DOCUMENT MADE AVAILABLE UNDER THE PATENT COOPERATION TREATY (PCT)

International application number: PCT/US2015/051055
International filing date: 18 September 2015 (18.09.2015)
Document type: Certified copy of priority document

Document details:
Country/Office: US
Number: 62/128,089
Filing date: 04 March 2015 (04.03.2015)
Date of receipt at the International Bureau: 11 October 2015 (11.10.2015)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a),(b) or (b-bis)
October 10, 2015

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 62/128,089
FILING DATE: March 04, 2015
RELATED PCT APPLICATION NUMBER: PCT/US15/51055

THE COUNTRY CODE AND NUMBER OF YOUR PRIORITY APPLICATION, TO BE USED FOR FILING ABROAD UNDER THE PARIS CONVENTION, IS US62/128,089

Certified by

[Signature]
Under Secretary of Commerce
for Intellectual Property
and Director of the United States Patent and Trademark Office
Provisional Application for Patent Cover Sheet

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c)

Inventor(s)

<table>
<thead>
<tr>
<th>Inventor 1</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Kenneth</td>
<td>W.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 2</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Katherine</td>
<td>J.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 3</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Torsten</td>
<td>Herbertz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 4</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>George</td>
<td>P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 5</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>David</td>
<td>S.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 6</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Matthew</td>
<td>W.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 7</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Adam</td>
<td>C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventor 8</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Middle Name</td>
</tr>
<tr>
<td>Mark</td>
<td>J.</td>
</tr>
<tr>
<td>All Inventors Must Be Listed – Additional Inventor Information blocks may be generated within this form by selecting the Add button.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Title of Invention</td>
<td>PHENYL AND PYRIDINYL QUINOLINONE DERIVATIVES AS MUTANT-ISOCITRATE DEHYDROGENASE INHIBITORS</td>
</tr>
<tr>
<td>Attorney Docket Number (if applicable)</td>
<td>FOTH-004/01US 314575-2032</td>
</tr>
</tbody>
</table>

Correspondence Address

Direct all correspondence to (select one):

- [] The address corresponding to Customer Number
- [] Firm or Individual Name

Customer Number: 58249

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

- [] No.

- [] Yes, the invention was made by an agency of the United States Government. The U.S. Government agency name is:

- [] Yes, the invention was under a contract with an agency of the United States Government. The name of the U.S. Government agency and Government contract number are:
Entity Status
Applicant asserts small entity status under 37 CFR 1.27 or applicant certifies micro entity status under 37 CFR 1.29

- Applicant asserts small entity status under 37 CFR 1.27
- Applicant certifies micro entity status under 37 CFR 1.29. Applicant must attach form PTO/SB/15A or B or equivalent.
- No

Warning
Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers (other than a check or credit card authorization form PTO-2038 submitted for payment purposes) is never required by the USPTO to support a petition or an application. If this type of personal information is included in documents submitted to the USPTO, petitioners/applicants should consider redacting such personal information from the documents before submitting them to USPTO. Petitioner/applicant is advised that the record of a patent application is available to the public after publication of the application (unless a non-publication request in compliance with 37 CFR 1.213(a) is made in the application) or issuance of a patent. Furthermore, the record from an abandoned application may also be available to the public if the application is referenced in a published application or an issued patent (see 37 CFR1.14). Checks and credit card authorization forms PTO-2038 submitted for payment purposes are not retained in the application file and therefore are not publicly available.

Signature
Please see 37 CFR 1.4(d) for the form of the signature.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date (YYYY-MM-DD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/J. Dean Farmer/</td>
<td>2015-03-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Farmer</th>
<th>Registration Number (If appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Dean</td>
<td>Last Name</td>
<td>Farmer</td>
<td>57917</td>
</tr>
</tbody>
</table>

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. This form can only be used when in conjunction with EFS-Web. If this form is mailed to the USPTO, it may cause delays in handling the provisional application.
Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A record from this system of records may be disclosed, as a routine use, to an other federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency’s responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.
CLAIMS:
1. A compound of formula I:

```
R6
/ /
/ /
/ /
/ /
/ /
/ /
R1 W2 W4 R4 R5 R A
R2 W3 N
W1
```

or a pharmaceutical salt, enantiomer, hydrate, solvate, prodrug, isomer, or tautomer thereof,

wherein:

- each W1 and W2 are independently CH, CF or N;
- W3 is independently CH, CF, CR2, or N;
- U and Z are independently N or CR6; V is independently N, CH, or CO, provided that U and V are not both N;

A is selected from the group consisting of H, D, halogen, CN, -CHO, -COOH, -COOR, -C(O)NH2, -C(O)NHR, R’S(O)2-, -O(CH2)nC(O)R’, and R’S(O)-, heteroaryl, and -SMe,

- SO2Me,

B is selected from the group consisting of:

- null, H, D, OH, NO2, NH2, -NR-R, CN, C1-C6 alkyl, C3-C8 cycloalkyl, substituted aryl, C1-C6 alkoxy, substituted heteroaryl, -O(CH2)nR’, -(CH2)nC(O)NHR, -C(O)NH2, -SR, OR,

- (CHR’)nS(O)R, -(CHR’)nS(O)2R, -COOR.

224
wherein X and Y are independently in each occurrence C, N, NR', S, and O, provided that the ring containing X and Y cannot have more than 3 N or NH atoms or more than 2 S or O atoms, and wherein the S and O are not contiguous;

R and R' at each occurrence are independently selected from the group consisting of H, OH, CN, -CH2CN, halogen, -NR2R8, CHCF2, CF3, C1-C6 alkyl, R7S(O)2-, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkylalkyl, C3-C8 heterocyclyl, aryl, and hetereoary, wherein each R is optionally substituted with one or more substituents selected from the group consisting of OH, halogen, C1-C6 alkoxy, NH2, R7S(O)2-, CN, C3-C8 cycloalkyl, C3-C8 heterocyclyl, aryl, hetereoary, and R7S(O)-;

R1 is independently H, OH, CN, halogen, CHCF2, CF3, C1-C6 alkyl, C1-C6 alkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C3-C8 heterocyclyl, aryl, or hetereoary, wherein each C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C3-C8 heterocyclyl, aryl, or hetereoary is optionally substituted one or more times with substituents selected from the group consisting of halogen, OH, NH2, CN, C1-C6 alkyl, and C1-C6 alkoxy;

R2 is independently H, OH, CN, halogen, CF3, CHF2, benzyl, C1-C6 alkyl, C1-C6 alkoxy, NH2, -O(CH2)nR', -O(CH2)nC(O)NHR', -O(CH2)nC(O)R', NHR', -N(R7)(R8), NHC(O)R7, NHS(O)R7, NHS(O)2R7, NHC(O)OR7, NHC(O)NHR7, NHC(O)NHR7, -S(O)2NHR7, NHC(O)N(R8)R7, OCH2R7, OCHR'R', or CHR'R' wherein C1-C6 alkyl, C1-C6 alkoxy is optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl, C1-
C₆ alkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₂-C₈ cycloalkyl substituted with one or more halogen, C₃-C₆ heterocyclyl, aryl, -heteroaryl-C(O)NH₂, and heteroaryl;

R₁ is H, C₁-C₆ alkyl, or -OH.

R₄ and R₅ are independently H, halogen, CH₂OH, C₁-C₃ alkyl, or C₁-C₃ alkyl substituted with halogen, or R₄ and R₅ when combined can form a C₃-C₅ cycloalkyl or C₃-C₅ heterocyclyl;

R₆ is H, halogen, C₁-C₆ alkyl, C₁-C₆ alkyl substituted with halogen, C₁-C₆ alkoxy, C₁-C₆ alkoxy substituted with one or more halogen, C₂-C₆ alkenyl, C₂-C₆ alkenyl, C₃-C₈ cycloalkyl, C₃-C₈ heterocyclyl, aryl, or heteroaryl;

R₇ and R₈ are independently H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₂-C₆ alkenyl, C₂-C₆ alkenyl, C₃-C₈ cycloalkyl, C₃-C₈ heterocyclyl, aryl, and heteroaryl; or when combined R₇ and R₈ can form a C₃-C₈ heterocyclyl or heteroaryl ring;

----- indicates a single or double bond but never two double bonds adjacent to one another in the ring in which the ----- occurs;

n is 0, 1, or 2; and

r is 0, 1, or 2.

2. The compound of claim 1, wherein A is CN.
3. The compound of claim 2, wherein B is C₁-C₆ alkoxy or C₁-C₆ alkyl.
4. The compound of claim 3, wherein B is methoxy.
5. The compound of claim 3, wherein B is methyl.
6. The compound of claim 2, wherein U is N, or V is N.
7. The compound of claim 2, wherein U, V, and Z are CH.
8. The compound of claim 2, wherein V is CO, Z is N, and B is C₁-C₆ alkyl.
9. The compound of claim 8, wherein B is methyl.
10. The compound of claim 1, wherein A is H or F.

11. The compound of claim 10, wherein B is

12. The compound of claim 10, wherein B is or

226
13. The compound of claim 12, wherein R is Me, Et, and cyclopropyl.

14. The compound of claim 10, wherein B is

15. The compound of claim 10, wherein B is

16. The compound of claim 10, wherein B is

17. The compound of claim 1, wherein B is

18. The compound of claim 1, wherein R₄ and R₅ are H.

19. The compound of claim 1, wherein R₄ is H and R₅ is methyl.

20. The compound of claim 1, wherein R₄ is H and R₅ is (S)-methyl

21. The compound of claim 1, wherein R₄ and R₅ are halogen.

22. The compound of claim 1, wherein R₄ is F and R₅ is methyl.

23. The compound of claim 1, wherein R₄ and R₅ can combine to form a C₃-C₅ cycloalkyl.

24. The compound of claim 1, wherein W₁, W₂, and W₃ are CH, or CF

25. The compound of claim 1, wherein W₁ or W₃ is N.

26. The compound of claim 1, wherein R₁ is halogen.

27. The compound of claim 26, wherein R₁ is chloro.

28. The compound of claim 1, wherein R₂ is H, halogen, or C₁-C₆ alkoxy.

29. The compound of claim 1, wherein R₂ is C₁-C₆ alkoxy substituted with heteroaryl or C₃-C₆ heterocyclcyl.

30. The compound of claim 1 selected from the group consisting of:

4-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methoxybenzonitrile;

4-{{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methoxybenzonitrile;

6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-4-methoxypyridine-3-carbonitrile;

