스플레이 패널 외부로 연장된 가요성 기판을 포함하고, 상기 생체 센서 모듈은 상기 가요성 기판 상에 배치된 전자 장치.

【청구항 10】

제2항에 있어서,

상기 제1 회로 기판의 모서리는 내측으로 오목한 형태를 가지고,

상기 제2 접착 부재는 상기 제1 회로 기판의 모서리 부분을 통해 도포되는 전자 장치.

【청구항 11】

제1항에 있어서,

상기 디스플레이 패널은,

적어도 하나의 픽셀을 포함하는 패널층: 및

상기 패널층의 아래에 배치된 레이어를 포함하고, 상기 레이어는 상기 생체 센서 모듈과 대면하는 영역에 개구부가 형성된 전자 장치.

【청구항 12】

제11항에 있어서,

상기 레이어는,

제1 개구부를 포함하는 제1 레이어: 및

상기 제1 레이어 아래에 배치되고 제2 개구부를 포함하는 제2 레이어:를 포
합하고,

상기 생체 센서 모듈은 상기 제1 레이어의 상기 제1 개구부에 대면하여 배치되고, 상기 제1 접착 부재는 상기 제1 레이어와 상기 생체 센서 모듈 사이에 형성된 상기 갭을 채우고, 및 상기 생체 센서 모듈은 상기 제1 레이어에 상기 제2 접착 부재를 이용하여 부착된 전자 장치.

【청구항 13】

제11항에 있어서,

상기 제2 접착 부재는,

상기 생체 센서 모듈의 외측면과 상기 레이어의 개구부의 내측면 사이에 도포되는 전자 장치.

【청구항 14】

제1항에 있어서,

상기 프로세서는,

상기 생체 센서 모듈을 이용하여, 상기 디스플레이 패널에 포함된 발광 소자로부터 출력된 광이 외부 객체에 반사된 반사광을 이용하여, 상기 외부 객체 대한 상기 생체 정보를 획득하도록 설정된 전자 장치.

【청구항 15】

디스플레이 장치에 있어서,

디스플레이 패널;
상기 디스플레이 패널의 배면에 배치되어 생체 정보를 센싱하도록 전명된 생체 센서 모듈;

상기 디스플레이 패널의 상기 배면과 상기 생체 센서 모듈 사이에 형성된 점을 채우는 제1 접착 부재; 및

상기 제1 접착 부재상에 도포된 제2 접착 부재를 포함하고, 상기 디스플레이 패널의 상기 배면에 상기 제2 접착 부재를 이용하여 부착된 디스플레이 장치.

【성구항 16】

제15항에 있어서,

상기 디스플레이의 배면과 상기 제1 접착 부재 사이에 배치되어 생체 센서 모듈을 상기 디스플레이의 배면에 접착시키는 제3 접착 부재;를 더 포함하는 전자 장치.

【성구항 17】

제15항에 있어서,

상기 생체 센서 모듈은,

제1 회로 기판;

상기 제1 회로 기판 상에 배치되고, 상기 생체 정보를 획득하기 위한 이미지 센서; 및

상기 이미지 센서의 적어도 일부 영역 상에 배치된 광학층;을 포함하고, 상기 생체 센서 모듈에 포함된 상기 광학층의 적어도 일부가 상기 디스플레이 패널의

64-50
상기 배면에 부착된 디스플레이 장치.

【청구항 18】

제16항에 있어서,

상기 제1 회로 기판의 모서리는 내측으로 오목한 형태를 가지고,

상기 제2 접착 부재는 상기 제1 회로 기판의 모서리 부분을 통해 도포되는 디스플레이 장치.

【청구항 19】

제15항에 있어서,

상기 디스플레이 패널은,

적어도 하나의 픽셀을 포함하는 패널층: 및

상기 패널층의 아래에 배치된 레이어를 포함하고, 상기 레이어는 상기 생체 센서 모듈과 대면하는 영역에 개구부가 형성된 디스플레이 장치.

【청구항 20】

제19항에 있어서,

상기 레이어는,

제1 개구부를 포함하는 제1 레이어; 및

상기 제1 레이어 아래에 배치되고 제2 개구부를 포함하는 제2 레이어;를 포함하고,

상기 생체 센서 모듈은 상기 제1 레이어의 상기 제1 개구부에 대면하여 배치
이러한 툴레 페이어와 상기 서브 특차 모듈 사이에 형성
된 상기 셰를 제공하고, 상기 서브 특차 모듈은 상기 툴레어에 상기 제 2 결
차 부재를 이용하여 부착된 디스플레이 장치.
【요약서】

본 발명의 다양한 실시 예에 따른 전자 장치는, 디스플레이 패널, 상기 디스플레이 패널의 배면에 배치된 생체 센서 모듈, 상기 디스플레이 패널 및 상기 생체 센서 모듈과 전기적으로 연결되고, 상기 생체 센서 모듈을 이용하여 생체 정보를 획득하도록 설정된 프로세서, 상기 디스플레이 패널의 상기 범위와 상기 생체 센서 모듈 사이에 형성된 격을 채우는 제1 접착 부재 및 상기 제1 접착 부재상에 도포된 제2 접착 부재를 포함하고, 상기 생체 센서 모듈이 상기 디스플레이 패널의 상기 범위에 상기 제2 접착 부재를 이용하여 부착될 수 있다. 또한, 다른 실시 예도 가능하다.

【대표도】

도 6
【도면】

【도 1】
도 4a