6-{{(1S)-1-(6-chloro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-4-methoxypyridine-3-carbonitrile;
6-\{[(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-4-methoxypyridine-3-carbonitrile;
6-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methylpyridine-3-carbonitrile;
6-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-4-methylpyridine-3-carbonitrile;
6-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxypyridine-3-carbonitrile;
5-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-6-methoxypyridine-2-carbonitrile;
4-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-3-methanesulfonylbenzonitrile;
6-\{[(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methylpyridine-3-carbonitrile;
4-\{[(1)-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxybenzonitrile;
6-\{[(1)-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methylpyridine-3-carbonitrile;
6-chloro-3-\{[(1S)-1-\{4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{6-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{4-(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{3-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1S)-1-\{4-fluoro-6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-{(6-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[1-{4-[6-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl}amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-{6-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl}amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1R)-1-{6-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl}amino]ethyl]-1,2-dihydroquinolin-2-one;
5-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile;
5-[(1R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-[(1-6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
6-[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
5-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1-6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-[[1S]-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
6-[[1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
6-[[1S]-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1S]-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
6-[[1S]-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
5-[[1S]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[[1R]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[[1]-6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-[[1S]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
6-[[1]-6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
4-[[1]-6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
5-[[1S]-1-(6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[[1S]-1-(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[[1]-6-chloro-7-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[[1S]-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-chloro-3-[(1S)-1-[(4-methanesulfonfonyl-3-methoxyphenyl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-[2-hydroxyethyl]amino]-6-methylpyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)-3-fluoropyridin-4-yl)acetamide;
2-(6-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-2-yl)-1λ5,2-thiazolidine-1,1-dione;
6-chloro-3-[(1S)-1-[(3-fluoro-4-[2-hydroxyethyl]amino]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[3-fluoro-4-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1,3-dimethyl-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1,5-dimethyl-1H-pyrazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(1-methyl-1H-pyrrol-2-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1-(2-methylpropyl)-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1-(propan-2-yl)-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1,5-dimethyl-1H-pyrazol-4-yl)3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-[(1-oxan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-[(3-trifluoromethyl)-1H-pyrazol-4-yl]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-(3,5-dimethyl-1H-pyrazol-4-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-(1,3-dimethyl-1H-pyrazol-5-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[3-fluoro-4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[4-(dimethyl-1,2-oxazol-4-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[3-fluoro-4-[(1-oxan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[3-fluoro-4-[(2-methylpropyl)-1H-pyrazol-5-yl]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[[3-fluoro-4-[(1-propan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
5-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
4-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
6-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methylpyridine-3-carbonitrile;
6-chloro-3-[[1-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1-ethyl-2-oxo-1,2-dihydropyridin-3-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
5-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-chloro-3-\{[(1-cyclopropyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(1,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl\}-1,2-dihydroquinolin-2-one;
3-\{[(6-bromo-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl\}-6-chloro-1,2-dihydroquinolin-2-one;
4-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-hydroxybenzonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-4-methylpyridine-3-carbonitrile;
4-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2,6-dimethoxybenzonitrile;
4-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-(trifluoromethoxy)benzonitrile;
6-chloro-3-\{[(2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)amino]methyl\}-1,2-dihydroquinolin-2-one;
4-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-(2-hydroxyethoxy)benzonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-(trifluoromethyl)pyridine-3-carbonitrile;
6-chloro-3-\{[4-(1H-imidazol-1-yl)-3-methoxyphenyl]amino\}methyl\}-1,2-dihydroquinolin-2-one;
5-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-6-methoxypyridine-2-carbonitrile;
4-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-ethoxybenzonitrile;
25-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-cyanophenoxyacetamide;
2-chloro-6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}pyridine-3-carbonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-(2-oxo-1,3-oxazolidin-3-yl)pyridine-3-carbonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-[2-(propan-2-yl)pyrrolidin-1-yl]pyridine-3-carbonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-[methyl(2-methylpropyl)amino]pyridine-3-carbonitrile;
6-\{[(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)methyl]amino\}-2-methoxypyridine-3-carbonitrile;
6-chloro-3-\{[(4-methanesulfonyl-3-methoxyphenyl)amino]methyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-((2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-3-methoxybenzonitrile;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-(trifluoromethyl)benzonitrile;
6-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-3-carbonitrile;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methylbenzonitrile;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile;
6-chloro-3-((3-(propan-2-yl)pyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-fluorobenzonitrile;
6-chloro-3-((4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((4-(1H-imidazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((4,6-dimethylpyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
2-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzamide;
6-chloro-3-((4-methoxypyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((5-fluoropyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
2-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-4-carbonitrile;
6-methyl-6-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-2-carboxylate;
6-chloro-3-((4-methylpyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((4-fluoro-3-methoxyphenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((5-chloropyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-N-methylbenzamide;
2-((4-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)phenox)acetamide;
6-chloro-3-((2-hydroxypyridin-3-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((4-chloro-3-methoxyphenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
2-(3-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)phenyl)acetanitrile;
6-chloro-3-((5-(trifluoromethyl)pyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
5-((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-2-carbonitrile;
6-chloro-3-((4-(trifluoromethyl)pyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-((2-fluorophenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-3-\{[1-methyl-2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl]amino\}methyl)-1,2-dihydroquinolin-2-one;
methyl 5-\{[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}-6-oxo-1,6-dihydropyridine-3-carboxylate;
3-\{[3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl)-6-methyl-1,2-dihydroquinolin-2-one;
2-methoxy-4-\{[(2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}benzonitrile;
3-\{[(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl)-1,2-dihydroquinolin-2-one;
3-\{[(4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl)-1,2-dihydroquinolin-2-one;
2-methoxy-4-\{[(6-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}benzonitrile;
4-\{[(6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}2-methoxybenzonitrile;
3-\{[(3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]amino\}methyl)-6-methyl-1,2-dihydroquinolin-2-one;
6-\{[(6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}pyridine-3-carbonitrile;
6,7-dimethyl-3-\{[(4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl)-1,2-dihydroquinolin-2-one;
N-(3,4-dihydro-2H-pyrrol-5-yl)-3-\{[(6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}benzene-1-sulfonamide;
3-\{[(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino\}methyl)-6,7-dimethyl-1,2-dihydroquinolin-2-one;
2-methoxy-4-\{[(6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}benzonitrile;
6-\{[(6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}pyridine-3-carbonitrile;
3-\{[(4-(1H-imidazol-1-yl)phenyl]amino\}methyl)-6-methoxy-1,2-dihydroquinolin-2-one;
6-methoxy-3-\{[(4-methylpyridin-2-yl)amino\}methyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-\{[(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino\}methyl]-1,2-dihydroquinolin-2-one;
6-\{[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}-2-methylpyridine-3-carbonitrile;
4-\{[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}-2-methoxybenzonitrile;
2-methoxy-4-\{[(7-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino\}benzonitrile;
3-([3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino)methyl)-7-methyl-1,2-dihydroquinolin-2-one;
4-((6-bromo-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-tert-butyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
2-methoxy-4-([2-oxo-6-(trifluoromethyl)-1,2-dihydroquinolin-3-yl]methyl]amino)benzonitrile;
4-((6-fluoro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-iodo-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-ethoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((7-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
2-methoxy-4-((7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]benzonitrile;
4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]2-methoxybenzonitrile;
4-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
6-chloro-3-((1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino)methyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-((1-{6-chloro-7-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile;
4-((6-chloro-7-{(2S,1-methylpyrrolidin-2-yl)methoxy}-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-chloro-7-{2-hydroxy-3-(morpholin-4-yl)propoxy}-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-((6-chloro-7-{2-(morpholin-4-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-((6-chloro-2-oxo-7-(pyridin-3-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-((6-chloro-7-(oxan-4-ylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(dimethylamino)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
6-[(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methylpyridine-3-carbonitrile;
6-[(6-chloro-7-[2-(4-methanesulfonypiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methylpyridine-3-carbonitrile;
4-[(6-chloro-7-[2-(4-methanesulfonypiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[3S]-oxolan-3-ylmethoxy]-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methylpiperidin-4-yl)oxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
2-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl] 2-oxo-1,2-dihydroquinolin-7-yl)oxy]-N,N-dimethylacetamide;
2-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl] 2-oxo-1,2-dihydroquinolin-7-yl)oxy]acetamide;
4-[(6-chloro-7-[2-(morpholin-4-yl)-2-oxoethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1,5-dimethyl-1H-pyrazol-3-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(7-(benzyloxy)-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methylpiperidin-2-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(2-methylpyridin-4-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-(pyridin-4-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1,1-dioxo-1\(\lambda^6\)-thian-4-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-(pyrazin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methyl-1H-imidazol-5-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methyl-1H-imidazol-2-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
5-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl]-2-oxo-1,2-dihydroquinolin-7-yl)oxy]methyl]-1,2,4-oxadiazole-3-carboxamide;
4-[(6-chloro-2-oxo-7-[2-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(pyridin-4-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[3-(dimethylamino)propoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[3-(pyrrolidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[3-(piperidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(2-oxopyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(piperidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(4-methylpiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(2-methyl-1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;

;
4-((6-chloro-7-(2-(1,1-dioxidothiomorpholino)ethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile
4-[[6-chloro-7-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-(2-ethoxyethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-8-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-[2-(morpholin-4-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-8-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
2-methoxy-4-[(2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)methyl]amino]-2-methoxybenzonitrile;
6-[[1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropyl]amino]-2-methylpyridine-3-carbonitrile;
6-[(2-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)propan-2-yl]amino]-2-methylpyridine-3-carbonitrile;
5-[[1R]-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile; and
5-[[1S]-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile.
31. The compound of claim 1 selected from the group consisting of:
methyl N-(2-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)carbamate;
2-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridine-4-carboxamide;
6-chloro-3-[1S]-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)acetamide;
6-chloro-3-[(1S)-1-[(4-(1H-imidazol-1-yl)pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1,2-oxazol-4-yl)pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
3-[(1S)-1-[(4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl)amino]ethyl]-6-chloro-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(3-methylpyridin-4-yl)pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)N-(2-methylpropyl)methanesulphonamide;
methyl N-(2-[[1S]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)carbamate;
2-[[1S]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridine-4-carboxamide;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)acetamide;
6-chloro-3-[(1S)-1-[(4-(1H-imidazol-1-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1,2-oxazol-4-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(methylthiophen-3-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
3-[(1S)-1-[(4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl)amino]ethyl]-6-chloro-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl)amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
N-(2-{{(1S)-1-[(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl}amino]pyridin-4-yl})-N-(2-methylpropyl) methanesulfonamide;
4-{{(1S)-1-[(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl}amino]2-methoxybenzonitrile;
methyl N-(2-{{(1S)-1-[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl]ethyl}amino]pyridin-4-yl}carbamate;
2-{{(1S)-1-[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl]ethyl}amino]pyridine-4-carboxamide;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[(4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-{{(1S)-1-[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl]ethyl}amino]pyridin-4-yl}acetamide;
6-chloro-3-[(1S)-1-[(4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[(4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[(4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
3-[(1S)-1-[(4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[(4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[(4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-{{(1S)-1-[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl]ethyl}amino]pyridin-4-yl})-N-(2-methylpropyl) methanesulfonamide;
4-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
6-[(1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile;
5-[(1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
methyl N-(2-[[1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]pyridin-4-yl)carbamate;
2-[(1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]pyridine-4-carboxamide;
6-chloro-3-[[1S)-1-[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1S)-1-[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
N-(2-[[1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]pyridin-4-yl]acetamide;
6-chloro-3-[[1S)-1-[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1S)-1-[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1S)-1-[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
3-[[1S)-1-[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethy]l]-6-chloro-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1S)-1-[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1S)-1-[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethy]l]-7-(propan-2-yl)oxy)-1,2-dihydroquinolin-2-one;
N-(2-[[1S)-1-[6-chloro-2-oxo-7-(propan-2-yl)oxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]pyridin-4-yl)-N-(2-methylpropyl) methanesulfonamide;
4-[[1S]-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methoxybenzonitrile;
6-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile;
methyl N-(2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)carbamate;
2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino] pyridine-4-carboxamide;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)acetamide;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
3-[[1S]-1-[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-7-(cyclopropylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;
4-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methoxybenzonitrile;
methyl N-(2-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)carbamate;
2-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridine-4-carboxamide;
6-chloro-7-fluoro-3-[[1S]-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-fluoro-3-[[1S]-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)acetamide;
6-chloro-7-fluoro-3-[[1S]-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-fluoro-3-[[1S]-1-[[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-fluoro-3-[[1S]-1-[[4-(methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
3-[[1S]-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-7-fluoro-1,2-dihydroquinolin-2-one;
6-chloro-7-fluoro-3-[[1S]-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one
6-chloro-7-fluoro-3-[[1S]-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one
N-(2-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)-N-(2-methylpropyl) methanesulfonyamide;
4-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
6-[[1S]-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
methyl N-(2-[[1S]-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl)carbamate;
2-\{[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}pyridine-4-carboxamide;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
N-(2-\{[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}pyridin-4-yl)acetamide;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(1H-imidazol-1-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
3-\{[(1S)-1-\{[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino\}ethyl\}\}
6-chloro-8-fluoro-1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-\{[(1S)-1-\{[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino\}ethyl\}\}
1,2-dihydroquinolin-2-one;
N-(2-\{[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;
4-\{[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}
2-methoxybenzonitrile;
6-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino\}2-methylpyridine-3-carbonitrile;
methyl N-(2-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino\}pyridin-4-yl)carbamate;
2-\{[(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino\}pyridine-4-carboxamide;
6-chloro-3-[(1S)-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
6-chloro-3-[(1S)-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
N-(2-[[1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]pyridin-4-yl)acetamide;
6-chloro-3-[(1S)-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
6-chloro-3-[(1S)-1-[[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
6-chloro-3-[(1S)-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
3-[(1S)-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-1,2-dihydro-1,8-naphthyridin-2-one;
6-chloro-3-[(1S)-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
6-chloro-3-[(1S)-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
N-(2-[[1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]pyridin-4-yl)-N-(2-methylpropyl)methanesulphonamide;
4-[[1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
6-[[1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;
methyl N-(2-[[1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]pyridin-4-yl)carbamate;
2-[[1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]pyridine-4-carboxamide;
6-chloro-3-[(1S)-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinoxalin-2-one;
6-chloro-3-[(1S)-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinoxalin-2-one;
N-(2-{{(1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl}amino}pyridin-4-yl)acetamide;
6-chloro-3-{{(1S)-1-{{(4-(1H-imidazol-1-yl)pyridin-2-yl)amino}ethyl}-1,2-dihydroquinoxalin-2-one;
6-chloro-3-{{(1S)-1-{{(4-(1,2-oxazol-4-yl)pyridin-2-yl)amino}ethyl}-1,2-dihydroquinoxalin-2-one;
6-chloro-3-{{(1S)-1-{{(4-(4-methylthiophen-3-yl)pyridin-2-yl)amino}ethyl}-1,2-dihydroquinoxalin-2-one;
3-{{(1S)-1-{{(4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl)amino}ethyl}-6-chloro-1,2-dihydroquinoxalin-2-one;
6-chloro-3-{{(1S)-1-{{(4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl)amino}ethyl}-1,2-dihydroquinoxalin-2-one;
6-chloro-3-{{(1S)-1-{{(4-(3-methylpyridin-4-yl)pyridin-2-yl)amino}ethyl}-1,2-dihydroquinoxalin-2-one;
N-(2-{{(1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl}amino}pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;
4-{{(1S)-1-{{(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl}amino}-2-methoxybenzonitrile;
6-{{(1S)-1-{{(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl}amino}-2-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(6-chloro-1-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl}amino}-2-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-{{(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxypyridine-3-carbonitrile;
4-\{[(1S)-1-(6-chloro-1-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}\}-2-methoxybenzonitrile;
4-\{[(1S)-1-(6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxybenzonitrile;
6-\{[(1S)-1-(6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxypyridine-3-carbonitrile;
6-\{[(1S)-1-(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxypyridine-3-carbonitrile;
6-\{[(1S)-1-(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-4-methoxypyridine-3-carbonitrile;
2-methoxy-4-\{[(1S)-1-(6-methyl-2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethyl]amino\}benzonitrile;
2-methoxy-4-\{[(1S)-1-(2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethyl]amino\}benzonitrile;
1-methyl-5-\{[(1S)-1-(6-methyl-2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethyl]amino\}-6-oxo-1,6-dihydropyridine-2-carbonitrile;
1-methyl-6-oxo-5-\{[(1S)-1-(2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethyl]amino\}-1,6-dihydropyridine-2-carbonitrile.

32. A pharmaceutical composition comprising the compound according to claim 1 and pharmaceutically acceptable carrier.

33. A method of treating a disease or disorder associated with mutant isocitrate dehydrogenase comprising administering to a patient in need thereof a compound of claim 1.

34. The method of claim 33, wherein the disease is glioma, glioblastoma multiforme (GBM), acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD) or a solid tumor.

35. The method of claim 33, wherein administering is performed orally, parenterally, subcutaneously, by injection, or by infusion.

36. A method of inhibiting mutant isocitrate dehydrogenase comprising administering to a patient in need thereof a compound of claim 1.

37. A method of reducing alpha-ketoglutarate comprising administering to a patient in need thereof a compound of claim 1.
38. A compound of any one of claims 1-31 for use in the manufacture of a medicament for treating a disease mediated by mutant isocitrate dehydrogenase.

39. Use of a compound of any one of claims 1-31 for treating a disease mediated by mutant isocitrate dehydrogenase.
ABSTRACT

The invention relates to inhibitors of mutant isocitrate dehydrogenase (mt-IDH) proteins with neomorphic activity useful in the treatment of cell-proliferation disorders and cancers, having the Formula:

![Chemical Structure](image)

(I)

where A, B, U, V, Z, W₁, W₂, W₃, R₁-R₆ are described herein.
PHENYL AND PYRIDINYL QUINOLINONE DERIVATIVES AS MUTANT-ISOCITRATE DEHYDROGENASE INHIBITORS

Field of Invention

The present invention is directed to inhibitors of mutant isocitrate dehydrogenase (mt-IDH) proteins with neomorphic activity useful in the treatment of diseases or disorders associated with such mutant IDH proteins including cell-proliferation disorders and cancers. Specifically, the invention is concerned with compounds and compositions inhibiting mt-IDH, methods of treating diseases or disorders associated with mt-IDH, and methods of synthesis of these compounds.

Background of the Invention

Isocitrate dehydrogenases (IDHs) are enzymes that participate in the citric acid cycle (cellular metabolism). They catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (i.e., α-ketoglutarate, α-KG). There are three isoforms within the IDH family. IDH-1, expressed in the cytoplasm and peroxisome, IDH-2, localized in the mitochondria, both utilize NADP+ as the cofactor and exist as homodimers. IDH-3 is localized in mitochondrial matrix and utilizes NAD+ as a cofactor and exists as tetramer. Mutations in IDH-1 (cytosolic) and IDH-2 (mitochondrial) have been identified in various diseases or disorders including glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, and melanoma (L. Deng et al., Trends Mol. Med., 2010, 16, 387; T. Shibata et al., Am. J. Pathol., 2011, 178(3), 1395; Gaal et al., J. Clin. Endocrinol. Metab. 2010; Hayden et al., Cell Cycle, 2009; Balss et al., Acta Neuropathol., 2008).

The mutations have been found at or near key residues in the active site: G97D, R100, R132, H133Q, and A134D for IDH1, and R140 and R172 for IDH2. (See L. Deng et al., Nature, 2009, 462, 739; L. Sellner et al., Eur. J. Haematol., 2011, 85, 457).

Mutant forms of IDH-1 and IDH-2 have been shown to lose wild type activity, and instead exhibit a neomorphic activity (also known as a gain of function activity), of reducing alpha-ketoglutarate to 2-hydroxyglutarate (2-HG). (See P.S. Ward et al., Cancer Cell, 2010, 17, 225; Zhao et. al., Science 324, 261(2009); Dang et al Nature 462, 739 (2009)). In general,
production of 2-HG is enantiospecific, resulting in generation of the D-enantiomer (also known as the R enantiomer or R-2-HG). Normal cells have low basal levels of 2-HG, whereas cells harboring mutations in IDH1 or IDH2 show significantly elevated levels of 2-HG. High levels of 2-HG have also been detected in tumors harboring the mutations. For example, high levels of 2-HG have been detected in the plasma of patients with mutant IDH containing AML. (See S. Gross et al., J. Exp. Med., 2010, 207(2), 339). High levels of 2-HG have been shown to block α-KG dependent DNA and histone demethylases, and ultimately to result in improper dedifferentiation of hematopoietic progenitor cells in AML patients (Wang et al., Science 340, 622 (2013); Losman et al., Science 339, 1621 (2013)).

Furthermore, patients with Ollier Disease and Maffucci Syndrome (two rare disorders that predispose to cartilaginous tumors) have been shown to be somatically mosaic for IDH1 and 2 mutations and exhibit high levels of D-2-HG. (See Amary et al., Nature Genetics, 2011 and Pansuriya et al., Nature Genetics, 2011).

The inhibition of mt-IDHs and their neomorphic activity with small molecule inhibitors therefore has the potential to be a treatment for cancers and other disorders of cellular proliferation.

Summary of the Invention

A first aspect of the invention relates to compounds of Formula I:

![Chemical Structure](image)

(I)

and pharmaceutical salts, enantiomers, hydrates, solvates, prodrugs, isomers, and tautomers thereof,

wherein:

- each W₁ and W₂ are independently CH, CF or N;
W₃ is independently CH, CF, CR₂ or N;

U and Z are independently N or CR₆, V is independently N, CH, or CO, provided that U and V are not both N;

A is selected from the group consisting of H, D, halogen, CN, -CHO, -COOH, -COOR, -C(O)NH₂, -C(O)NHR, R’S(O)₂, -O(CH₂)₆C(O)R’, and R’S(O)-, heteroaryl, and-SOMe, -SO₂Me,

and

B is selected from the group consisting of:

null, H, D, OH, NO₂, NH₂, -NR₇R₈, CN, C₁₋C₆ alkyl, C₃₋C₈ cycloalkyl, substituted aryl, C₁₋C₆ alkoxy, substituted heteroaryl, -O(CH₂)₆R’, -O(CH₂)₆C(O)NHR, -C(O)NH₂, -SR, OR,

-(CHR’₅)₆S(O)R, -(CHR’₅)₆S(O)₂R, -COOR,
wherein \(X\) and \(Y\) are independently in each occurrence \(C\), \(N\), \(NR'\), \(S\), and \(O\), provided that the ring containing \(X\) and \(Y\) cannot have more than 4 \(N\) or \(NH\) atoms or more than 2 \(S\) or \(O\) atoms, and wherein the \(S\) and \(O\) are not contiguous;

\(R\) and \(R'\) at each occurrence are independently selected from the group consisting of \(H\), \(OH\), \(CN\), \(-CH_2-CN\), halogen, \(-NR-R_8\), \(CHCF_2\), \(CF_3\), \(C_1-C_6\) alkyl, \(R_2S(O)R_2\), \(C_1-C_6\) alkoxy, \(C_2-C_6\) alkenyl, \(C_2-C_6\) alkynyl, \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) cycloalkylalkyl, \(C_3-C_8\) heterocyclyl, aryl, and heteroaryl, wherein each \(R\) is optionally substituted with one or more substituents selected from the group consisting of \(OH\), halogen, \(C_1-C_6\) alkoxy, \(NH_2\), \(R_2S(O)R_2\), \(CN\), \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) heterocyclyl, aryl, heteroaryl, and \(R_2S(O)\);

\(R_1\) is independently \(H\), \(OH\), \(CN\), halogen, \(CHCF_2\), \(CF_3\), \(C_1-C_6\) alkyl, \(C_1-C_6\) alkoxy, \(C_2-C_6\) alkenyl, \(C_2-C_6\) alkynyl, \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) heterocyclyl, aryl, or heteroaryl, wherein each \(C_1-C_6\) alkyl, \(C_2-C_6\) alkynyl, \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) heterocyclyl, aryl, or heteroaryl is optionally substituted one or more times with substituents selected from the group consisting of \(OH\), \(NH_2\), \(CN\), \(C_1-C_6\) alkyl, and \(C_1-C_6\) alkoxy;

\(R_2\) is independently \(H\), \(OH\), \(CN\), halogen, \(CF_3\), \(CHF_2\), benzyl, \(C_1-C_6\) alkyl, \(C_1-C_6\) alkoxy, \(NH_2\), \(-O(CH_2)_nR'\), \(-O(CH_2)_nC(O)NHR'\), \(-O(CH_2)_nC(O)R'\), \(NHR_7\), \(-N(R_7)(R_8)\), \(NHCO(O)R_7\), \(NHS(O)R_7\), \(NHS(O)J\), \(NHC(O)OR_7\), \(NHC(O)NHR_7\), \(-S(O)\) \(NHR_7\), \(NHC(O)N(R_8)R_7\), \(OCH_2R_7\), \(CHR\) \(R'\), or \(OCHR'\) \(R_7\), wherein \(C_1-C_6\) alkyl, \(C_1-C_6\) alkoxy is optionally substituted with one or more substituents selected from the group consisting of \(C_1-C_6\) alkyl, \(C_1-C_6\) alkoxy, \(C_2-C_6\) alkenyl, \(C_2-C_6\) alkynyl, \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) cycloalkyl substituted with one or more halogen, \(C_3-C_8\) heterocyclyl, aryl, \(-heteroaryl-C(O)NH_2\), and heteroaryl;

\(R_1\) is \(H\), \(C_1-C_6\) alkyl, or \(-OH\);

\(R_4\) and \(R_5\) are independently \(H\), halogen, \(CH_2OH\), \(C_1-C_3\) alkyl, or \(C_1-C_3\) alkyl substituted with halogen, or \(R_4\) and \(R_5\) when combined can form a \(C_3-C_5\) cycloalkyl or \(C_3-C_5\) heterocyclyl;

\(R_6\) is \(H\), halogen, \(C_1-C_6\) alkyl, \(C_1-C_6\) alkyl substituted with halogen, \(C_1-C_6\) alkoxy, \(C_1-C_6\) alkoxy substituted with one or more halogen, \(C_2-C_6\) alkenyl, \(C_2-C_6\) alkynyl, \(C_3-C_8\) cycloalkyl, \(C_3-C_8\) heterocyclyl, aryl, or heteroaryl.
R₇ and R₈ are independently H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ heterocyclyl, aryl, and heteroaryl; or when combined R₇ and R₈ can form a C₃-C₈ heterocyclyl or heteroaryl ring;

----- indicates a single or double bond but never two double bonds adjacent to one another in the ring in which the ----- occurs

n is 0, 1, or 2; and

r is 0, 1, or 2.

Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase. The method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of a compound of Formula I.

Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase. The method involves administering to a patient in need thereof an effective amount of the compound of Formula I.

Another aspect of the invention relates to method of reducing alpha-ketoglutarate. The method comprises administering to a patient in need thereof an effective amount of the compound of Formula I.

Another aspect of the invention is directed to pharmaceutical compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier. The pharmaceutical acceptable carrier may further include an excipient, diluent, or surfactant.

The present invention further provides methods of treating cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors.
The present invention also provides potent \textit{mt}-IDH inhibitors with excellent
drug-like properties to cancers and other cell proliferative disorders. The inhibitors of
the present invention may target mutated IDH1 or IDH2.

The present invention further provides development of potent, orally active, and
selective IDH inhibitors as therapeutic agents for various diseases or disorders including cancers.
The invention also provides treatment for solid and hematologic cancers for which there are no
currently targeted therapies available for patients suffering from these conditions or disorders.

\textbf{Brief Description of the Drawings of the Invention}

Figure 1 illustrates the structure of compound 166.

Figure 2 illustrates a graph showing \textit{\alpha}-KG competition for the representative
compound 166 at varying concentrations of \textit{\alpha}-KG.

Figure 3 illustrates a graph showing NADPH competition for the representative
compound 166 at varying concentrations of NADPH.

\textbf{Detailed Description of the Invention}

IDH1 or IDH2 mutations are a genetically validated target in many solid and
hematologic cancers, but there are currently no targeted therapies available for patients in need
of treatment for specific conditions associated with \textit{mt}-IDH activity. Non-mutant IDH (e.g.,
wild-type) catalyze the oxidative decarboxylation of isocitrate to \textit{\alpha}-ketoglutarate thereby
reducing NAD+ (NADP+) to NADH (NADPH) (WO 2013/102431 to Cianchetta \textit{et al.}, hereby
incorporated by reference in its entirety). Mutations of IDH present in certain cancer cells result
in a new ability of the enzyme to catalyze the NADPH-dependent reduction of \textit{\alpha}-ketoglutarate
R(-)-2-hydroxyglutarate (2HG). 2HG is not formed by wild-type IDH. The production of 2HG
contributes to the formation and progression of cancer (Dang, \textit{L et al.}, Nature, 2009, 462:739-44,
hereby incorporated by reference in its entirety). The present invention provides inhibitors of
\textit{mt}-IDH, and prophylactic measures to reduce the formation and progression of 2HG in cells.

In a first aspect of the invention, are described the compounds of Formula 1:
and pharmaceutically acceptable salts, enantiomers, hydrates, solvates, prodrugs, isomers, and
tautomers thereof, where A, B, U, V, Z, W₁, W₂, W₃, R₁-R₆ are as described above.

[0019] The details of the invention are set forth in the accompanying description below.
Although methods and materials similar or equivalent to those described herein can be used in
the practice or testing of the present invention, illustrative methods and materials are now
described. Other features, objects, and advantages of the invention will be apparent from the
description and from the claims. In the specification and the appended claims, the singular forms
also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all
technical and scientific terms used herein have the same meaning as commonly understood by
one of ordinary skill in the art to which this invention belongs. All patents and publications cited
in this specification are incorporated herein by reference in their entireties.

Definitions

[0020] The articles "a" and "an" are used in this disclosure to refer to one or more than
one (i.e., to at least one) of the grammatical object of the article. By way of example, "an
element" means one element or more than one element.

[0021] The term "and/or" is used in this disclosure to mean either "and" or "or" unless
indicated otherwise.

[0022] The term “optionally substituted” is understood to mean that a given chemical
moiety (e.g. an alkyl group) can (but is not required to) be bonded other substituents (e.g.
heteroatoms). For instance, an alkyl group that is optionally substituted can be a fully saturated
alkyl chain (i.e. a pure hydrocarbon). Alternatively, the same optionally substituted alkyl group
can have substituents different from hydrogen. For instance, it can, at any point along the chain
be bounded to a halogen atom, a hydroxyl group, or any other substituent described herein. Thus
the term “optionally substituted” means that a given chemical moiety has the potential to contain
other functional groups, but does not necessarily have any further functional groups. Suitable substituents used in the optional substitution of the described groups include, without limitation, halogen, o xo, CN, -COOH, -CH₂CN, -O-C₁-C₆alkyl, C₁-C₆alkyl, -OC₁-C₆alkenyl, -OC₁-C₆alkynyl, -C₁-C₆alkenyl, -C₁-C₆alkynyl, -OH, -OP(O)(OH)₂, -OC(O)C₁-C₆alkyl, -C(O)C₁-C₆alkyl, -OC(O)OC₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂, -NHC(O)C₁-C₆alkyl, -C(O)NHC₁-C₆alkyl, -S(O)₂-C₁-C₆alkyl, -S(O)NHC₁-C₆alkyl, and S(O)N(C₁-C₆alkyl)₂.

[0023] Unless otherwise specifically defined, the term "aryl" refers to cyclic, aromatic hydrocarbon groups that have 1 to 2 aromatic rings, including monocyclic or bicyclic groups such as phenyl, biphenyl or naphthyl. Where containing two aromatic rings (bicyclic, etc.), the aromatic rings of the aryl group may be joined at a single point (e.g., biphenyl), or fused (e.g., naphthyl). The aryl group may be optionally substituted by one or more substituents, e.g., 1 to 5 substituents, at any point of attachment. Exemplary substituents include, but are not limited to, -H, -halogen, -O-C₁-C₆alkyl, C₁-C₆alkyl, -OC₁-C₆alkenyl, -OC₁-C₆alkynyl, -C₁-C₆alkenyl, -C₁-C₆alkynyl, -OH, -OP(O)(OH)₂, -OC(O)C₁-C₆alkyl, -C(O)C₁-C₆alkyl, -OC(O)OC₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂, -S(O)₂-C₁-C₆alkyl, -S(O)NHC₁-C₆alkyl, and S(O)N(C₁-C₆alkyl)₂. The substituents can themselves be optionally substituted. Furthermore when containing two fused rings the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring. Exemplary ring systems of these aryl groups include indanyl, indenyl, tetrahydronaphtalenyl, and tetrahydrobenzoxanulenyl.

[0024] Unless otherwise specifically defined, "heteroaryl" means a monovalent monocyclic aromatic radical of 5 to 10 ring atoms or a polycyclic aromatic radical, containing one or more ring heteroatoms selected from N, O, or S, the remaining ring atoms being C. Heteroaryl as herein defined also means a bicyclic heteroaromatic group wherein the heteroatom is selected from N, O, or S. The aromatic radical is optionally substituted independently with one or more substituents described herein. Examples include, but are not limited to, furyl, thienyl, pyrrolyl, pyridyl, pyrazolyl, pyrimidinyl, imidazolyl, pyrazinyl, indolyl, thiophen-2-yl, quinolyl, benzopyranyl, thiazolyl, and derivatives thereof. Furthermore when containing two fused rings the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring. Exemplary ring systems of these heteroaryl groups include
indolinyl, indolinonyl, dihydrobenzothiophenyl, dihydrobenzofuran, chromanyl, thiochromanyl, tetrahydroquinolinyl, dihydrobenzothiazine, and dihydrobenzoxanyl.

[0025] Halogen or “halo” refers to fluorine, chlorine, bromine and iodine.

[0026] Alkyl refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms. Examples of a C₁-C₆ alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, and isohexyl.

[0027] “Alkoxy” refers to a straight or branched chain saturated hydrocarbon containing 1-12 carbon atoms containing a terminal “O” in the chain. Examples of alkoxy groups include without limitation, methoxy, ethoxy, propoxy, butoxy, t-butoxy, or pentoxy groups.

[0028] “Alkenyl” refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms. The “alkenyl” group contains at least one double bond in the chain. Examples of alkenyl groups include ethenyl, propenyl, n-but enyl, iso-butenyl, pentenyl, or hexenyl.

[0029] “Alkynyl” refers to a straight or branched chain unsaturated hydrocarbon containing 2-12 carbon atoms. The “alkynyl” group contains at least one double bond in the chain. Examples of alkenyl groups include ethynyl, propargyl, n-butynyl, iso-butylnyl, pentynyl, or hexynyl.

[0030] “Cycloalkyl” means monocyclic saturated carbon rings containing 3-18 carbon atoms. Examples of cycloalkyl groups include, without limitations, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norboranyl, norborenyl, bicyclo[2.2.2]octyl, or bicyclo[2.2.2]octenyl.

[0031] “Cycloalkylalkyl” means monocyclic saturated carbon rings containing 3-18 carbon atoms further substituted with C₁-C₆ alkyl groups. In general cycloalkylalkyl groups herein described display the following formula where m is an integer from 1 to 6 and n is an integer from 1 to 16.
“Heterocyclil” or “heterocycloalkyl” monocyclic rings containing carbon and heteroatoms taken from oxygen, nitrogen, or sulfur and wherein there is not delocalized π electrons (aromaticity) shared among the ring carbon or heteroatoms; heterocyclil rings include, but are not limited to, oxetanyl, azetadiny1, tetrahydrofuranyl, pyrrolidinyl, oxazoliny1, oxazolidinyl, thiazoliny1, thiazolidinyl, pyrany1, thiopyrany1, tetrahydropyranyl, dioxaliny1, piperidinyl, morpholiny1, thiomorpholiny1, thiomorpholiny1 S-oxide, thiomorpholiny1 S-dioxide, piperaziny1, azepiny1, oxepiny1, diazepiny1, tropany1, and homotropany1.

The term "solvate" refers to a complex of variable stoichiometry formed by a solute and solvent. Such solvents for the purpose of the invention may not interfere with the biological activity of the solute. Examples of suitable solvents include, but are not limited to, water, MeOH, EtOH, and AcOH. Solvates wherein water is the solvent molecule are typically referred to as hydrates. Hydrates include compositions containing stoichiometric amounts of water, as well as compositions containing variable amounts of water.

The term "isomer" refers to compounds that have the same composition and molecular weight but differ in physical and/or chemical properties. The structural difference may be in constitution (geometric isomers) or in the ability to rotate the plane of polarized light (stereoisomers). With regard to stereoisomers, the compounds of formula (I) may have one or more asymmetric carbon atom and may occur as racemates, racemic mixtures and as individual enantiomers or diastereomers.

The disclosure also includes pharmaceutical compositions comprising an effective amount of a disclosed compound and a pharmaceutically acceptable carrier. Representative "pharmaceutically acceptable salts" include, e.g., water-soluble and water-insoluble salts, such as the acetate, amonate (4,4-diaminostilbene-2,2-disulfonate), benzenesulfonate, benzonate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, calcium, calcium edetate, camsylate, carbonate, chloride, citrate, clavulinate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluconate, gluconate, glutamate, glycollylarsanilate, hexafluorophosphate, hexylresorcinato, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, magnesium, maleate, maleate, mandelate, mesylate, methylbromide, methyl nitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, 3-hydroxy-2-naphthoate, oleate, oxalate,
palmitate, pamoate (1,1-methene-bis-2-hydroxy-3-naphthoate, einbonate), pantothenate, phosphate/diphosphate, picrate, polygalacturonate, propionate, p-toluenesulfonate, salicylate, stearate, subacetate, succinate, sulfate, sulfosalicylate, suramate, tannate, tartrate, teoclate, tosylate, triethiodide, and valerate salts.

[0036] A "patient" or "subject" is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus.

[0037] An "effective amount" when used in connection with a compound is an amount effective for treating or preventing a disease in a subject as described herein.

[0038] The term "carrier", as used in this disclosure, encompasses carriers, excipients, and diluents and means a material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body of a subject.

[0039] The term "treating" with regard to a subject, refers to improving at least one symptom of the subject's disorder. Treating includes curing, improving, or at least partially ameliorating the disorder.

[0040] The term "disorder" is used in this disclosure to mean, and is used interchangeably with, the terms disease, condition, or illness, unless otherwise indicated.

[0041] The term "administer", "administering", or "administration" as used in this disclosure refers to either directly administering a disclosed compound or pharmaceutically acceptable salt of the disclosed compound or a composition to a subject, or administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body.

[0042] The term "prodrug," as used in this disclosure, means a compound which is convertible in vivo by metabolic means (e.g., by hydrolysis) to a disclosed compound.

[0043] In one embodiment of the invention, A is CN. In this embodiment, B may further be C1-C6 alkoxy or C1-C6 alkyl. In another embodiment, B may also be methoxy.
[0044] In another embodiment of the compounds of Formula I, U is N. In this embodiment, A may further be CN.

[0045] In another embodiment of the compounds of Formula I, V is N. In this embodiment, A may also be CN.

[0046] In yet another embodiment, U, V, and Z are CH. This embodiment further provides for the compounds of Formula I where A is CN.

[0047] In one embodiment of the compounds of Formula I, V is CO, Z is N, and B is C\textsubscript{1}-C\textsubscript{6} alkyl.

[0048] In another embodiment of the invention, A is CN and B is methyl.

[0049] In another embodiment, of the compounds of Formula I, B may be . In this embodiment A may also be H or F.

[0050] In another embodiment of the compounds of Formula I, B is . In this embodiment, A may also be H or F. In this embodiment, R may also be methyl, ethyl, or cyclopropyl.

[0051] In another embodiment of the compounds of Formula I, B is . In this embodiment, A may also be H or F. In this embodiment, R may also be methyl, ethyl, cyclopropyl, or NR\textsubscript{3}R\textsubscript{8}.

[0052] In another embodiment of the invention, B may be . In this embodiment, A may also be H or F.
Yet another embodiment of the invention relates to compounds of Formula I where B is \(\overset{\text{N}}{\text{O}} \text{O}^\text{R} \). This embodiment also optionally provides for compounds of Formula I where A is H or F.

In another embodiment of the compounds of Formula I, B is \(\overset{\text{O}}{\text{S}} \text{R} \). This embodiment may further provide for compounds of Formula I where A is H or F.

In another embodiment of the invention, B is \(\overset{\text{O}}{\text{N}} \text{R}^\text{R}' \). In this embodiment, A may also further be H or F.

In other embodiments of the invention, are describe the compounds of Formula I where A is H or F.

In other embodiments of the invention, are describe the compounds of Formula I where A is

Another embodiment of the invention pertains to compounds of Formula I where \(\text{R}_4 \) and \(\text{R}_5 \) are H.

In another embodiment of the compounds of Formula I, \(\text{R}_4 \) is H and \(\text{R}_5 \) is methyl.

In yet another embodiment of the invention, \(\text{R}_4 \) is H and \(\text{R}_5 \) is (S)-methyl.

In another embodiment, \(\text{R}_4 \) and \(\text{R}_5 \) are halogen.

In another embodiment of the compounds of Formula I, \(\text{R}_4 \) is F and \(\text{R}_5 \) is methyl.

In another embodiment, \(\text{R}_4 \) and \(\text{R}_5 \) can combine to form a C_3-C_5 cycloalkyl.

In one embodiment of the compounds of Formula I, \(\text{W}_1 \), \(\text{W}_2 \), and \(\text{W}_3 \) are all CH.
In one embodiment of the compounds of Formula I, W₁, W₂, and W₃ are all CF.

In one embodiment, W₁ or W₃ is CH, N.

In one embodiment, W₃ is CR₂.

In another embodiment of the invention, R₁ can be halogen. In another embodiment, R₁ is chloro.

In one embodiment of the invention R₂ can be H, halogen, or C₁-C₆ alkoxy. In another embodiment, R₂ can also be C1-C6 alkoxy substituted with heteroaryl or C3-C8 heterocyclic.

In another embodiment, illustrative compounds of Formula I are:

4-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxybenzonitrile;
4-{{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxybenzonitrile;
6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-(6-chloro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile;
6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methylpyridine-3-carbonitrile;
6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methylpyridine-3-carbonitrile;
6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxypyridine-3-carbonitrile;
5-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-6-methoxypyridine-2-carbonitrile;
4-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-3-methanesulfonylbenzonitrile;
6-{{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methylpyridine-3-carbonitrile;
4-\{1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methoxybenzonitrile;
6-\{1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-2-methylpyridine-3-carbonitrile;
6-chloro-3-\{(1S)-1-\{4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{6-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{4-(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{3-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{4-fluoro-6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{6-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{1-(\{4-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl]amino\)ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1S)-1-\{6-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
6-chloro-3-\{(1R)-1-\{6-(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl]amino\}ethyl\}-1,2-dihydroquinolin-2-one;
5-\{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-\{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-\{(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino\}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-
dihydropyrazine-2-carbonitrile;
5-[(1R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-
1,6-dihydropyridine-2-carbonitrile;
5-[(1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-
dihydropyridine-2-carbonitrile;
6-[(1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-
carbonitrile;
6-[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-
carbonitrile;
5-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-
1,6-dihydropyridine-2-carbonitrile;
5-[(1R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-
1,6-dihydropyridine-2-carbonitrile;
5-[(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-
dihydropyridine-2-carbonitrile;
6-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-
methylpyridine-3-carbonitrile;
6-[(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-
carbonitrile;
6-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-
methoxypyridine-3-carbonitrile;
6-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-
methoxypyridine-3-carbonitrile;
6-[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-
methylpyridine-3-carbonitrile;
5-[(1S)-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-
methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1R)-1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-
methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1H-pyrazol-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]ethyl]amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-[(1S)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile;
6-[(1S)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile;
4-[(1S)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methoxybenzonitrile;
5-[(1S)-1-[6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-[(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
5-[(1S)-1-[(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-chloro-3-[(1S)-1-[(4-methanesulfonyl-3-methoxyphenyl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(4-[(2-hydroxyethyl)amino]-6-methylpyridin-2-yl]amino)ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[(1S)-1-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-3-fluoropyridin-4-yl]acetamide;
2-[(1S)-1-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-2-yl]-1\[6,2h]-2-thiazolidine-1,1-dione;
6-chloro-3-[(1S)-1-[(3-fluoro-4-[(2-hydroxyethyl)amino]pyridin-2-yl]amino)ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(1S)-1-[(3-fluoro-4-(1H-imidazol-1-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-\([(1S)-1-\{[3-fluoro-4-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(1,3-dimethyl-1H-pyrazol-5-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(1,5-dimethyl-1H-pyrazol-4-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(1H-pyrazol-5-yl)pyridin-2-yl]amino\}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[3-fluoro-4-(1-methyl-1H-pyrrol-2-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{4-[1-(2-methylpropyl)-1H-pyrazol-5-yl]pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-[1-(propan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(1,5-dimethyl-1H-pyrazol-4-yl)-3-fluoropyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[3-fluoro-4-(4-methylthiophen-3-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{4-[1-(oxan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino\}ethyl]-1,2-dihydroquinolin-
2-one;
6-chloro-3-\[(1S)-1-\{[4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-[3-(trifluoromethyl)-1H-pyrazol-4-yl]pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(3,5-dimethyl-1H-pyrazol-4-yl)-3-fluoropyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[4-(1,3-dimethyl-1H-pyrazol-5-yl)-3-fluoropyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-\[(1S)-1-\{[3-fluoro-4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino\}ethyl]-1,2-
dihydroquinolin-2-one;
6-chloro-3-({(1S)-1-[(4-(dimethyl-1,2-oxazol-4-yl)-3-fluoropyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-(({(1S)-1-[(3-fluoro-4-[(1-oxan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-(({(1S)-1-[(3-fluoro-4-[(1-(2-methylpropyl)-1H-pyrazol-5-yl]pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-(({(1S)-1-[(3-fluoro-4-[(1-(propan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one;
5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;
4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-methoxybenzonitrile;
6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-1,2-methylpyridine-3-carbonitrile;
6-chloro-3-{{(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino}methyl}-1,2-dihydroquinolin-2-one;
6-chloro-3-{{(1-ethy1-2-oxo-1,2-dihydropyridin-3-yl)amino}methyl}-1,2-dihydroquinolin-2-one;
5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-6-oxo-1,6-dihydropyridine-2-carbonitrile;
6-chloro-3-{{(1-cyclopropyl-2-oxo-1,2-dihydropyridin-3-yl)amino}methyl}-1,2-dihydroquinolin-2-one;
6-chloro-3-{{(1,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)amino}methyl}-1,2-dihydroquinolin-2-one;
3-{{(6-bromo-2-oxo-1,2-dihydropyridin-3-yl)amino}methyl}-6-chloro-1,2-dihydroquinolin-2-one;
4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-hydroxybenzonitrile;
6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-4-methylpyridine-3-carbonitrile;
4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2,6-dimethoxybenzonitrile;
4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(trifluoromethoxy)benzonitrile;
6-chloro-3-{{(2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)amino}methyl}-1,2-dihydroquinolin-2-one;
4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(2-hydroxyethoxy)benzonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-(trifluoromethyl)pyridine-3-carbonitrile;
6-chloro-3-[(4-(1H-imidazol-1-yl)-3-methoxyphenyl]amino}methyl]-1,2-dihydroquinolin-2-one;
5-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-6-methoxypyridine-2-carbonitrile;
4-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-ethoxybenzonitrile;
2-(5-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-cyanophenoxy)acetamide;
2-chloro-6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}pyridine-3-carbonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-(2-oxo-1,3-oxazolidin-3-yl)pyridine-3-carbonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-[2-(propan-2-yl)pyrrolidin-1-yl]pyridine-3-carbonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-[methyl(2-methylpropyl]amino)pyridine-3-carbonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxypyridine-3-carbonitrile;
6-chloro-3-[(4-methanesulfonyl-3-methoxyphenyl]amino}methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino}methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl]amino}methyl]-1,2-dihydroquinolin-2-one;
4-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-3-methoxybenzonitrile;
4-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-(trifluoromethyl)benzonitrile;
6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}pyridine-3-carbonitrile;
4-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methylbenzonitrile;
3-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}benzonitrile;
6-chloro-3-[(3-(propan-2-yl)pyridin-2-yl]amino}methyl]-1,2-dihydroquinolin-2-one;
4-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-fluorobenzonitrile
6-chloro-3-[(4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)phenyl]amino}methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(4-(1H-imidazol-1-yl)phenyl]amino}methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[(4,6-dimethylpyridin-2-yl]amino}methyl]-1,2-dihydroquinolin-2-one;
2-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]benzamide;
6-chloro-3-[[4-methoxy-pyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[5-fluoropyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
2-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]pyridine-4-carbonitrile;
methyl 6-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]pyridine-2-carboxylate;
6-chloro-3-[[4-methylpyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[4-fluoro-3-methoxyphenyl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[5-chloropyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
4-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]N-methylbenzamide;
2-(4-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]phenoxy)acetamide;
6-chloro-3-[[2-hydroxypyridin-3-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[4-chloro-3-methoxyphenyl]amino]methyl]-1,2-dihydroquinolin-2-one;
2-(3-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]phenyl)acetonitrile;
6-chloro-3-[[5-(trifluoromethyl)pyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
5-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]pyridine-2-carbonitrile;
6-chloro-3-[[4-(trifluoromethyl)pyridin-2-yl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[2-fluorophenyl]amino]methyl]-1,2-dihydroquinolin-2-one;
6-chloro-3-[[1-methyl-2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl]amino]methyl]-1,2-
dihydroquinolin-2-one;
methyl 5-[[6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-6-oxo-1,6-
dihydropyridine-3-carboxylate;
3-(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino]methyl]-6-methyl-1,2-
dihydroquinolin-2-one;
2-methoxy-4-[[2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]benzonitrile;
3-(3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino]methyl]-1,2-dihydroquinolin-2-one;
3-(4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]amino]methyl]-1,2-dihydroquinolin-2-one;
2-methoxy-4-[[6-methyl-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]benzonitrile;
4-[[6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
3-[[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]amino]methyl]-6-methyl-1,2-
dihydroquinolin-2-one;
6-[[6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]pyridine-3-carbonitrile;
6,7-dimethyl-3-((4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one;
N-(3,4-dihydro-2H-pyrrol-5-yl)-3-((6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzene-1-sulfonamide;
3-((3-methoxy-4-((1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-6,7-dimethyl-1,2-dihydroquinolin-2-one;
2-methoxy-4-((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile;
6-((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-3-carbonitrile;
3-((4-(1H-imidazol-1-yl)phenyl)amino)methyl)-6-methoxy-1,2-dihydroquinolin-2-one;
3-methoxy-3-(4-methylpyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-((1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino)methyl)-1,2-dihydroquinolin-2-one;
6-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methylpyridine-3-carbonitrile;
4-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
2-methoxy-4-((7-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile;
3-((3-methoxy-4-((1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-7-methyl-1,2-dihydroquinolin-2-one;
4-((6-bromo-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((6-tert-butyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
2-methoxy-4-((2-oxo-6-(trifluoromethyl)-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile;
4-((6-fluoro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((6-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((6-iodo-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((6-ethoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((7-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-((7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
2-methoxy-4-((7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile;
4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile;
4-([6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl)amino)-2-methoxybenzonitrile;
6-chloro-3-{[(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino]methyl}-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;
6-[(1-{6-chloro-7-[(3,3-difluorocyclobutyl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl}ethyl)amino]-2-methylpyridine-3-carbonitrile;
4-[[6-chloro-7-{{(2S)-1-methylpyrrolidin-2-yl)methoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
4-[[6-chloro-7-{2-hydroxy-3-(morpholin-4-yl)propoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
4-[[6-chloro-7-{2-(morpholin-4-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
4-([6-chloro-2-oxo-7-(pyridin-3-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl)amino)-2-methoxybenzonitrile;
4-([6-chloro-7-(oxan-4-ylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]methyl)amino)-2-methoxybenzonitrile;
4-[[6-chloro-7-{2-(dimethylamino)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
6-([6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl)amino)-2-methylpyridine-3-carbonitrile;
6-[[6-chloro-7-{2-(4-methanesulfonylpiperazin-1-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methylpyridine-3-carbonitrile;
4-[[6-chloro-7-{2-(4-methanesulfonylpiperazin-1-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
4-[[6-chloro-2-oxo-7-{{(3S)-oxolan-3-ylmethoxy}-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
4-[[6-chloro-7-{{1-methylpiperidin-4-yl)oxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile;
2-[(6-chloro-3-{{(4-cyano-3-methoxyphenyl)amino}methyl}-2-oxo-1,2-dihydroquinolin-7-yl)oxy]-N,N-dimethylacetamide;
2-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl]-2-oxo-1,2-dihydroquinolin-7-yl)oxy]acetamide;
4-[(6-chloro-7-[2-(morpholin-4-yl)-2-oxoethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1,5-dimethyl-1H-pyrazol-3-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(7-benzyllox)-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methylpiperidin-2-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(2-methylpyridin-4-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-(pyridin-4-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1,1-dioxo-1H-1,3-thian-4-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-(pyrazin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methyl-1H-imidazol-5-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[(1-methyl-1H-imidazol-2-yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
5-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl]-2-oxo-1,2-dihydroquinolin-7-yl)oxy]methyl]-1,2,4-oxadiazole-3-carboxamide;
4-[(6-chloro-2-oxo-7-[2-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(pyridin-4-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[3-(dimethylamino)propoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[3-(pyrrolidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[3-(piperidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(2-oxopyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(2-oxopyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-7-[2-(piperidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(4-methylpiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(methyl-1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-(6-chloro-7-[2-(1,1-dioxidothiomorpholino)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-7-[2-(ethoxyethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-8-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-8-[2-(morpholin-4-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
4-[(6-chloro-2-oxo-8-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile;
2-methoxy-4-[(2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)methyl]amino] benzonitrile;
6-{[1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropyl]amino}-2-methylpyridine-3-carbonitrile;
6-{[2-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)propan-2-yl]amino}-2-methylpyridine-3-carbonitrile;
5-{[(1R)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile; or
5-{[(1S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile.

[0071] In another embodiment, illustrative compounds of Formula I include: methyl N-(2-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridin-4-yl)carbamate;
2-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridine-4-carboxamide;
6-chloro-3-{[(1S)-1-{[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino}ethyl]}-1,2-dihydroquinolin-2-one;
N-(2-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridin-4-yl)acetamide;
6-chloro-3-{[(1S)-1-{[4-(1H-imidazol-1-yl)pyridin-2-yl]amino}ethyl]}-1,2-dihydroquinolin-2-one;
6-chloro-3-{[(1S)-1-{[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino}ethyl]}-1,2-dihydroquinolin-2-one;
3-{[(1S)-1-{[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl]}-6-chloro-1,2-dihydroquinolin-2-one;
6-chloro-3-{[(1S)-1-{[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl]}-1,2-dihydroquinolin-2-one;
6-chloro-3-{[(1S)-1-{[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino}ethyl]}-1,2-dihydroquinolin-2-one;
N-(2-{[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridin-4-yl)-N-(2-methylpropyl) methanesulfonamide;
methyl N-(2-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)carbamate;

2-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridine-4-carboxamide;

6-chloro-3-[[1S]-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-[[1S]-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

N-(2-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)acetamide;

6-chloro-3-[[1S]-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-[[1S]-1-[[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-[[1S]-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

3-[[1S]-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-[[1S]-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-[[1S]-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-2-one;

N-(2-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino) pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;

4-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino)-2-methoxybenzonitrile;
methyl N-(2-[[[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl]carbamate;
2-[[[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridine-4-carboxamide;
6-chloro-3-[[1S]-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl]acetamide;
6-chloro-3-[[1S]-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
3-[(1S)-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-7-methoxy-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-methoxy-3-[(1S)-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl]-N-(2-methylpropyl)methanesulfonamide;
4-[[[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
6-{{(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl}amino}-2-methylpyridine-3-carbonitrile;

5-{{(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl}amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile;

methyl N-2-{{(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl}amino}pyridin-4-yl)carbamate;

2-{{(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl}amino}pyridine-4-carboxamide;

6-chloro-3-{{(1S)-1-[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-{{(1S)-1-[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

N-(2-{{(1S)-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl}amino}pyridin-4-yl)acetamide;

6-chloro-3-{{(1S)-1-[4-(1H-imidazol-1-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-{{(1S)-1-[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-{{(1S)-1-[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

3-{{(1S)-1-[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl}-6-chloro-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-{{(1S)-1-[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;

6-chloro-3-{{(1S)-1-[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino}ethyl}-7-(propan-2-yloxy)-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl]amino}pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;
4-[[1S]-1-[6-chloro-2-oxo-7-(propan-2-yloxy)-1,2-dihydroquinolin-3-yl]ethyl]amino)-2-methoxybenzonitrile;
6-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino)-2-methylpyridine-3-carbonitrile;
methyl N-(2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}pyridin-4-yl)carbamate;
2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}pyridine-4-carboxamide;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
N-(2-[[1S]-1-[6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino}pyridin-4-yl)acetamide;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[4(1,2-oxazol-4-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
3-[[1S]-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl]-6-chloro-7-(cyclopropylmethoxy)-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[[1S]-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino}ethyl]-1,2-dihydroquinolin-2-one;
6-chloro-7-(cyclopropylmethoxy)-3-[(1S)-1-{{4-(3-methylpyridin-4-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

N-(2-{{(1S)-1-[(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridin-4-yl}-N-(2-methylpropyl) methanesulfonamide;

4-{{(1S)-1-[(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}ethyl} carbamate;

methyl N-(2-{{(1S)-1-[(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl] amino}pyridin-4-yl}carbamate;

2-{{(1S)-1-[(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}pyridine-4-carboxamide;

6-chloro-7-fluoro-3-[(1S)-1-{{3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-7-fluoro-3-[(1S)-1-{{4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

N-(2-{{(1S)-1-[(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl] amino}pyridin-4-yl}acetamide;

6-chloro-7-fluoro-3-[(1S)-1-{{4-(1H-imidazol-1-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-7-fluoro-3-[(1S)-1-{{4-(1,2-oxazol-4-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-7-fluoro-3-[(1S)-1-{{4-(4-methylthiophen-3-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one;

3-[(1S)-1-{{4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl}amino}ethyl]-6-chloro-7-fluoro-1,2-dihydroquinolin-2-one;

6-chloro-7-fluoro-3-[(1S)-1-{{4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one
6-chloro-7-fluoro-3-[(1S)-1-[(4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one

N-(2-[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;

4-[(1S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;

6-[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;

methyl N-(2-[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)carbamate;

2-[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridine-4-carboxamide;

6-chloro-8-fluoro-3-[(1S)-1-[(3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-8-fluoro-3-[(1S)-1-[(4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;

N-(2-[(1S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino)pyridin-4-yl)acetamide;

6-chloro-8-fluoro-3-[(1S)-1-[(4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-1dihydroquinolin-2-one;

6-chloro-8-fluoro-3-[(1S)-1-[(4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-8-fluoro-3-[(1S)-1-[(4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one;

3-[(1S)-1-[(4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-8-fluoro-1,2-dihydroquinolin-2-one;
6-chloro-8-fluoro-3-[(1S)-1-[(4-[(1H-imidazol-5-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydroquinolin-2-one;

6-chloro-8-fluoro-3-[(1S)-1-[(4-[(3-methylpyridin-4-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydroquinolin-2-one;

N-(2-[[1(S)-1-[(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-4-yl]-N-(2-metylpropyl)methanesulfonamide;

4-[[1(S)-1-[(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;

6-[[1(S)-1-[(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;

methyl N-(2-[[1(S)-1-[(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]pyridin-4-yl)carbamate;

2-[[1(S)-1-[(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]pyridine-4-carboxamide;

6-chloro-3-[[1(S)-1-[(3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

6-chloro-3-[[1(S)-1-[(4-[5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

N-(2-[[1(S)-1-[(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]pyridin-4-yl)acetamide;

6-chloro-3-[[1(S)-1-[(4-(1H-imidazol-1-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

6-chloro-3-[[1(S)-1-[(4-(1,2-oxazol-4-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

6-chloro-3-[[1(S)-1-[(4-(4-methylthiophen-3-yl)pyridin-2-yl]amino)ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;
3-[(1S)-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-1,2-dihydro-1,8-naphthyridin-2-one;

6-chloro-3-[(1S)-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

6-chloro-3-[(1S)-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydro-1,8-naphthyridin-2-one;

N-(2-[[1(S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)]ethyl]amino)pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;

4-[[1(S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-2-methoxybenzonitrile;

6-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile;

methyl N-(2-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]pyridin-4-yl)carbamate;

2-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]pyridine-4-carboxamide;

6-chloro-3-[(1S)-1-[[3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinazolin-2-one;

6-chloro-3-[(1S)-1-[[4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinazolin-2-one;

N-(2-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]pyridin-4-yl)acetamide;

6-chloro-3-[(1S)-1-[[4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinazolin-2-one;

6-chloro-3-[(1S)-1-[[4-(1,2-oxazol-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinazolin-2-one;

6-chloro-3-[(1S)-1-[[4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinazolin-2-one;

3-[(1S)-1-[[4-(1-benzyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-6-chloro-1,2-dihydroquinazolin-2-one;
6-chloro-3-[1(S)-1-[[4-(1-methyl-1H-imidazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinoxalin-2-one;
6-chloro-3-[1(S)-1-[[4-(3-methylpyridin-4-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinoxalin-2-one;
N-(2-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]pyridin-4-yl)-N-(2-methylpropyl)methanesulfonamide;
4-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]-2-methoxybenzonitrile;
6-[[1(S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(6-chloro-1-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(6-chloro-2-oxo-7-[[1R]-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
6-[[1(S)-1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile;
4-[[1(S)-1-(6-chloro-1-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
4-[[1(S)-1-(6-chloro-2-oxo-7-[[1R]-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxybenzonitrile;
6-\{(1S)-1-\{6-chloro-2-oxo-7-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-dihydroquinolin-3-yl\}ethylamino\}-2-methoxypyridine-3-carbonitrile;

6-\{(1S)-1-\{6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl\}ethylamino\}-2-methoxypyridine-3-carbonitrile;

6-\{(1S)-1-\{6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl\}ethylamino\}-4-methoxypyridine-3-carbonitrile;

2-methoxy-4-\{(1S)-1-(6-methyl-2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethylamino\}benzonitrile;

2-methoxy-4-\{(1S)-1-(2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethylamino\}benzonitrile

1-methyl-5-\{(1S)-1-(6-methyl-2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethylamino\}-6-oxo-1,6-dihydropyridine-2-carbonitrile; or

1-methyl-6-oxo-5-\{(1S)-1-(2-oxo-1,2-dihydro-1,5-naphthyridin-3-yl)ethylamino\}-1,6-dihydropyridine-2-carbonitrile.

[0072] In another embodiment of the invention, the compounds of Formula I are enantiomers. In some embodiments the compounds are (S)-enantiomer. In other embodiments the compounds may also be (R)-enantiomer. In yet other embodiments, the compounds of Formula I may be (+) or (-) enantiomers.

[0073] It should be understood that all isomeric forms are included within the present invention, including mixtures thereof. If the compound contains a double bond, the substituent may be in the E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis or trans configuration. All tautomeric forms are also intended to be included.

Methods of Using the Disclosed Compounds

[0074] Another aspect of the invention relates to a method of treating a disease or disorder associated with mutant isocitrate dehydrogenase. The method involves administering to a patient in need of a treatment for diseases or disorders associated with mutant isocitrate dehydrogenase an effective amount of the compositions and compounds of Formula I.
Another aspect of the invention is directed to a method inhibiting mutant isocitrate dehydrogenase. The method involves administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.

Examples of a mutant IDH protein having a neomorphic activity are mutant IDH1 and mutant IDH2. A neomorphic activity associated with mutant IDH1 and mutant IDH2 is the ability to produce 2-hydroxyglutarate (2-HG neomorphic activity), specifically R-2-HG (R-2-HG neomorphic activity). Mutations in IDH 1 associated with 2-HG neomorphic activity, specifically R-2-HG neomorphic activity, include mutations at residues 97, 100, and 132, e.g. G97D, R100Q, R132H, R132C, R132S, R132G, R132L, and R132V. Mutations in IDH2 associated with 2-HG neoactivity, specifically R-2-HG neomorphic activity, include mutations at residues 140 and 172, e.g. R140Q, R140G, R172K, R172M, R172S, R172G, and R172W.

Another aspect of the invention relates to method of reducing alpha-ketoglutarate. The method comprises administering to a patient in need thereof an effective amount of the compositions or compounds of Formula I.

One therapeutic use of the compounds or compositions of the present invention which inhibit mt-IDH is to provide treatment to patients or subjects suffering from cell proliferative diseases and cancers including, without limitation, glioma, glioblastoma multiforme, paraganglioma, supratentorial primordial neuroectodermal tumors, acute myeloid leukemia (AML), prostate cancer, thyroid cancer, colon cancer, chondrosarcoma, cholangiocarcinoma, peripheral T-cell lymphoma, melanoma, intrahepatic cholangiocarcinoma (IHCC), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and other solid tumors. Targeted treatments for these cancers and cell proliferative diseases are not currently available to patients suffering from these conditions. Therefore, there is a need for new therapeutic agents selective to these conditions.

The disclosed compounds of the invention can be administered in effective amounts to treat or prevent a disorder and/or prevent the development thereof in subjects.

Administration of the disclosed compounds can be accomplished via any mode of administration for therapeutic agents. These modes include systemic or local administration such as oral, nasal, parenteral, transdermal, subcutaneous, vaginal, buccal, rectal or topical administration modes.
Depending on the intended mode of administration, the disclosed compositions can be in solid, semi-solid or liquid dosage form, such as, for example, injectables, tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices. Likewise, they can also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous or intramuscular form, and all using forms well known to those skilled in the pharmaceutical arts.

Illustrative pharmaceutical compositions are tablets and gelatin capsules comprising a Compound of the Invention and a pharmaceutically acceptable carrier, such as a) a diluent, e.g., purified water, triglyceride oils, such as hydrogenated or partially hydrogenated vegetable oil, or mixtures thereof, corn oil, olive oil, sunflower oil, safflower oil, fish oils, such as EPA or DHA, or their esters or triglycerides or mixtures thereof, omega-3 fatty acids or derivatives thereof, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, sodium, saccharin, glucose and/or glycine; b) a lubricant, e.g., silica, talc, stearic acid, its magnesium or calcium salt, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and/or polyethylene glycol; for tablets also; c) a binder, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, magnesium carbonate, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, waxes and/or polyvinylpyrrolidone, if desired; d) a disintegrant, e.g., starches, agar, methyl cellulose, bentonite, xanthan gum, alginic acid or its sodium salt, or effervescent mixtures; e) absorbent, colorant, flavorant and sweetener; f) an emulsifier or dispersing agent, such as Tween 80, Labrasol, HPMC, DOSS, caproyl 909, labrafac, labrafil, peceol, transcutol, capmul MCM, capmul PG-12, captex 355, gelucire, vitamin E TGPS or other acceptable emulsifier; and/or g) an agent that enhances absorption of the compound such as cyclodextrin, hydroxypropyl-cyclodextrin, PEG400, PEG200.

Liquid, particularly injectable, compositions can, for example, be prepared by dissolution, dispersion, etc. For example, the disclosed compound is dissolved in or mixed with a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form an injectable isotonic solution or suspension.
Proteins such as albumin, chylomicron particles, or serum proteins can be used to solubilize the disclosed compounds.

[0084] The disclosed compounds can be also formulated as a suppository that can be prepared from fatty emulsions or suspensions; using polyalkylene glycols such as propylene glycol, as the carrier.

[0085] The disclosed compounds can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, containing cholesterol, stearylamine or phosphatidylcholines. In some embodiments, a film of lipid components is hydrated with an aqueous solution of drug to a form lipid layer encapsulating the drug, as described in U.S. Pat. No. 5,262,564.

[0086] Disclosed compounds can also be delivered by the use of monoclonal antibodies as individual carriers to which the disclosed compounds are coupled. The disclosed compounds can also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylasspanamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the Disclosed compounds can be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepisolon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanomethylates and cross-linked or amphipathic block copolymers of hydrogels. In one embodiment, disclosed compounds are not covalently bound to a polymer, e.g., a polycarboxylic acid polymer, or a polyacrylate.

[0087] Parental injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions or solid forms suitable for dissolving in liquid prior to injection.

[0088] Another aspect of the invention is directed to pharmaceutical compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier. The pharmaceutical acceptable carrier may further include an excipient, diluent, or surfactant.
Compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain from about 0.1% to about 99%, from about 5% to about 90%, or from about 1% to about 20% of the disclosed compound by weight or volume.

The dosage regimen utilizing the disclosed compound is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal or hepatic function of the patient; and the particular disclosed compound employed. A physician or veterinarian of ordinary skill in the art can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.

Effective dosage amounts of the disclosed compounds, when used for the indicated effects, range from about 0.5 mg to about 5000 mg of the disclosed compound as needed to treat the condition. Compositions for in vivo or in vitro use can contain about 0.5, 5, 20, 50, 75, 100, 150, 250, 500, 750, 1000, 1250, 2500, 3500, or 5000 mg of the disclosed compound, or, in a range of from one amount to another amount in the list of doses. In one embodiment, the compositions are in the form of a tablet that can be scored.

Method of Synthesizing the Compounds

The compounds of the present invention may be made by a variety of methods, including standard chemistry. Suitable synthetic routes are depicted in the Schemes given below.

The compounds of formula (I) may be prepared by methods known in the art of organic synthesis as set forth in part by the following synthetic schemes. In the schemes described below, it is well understood that protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles or chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis", Third edition, Wiley, New York 1999). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection processes, as well as the reaction conditions and order of their execution, shall be consistent with the preparation of compounds of formula (I).
Those skilled in the art will recognize if a stereocenter exists in the compounds of formula (I). Accordingly, the present invention includes both possible stereoisomers (unless specified in the synthesis) and includes not only racemic compounds but the individual enantiomers and/or diastereomers as well. When a compound is desired as a single enantiomer or diastereomer, it may be obtained by stereospecific synthesis or by resolution of the final product or any convenient intermediate. Resolution of the final product, an intermediate, or a starting material may be affected by any suitable method known in the art. See, for example, "Stereochemistry of Organic Compounds" by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-Interscience, 1994).

The compounds described herein may be made from commercially available starting materials or synthesized using known organic, inorganic, and/or enzymatic processes.

Preparation of compounds

The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include but are not limited to those methods described below. Compounds of the present invention formula (I) can be synthesized by following the steps outlined in Schemes 1-5, which comprise different sequences of assembling intermediates II, III, IV, V, VI and VII. Starting materials are either commercially available or made by known procedures in the reported literature or as illustrated.

Scheme 1
Scheme 2

IV
Hal = Cl, Br, I

Method B
Suzuki (X = C)
Buchwald (X = N)
NaH, heat (X = N)

I-b
X = C, N

Scheme 3

IV
Hal = Cl, Br, I

Method C
1) K$_2$CO$_3$, DIEA
or trans-1,2-diaminocyclohexane
Cul, K$_3$PO$_4$
2) R'CONHR',
R'SO$_2$NH$_2$R',

I-c
R', R'' = H, Me, iPr, iBu
R' and R'' can form a C$_{1-6}$ cyclic ring
X = CONH$_2$, CO, CO$_2$, SO$_2$

Scheme 4

V + VI

Method D
1. AcOH
2. NaBH$_3$(OAc)$_3$

I-d

Scheme 5
Wherein A, B, $R^1 - R^6$ and W are defined in Formula (I).

[0097] The general ways of preparing target molecules I-a – I-e by using intermediates II, III, IV, V, VI and VII are outlined in Scheme 1-5. Displacement of aryl halides (III) with intermediates amine (II) under standard nucleophilic substitution conditions using base such as N,N-diisopropylethylamine, and/or potassium carbonate, cesium carbonate in solvent DMSO or DMF gives the compounds of Formula I (I-a). Coupling of aryl halides (IV) with aryl-, heterocyclic boronic acid/ester or with 2° amine and amide in presence of palladium catalyst under elevated temperature yields the compound of formula I (I-b). Displacement of aryl halides (IV) with 2° amine, amide or sulfonamide in presence of base such as K_2CO_3, or Cs_2CO_3 combined with organic base such as DIEA or TEA under elevated temperature also yields the compound of formula I (I-b). Copper—diamine-catalyzed N-arylation of amide, sulfonamide, lactam and sulfam with aryl halides (IV) by using trans-1,2-diaminocyclohexane, Cul and K_3PO_4 can produce the compound of formula I (I-c). Reductive amination of aldehyde (V) with amine (VI) is performed under standard procedure (AcOH and NaBH(OAc)$_3$) to prepare the compound of formula I (I-d). **Mitsunobu** reaction of intermediate (VII) with various alcohols give phenyl ether compounds of formula I (I-e). A mixture of enantiomers, diastereomers, cis/trans isomers resulted from the process can be separated into their single components by chiral salt technique,
chromatography using normal phase, reverse phase or chiral column, depending on the nature of the separation.

[0098] It should be understood that in the description and formulae shown above, the various groups A, B, W₁, W₂, W₃, U, V, Z, R₁-R₆ and other variables are as defined above, except where otherwise indicated. Furthermore, for synthetic purposes, the compounds of schemes 1, 2, 3, 4 and 5 are mere representative with elected radicals to illustrate the general synthetic methodology of the compound of formula I as defined herein.

Examples

[0099] The disclosure is further illustrated by the following examples and synthesis schemes, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims.

[0100] Table 1 provides activity of illustrative compounds of Formula I in IDH1-R132H, IDH1-R132C, IDH1-MS-HTC116-R132H, and IDH1-MS-HTC116-R132C assays.

Analytical Methods, Materials, and Instrumentation

[0101] Unless otherwise noted, reagents and solvents were used as received from commercial suppliers. Proton nuclear magnetic resonance (NMR) spectra were obtained on either Bruker or Varian spectrometers at 300 MHz. Spectra are given in ppm (δ) and coupling constants, J, are reported in Hertz. Tetramethylsilane (TMS) was used as an internal standard. Mass spectra were collected using a Waters ZQ Single Quad Mass Spectrometer (ion trap electrospray ionization (ESI)). High performance liquid chromatograph (HPLC) analyses were obtained using a XBridge Phenyl or C18 column (5 μm, 50x4.6 mm, 150x4.6 mm or 250x4.6 mm) with UV detection (Waters 996 PDA) at 254 nm or 223 nm using a standard solvent gradient program (Method 1-4).

LCMS Method 1 (ESI, 4 min method):

Instruments:
HPLC: Waters HT2790 Alliance MS: Waters ZQ Single Quad Mass Spectrometer
UV: Waters 996 PDA

Conditions:

Mobile phase A 95% water/5% methanol with 0.1% Formic Acid
Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid
Column XBridge Phenyl or C18, 5 μm 4.6 x 50 mm
Column temperature Ambient
LC gradient Linear 5-95% B in 2.5 min, hold 95% B to 3.5 min
LC Flow rate 3 mL/min
UV wavelength 220 nm and 254 nm
Ionization Mode Electrospray Ionization: positive/negative

LCMS method 2 (ESI, 10 min method):

Instruments:

HPLC: Waters HT2790 Alliance MS: Waters ZQ Single Quad Mass Spectrometer
UV: Waters 996 PDA

Conditions:

Mobile phase A (A) 95% water/5% methanol with 0.1% Formic Acid
Mobile phase B (B) 95% methanol/5% water with 0.1% Formic Acid
Column XBridge C18, 5 μm 4.6 x 150 mm
Column temperature Ambient
LC gradient Linear 5-95% B in 5.5 min, hold 95% B to 7.5 min
LC Flow rate 1.2 mL/min
UV wavelength 220 nm and 254 nm
Ionization Mode Electrospray Ionization: positive/negative

LCMS method 3: (APCI, 20 min)

Instruments and conditions:
HPLC-Agilent 1100 series.

Column: Agela Technologies Durashell C18, 3 μm, 4.6 x 50 mm,).

Mobile Phase A: ACN + 0.1 % TFA.
Mobile Phase B: Water + 0.1 % TFA.

Gradient: Time (min) %B
00 95
15 05
18 05
20 95

Flow Rate: 1 mL/min.

Column Temperature: Ambient.
Detector: 254 nm.

LCMS Method 4 (ESI, 2.5 min method):

Instruments and conditions:

HPLC: Waters Acquity Binary Solvent
Manager

MS: Waters ZQ Mass Detector

UV: Waters Acquity PDA

Mobile phase A (A) 95% water/5% acetonitrile with 0.1% formic acid in
10 mM ammonium formate

Mobile phase B (B) 95% acetonitrile/5% water with 0.09% formic acid

Column Waters Acquity UPLC BEH C18, 1.7 μm, 2.1 x 50 mm

Column temperature 35 °C

LC gradient 5-100% B in 2.0 min, hold 100% B to 2.2 min

LC Flow rate 0.6 mL/min

UV wavelength 220 nm and 254 nm

Ionization Mode Electrospray Ionization; positive/negative

Abbreviations used in the following examples and elsewhere herein are:
Ac_2O acetic anhydride
ACN Acetonitrile
BOP ammonium 4-((3-(pyridin-3-ylmethyl)ureido)benzenesulfinate
CDCl$_3$ deuterated chloroform
Cs$_2$CO$_3$ cesium carbonateCuSO$_4$ copper sulfate
δ chemical shift
DCM dichloromethane or methylene chloride
DCE 1,2-dichloroethane
DEAD diethyl azodicarboxylate
DIAD diisopropyl azodicarboxylate
DIEA N,N-diisopropylethylamine
DMA N,N-dimethylacetamide
DME dimethoxyethane
DMF N,N-dimethylformamide
DMP Dess-Martin Periodinane
DMSO dimethylsulfoxide
DMSO-d_6 deuterated dimethylsulfoxide
dppf 1,1'-Bis(diphenylphosphino)ferrocene
EDCI N-(3-dimethylaminopropyl)$-N'$-ethylcarbodiimide hydrochloride
EDTA ethylenediaminetetraacetic acid
ee enantiomeric excess
EtOAc ethyl acetate
EtOH ethanol
1H NMR proton nuclear magnetic resonance
HOAc acetic acid
HATU 2-((3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouuronium hexafluorophosphate
HCl hydrochloric acid
HOBT 1H-benzo[d][1,2,3]triazol-1-ol hydrate
HPLC high pressure liquid chromatography
Hz hertz
IPA isopropyl alcohol
KOAc potassium acetate
K₂CO₃ potassium carbonate
LAH lithium aluminum hydride
LCMS liquid chromatography/mass spectrometry
(M+1) mass + 1
m-CPBA m-chloroperbenzoic acid
MeOH methanol
MeMgBr methyl magnesium bromide
MS mass spectrometry
NaBH₄ sodium borohydride
Na₂SO₄ sodium sulfate
Pd(dpdp)Cl₂ [1,1'-Bis(diphenylphosphino)ferrocenedicloropalladium(II)]
Palladium tetrakis Tetrakis(triphenylphosphine)palladium(0)
Rt retention time
TBDMS-Cl Tert-butyl dimethylsilyl chloride
TEA triethylamine
THF tetrahydrofuran
TLC thin layer chromatography
Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

Example 1 -- Intermediate II-1: (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride
Step 1: \((R,E)-N-((2,6\text{-dichloroquinolin}-3\text{-yl})\text{methylene})-2\text{-methylpropane-2-sulfamamide}\).

To a mixture of 2,6-dichloroquinoline-3-carbaldehyde (15.0 g, 66.37 mmol) and \((R)-2\text{-methylpropane-2-sulfamamide}\) (8.85 g, 73.14 mmol) in 1,2-dichloroethane (150 mL) was added CuSO₄ (16.0 g, 100.25 mmol). The resulting mixture was heated to 55 °C and stirred at 55 °C overnight. After TLC and MS showed complete disappearance of starting materials, the mixture was cooled to room temperature and filtered through a pad of Celite®. The pad of celite was then rinsed with CH₂Cl₂. The filtrate was evaporated to dryness \textit{in vacuo} and purified by SiO₂ column chromatography (0 to 25% hexanes/EtOAc) to afford the title compound, \((R,E)-N-((2,6\text{-dichloroquinolin}-3\text{-yl})\text{methylene})-2\text{-methylpropane-2-sulfamamide}\), as a yellow solid (17.7 g, 81% yield).

Step 2: \((R)-N-((S)-1\text{-((2,6\text{-dichloroquinolin}-3\text{-yl})ethyl})-2\text{-methylpropane-2-sulfamamide}\).

To a solution of \((R,E)-N-((2,6\text{-dichloroquinolin}-3\text{-yl})\text{methylene})-2\text{-methylpropane-2-sulfamamide}\) (8.85 g, 26.88 mmol) in anhydrous CH₂Cl₂ (200 mL) at -60 °C was added dropwise McMgBr (3M solution in diethyl ether, 13.5 mL, 40.54 mmol). The resulting reaction mixture was stirred at about -60 to -50 °C for 3 hours and then stirred at -20 °C overnight under an atmosphere of N₂. After TLC and MS showed complete disappearance of starting materials,
saturated NH₄Cl (163 mL) was added at -20 °C and the resulting mixture was stirred for 10 minutes. The aqueous phase was extracted with CH₂Cl₂ (100 mL x 3), dried over anhydrous Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography on an ISCO® chromatography system (SiO₂: Gold column; gradient; hexanes to 100% EtOAc) to provide the title compound, (R)-N-((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide, as a yellow solid (5.8 g, 63% yield).

Step 3: (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-1).

![Chemical Structure](image)

[0104] A mixture of (R)-N-((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (6.6 g, 19.13 mmol) in 1,4-dioxane (41 mL) and 1N HCl (41 mL) was heated at reflux overnight. The solvents were evaporated in vacuo and the resulting residue was dissolved in hot water and lyophilized. The crude product was triturated with diethyl ether to afford the title compound II-1 as a yellow solid (9.0 g, ee: 98.4%). ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.4 (br s, 1 H), 8.32 (br s, 2 H), 8.07 (s, 1 H), 7.85 (d, J = 2.2 Hz, 1 H), 7.63 (dd, J₁ = 8.8 Hz, J₂ = 2.5 Hz, 1 H), 7.40 (d, J = 8.8 Hz, 1 H), 4.40-4.45 (m, 1 H), 1.53(d, J = 8.5 Hz, 3 H). LCMS (Method 3): Rt 3.42 min, m/z 223.1 [M+H]⁺.

Example 2— Intermediate II-2:(R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride.
Step 1: (R)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide.

To a mixture of 2,6-dichloroquinoline-3-carbaldehyde (500 mg, 2.21 mmol) and (R)-2-methylpropane-2-sulfinamide (295 g, 2.43 mmol) in 1,2-dichloroethane (15 mL) was added CuSO₄ (530 mg, 3.31 mmol). The resulting mixture was heated to 55 °C and stirred at 55 °C for 18 hours. Once TLC and MS showed complete disappearance of starting materials, the reaction mixture was cooled to room temperature and filtered through a pad of Celite®. The pad of celite was then rinsed with CH₂Cl₂. The filtrate was evaporated to dryness in vacuo and purified by column chromatography on an ISCO® chromatography system (SiO₂; hexanes to 60% EtOAc/hexanes) to afford the title compound, (R)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide, as a yellow solid (510 mg, 70% yield).

Step 2: (R)-N-(((R)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide.

To a solution of (R)-N-((2,6-dichloroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (505 mg, 1.534 mmol) in anhydrous THF (8 mL) at 0 °C was added dropwise MeMgBr (3M solution in diethyl ether, 0.56 mL, 1.687 mmol). The mixture was stirred at 0 °C for 3 hours under an atmosphere of N₂. After TLC and MS showed complete disappearance of starting materials, saturated NH₄Cl (5mL) was added at 0 °C and the resulting mixture was stirred for 10 minutes. The aqueous phase was extracted with EtOAc (10 mL x 3), dried over anhydrous Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography on an ISCO® chromatography system (SiO₂; hexanes to 80% EtOAc/hexanes) to afford the title compound as the R,R isomer as a pale yellow solid (200 mg, 38%) and the R,S isomer as a pale yellow solid (93 mg, 18% yield).
Step 3: (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-2).

[0107] A mixture of (R)-N-((R)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (190 mg, 0.55 mmol) in 1,4-dioxane (2 mL) and 1N HCl (1.1 mL, 1.1 mmol) was heated to 150 °C for 30 minutes in a microwave reactor. The solvents were evaporated and the residue was dissolved in hot water and lyophilized to afford the title compound II-2 as a yellow solid (148 mg, quantitative yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.35 (br s, 1 H), 8.28 (br s, 2 H), 8.05 (s, 1 H), 7.86 (d, J = 2.2 Hz, 1 H), 7.63 (dd, J1 = 8.8 Hz, J2 = 2.5 Hz, 1 H), 7.40 (d, J = 8.8 Hz, 1 H), 4.40-4.45 (m, 1 H), 1.53 (d, J = 8.5 Hz, 3 H). LCMS (Method 3): Rt 3.40 min, m/z 223.1 [M+H]+.

Example 3 -- An alternative approach to Intermediate II-1

Step 1: 3-acetyl-6-chloroquinolin-2(1H)-one.

[0108] A mixture of 2-amino-5-chlorobenzaldehyde (0.5 g, 3.21 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (0.594 g, 4.18 mmol) in xylene (10 mL) under an atmosphere of nitrogen was heated to reflux for 3 hours and then cooled to room temperature. The reaction mixture was filtered and washed with xylene twice to afford the title compound, 3-acetyl-6-chloroquinolin-
2(1H)-one (330 mg, 46.3 %). 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.22 (br, 1 H), 8.41 (s, 2 H), 8.00 (s, 1 H), 7.63 ($d, J = 8.8$ Hz, 1 H), 7.32 ($dd, J_1 = 8.8$ Hz, $J_2 = 2.5$ Hz, 1 H), 2.58 (s, 3 H). LCMS (Method 1): m/z 222.94 [M+H]$^+$.

Step-2: ((S)-N-((S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide.

A mixture of tetraethoxytitanium (144 mg, 0.632 mmol), (S)-2-methylpropene-2-sulfinamide (38.3 mg, 0.316 mmol), and 3-acetyl-6-chloroquinolin-2(1H)-one (70 mg, 0.316 mmol) in THF (20 mL) was heated to 80 °C overnight and then cooled to room temperature. To this mixture was added NaBH$_4$ (59.7 mg, 1.579 mmol) at -50 °C. The mixture was then slowly warmed up to room temperature overnight. MeOH (2 mL) was added to quench excess NaBH$_4$ and was followed by the addition of water. The resulting mixture was filtered to remove solids and the aqueous phase was extracted with EtOAc twice, dried over Na$_2$SO$_4$ and concentrated. The residue was purified on a Biotage® chromatography system using a 25 g SiO$_2$ column with gradient elution (20% to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to afford (S)-N-((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropene-2-sulfinamide (39 mg, 38% yield). 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.05 (br, 1 H), 7.95 (s, 1 H), 7.84 (s, 1 H), 7.38($d, J = 8.8$ Hz, 1 H), 5.76 ($d, J = 8.06$ Hz, 1 H), 5.37 (m, 1 H), 4.55(m, 1 H), 1.44 ($d, J = 6.82$ Hz, 3 H), 1.18 (s, 9 H). LCMS (Method 1): Rt 2.22 min; m/z 327.96 [M+H]$^+$.

Step-3: (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-1).

To a solution of ((S)-N-((S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propene-2-sulfinamide (150 mg, 0.459 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.0 mmol, 4M in 1,4-dioxane). The mixture was stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was collected by filtration, washed with ethyl ether (2 x), and then dried to afford (S)-3-(1-aminoethyl)-6-chloroquinolin-
2(1H)-one hydrochloride (50 mg, 42% yield). 1H NMR (300 MHz, DMSO- d_6): δ ppm 12.4 (br s, 1 H), 8.32 (br s, 2 H), 8.07 (s, 1 H), 7.85 (d, $J = 2.2$ Hz, 1 H), 7.63 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.5$ Hz, 1 H), 7.40 (d, $J = 8.8$ Hz, 1 H), 4.40-4.45 (m, 1 H), 1.53 (d, $J = 8.5$ Hz, 3 H). LCMS (Method 1): Rt 1.22 min, m/z 223.1 [M+H]$^+$.

Example 4 – Alternate Approach (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-2).

Step-1: ((R)-N-((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide

[0111] A mixture of tetraethoxytitanium (412 mg, 1.805 mmol) (R)-2-methylpropane-2-sulfinamide (131 mg, 1.083 mmol) and 3-acetyl-6-chloroquinolin-2(1H)-one (160 mg, 0.722 mmol) in THF (20 mL) was heated to 80 °C overnight, then cooled to room temperature. To this mixture was added NaBH$_4$ (137 mg, 3.61 mmol) -50 °C. The mixture was then slowly warmed up to room temperature overnight. MeOH (2 mL) was added to quench excess NaBH$_4$ and was followed by the addition of water. The resulting mixture was filtered to remove solids and the aqueous phase was extracted with EtOAc twice, dried over Na$_2$SO$_4$ and concentrated. The residue was purified on a Biotage$^®$ chromatography system using a 25 g SiO$_2$ column with gradient elution (20 to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to afford ((R)-N-((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide (157 mg, 66% yield). 1H NMR (300 MHz, CDCl$_3$): δ ppm 11.31 (br, 1 H), 7.35 (s, 1 H), 7.07-7.22 (m, 2 H),
5.86 (d, J = 9.3 Hz, 1 H), 5.37 (m, 1 H), 4.55 (m, 1 H), 1.56 (d, J = 6.94 Hz, 3 H), 1.32 (s, 9 H).

LCMS (Method 1): Rt 2.20 min, m/z 327.96 [M+H]+.

Step-2: (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (II-2).

[0112] To a solution of (R)-N-((R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamidine (150 mg, 0.459 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.00 mmol, 4 M in 1,4-dioxane). The mixture was stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was collected by filtration, washed with ethyl ether (2 x), and then dried to afford (R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride (80 mg, 67% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 12.32 (br s, 1 H), 8.34 (br, 2 H), 8.06 (s, 1 H), 7.81 (s, 1 H), 7.58 (d, J = 8.82 Hz, 1 H), 7.31 (d, J = 8.83 Hz, 1 H), 4.40-4.45 (m, 1 H), 1.53 (d, J = 6.81 Hz, 3 H). LCMS (Method 1): Rt 1.20 min, m/z 223.1 [M+H]+.

Example 5 -- Intermediate II-3: (S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one.

Scheme 7

Step-1: N-(4-chloro-3-fluorophenyl)acetamide.
To a solution of 4-chloro-3-fluoroaniline (10.00 g, 68.7 mmol) and DIEA (13.2 mL, 76 mmol) in EtOAc (200 mL) was added Ac₂O (7.1 mL, 75 mmol) dropwise. The solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was washed with water (2 x 100 mL) and brine (100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide the product as a white solid. LCMS and ¹H NMR are consistent with N-(4-chloro-3-fluorophenyl)acetamide (12.39 g, 66.0 mmol, 96% yield) ¹H NMR (300 MHz, DMSO-d₆): δ ppm 10.26 (s, 1 H), 7.77 (dd, J = 12.17, 2.20 Hz, 1 H), 7.49 (dd, J = 8.60, 8.60 Hz, 1 H), 7.30 (dd, J = 8.79, 2.35 Hz, 1 H), 2.06 (s, 3 H). LCMS (Method 1): m/z 188 [M+H]⁺.

Step-2: 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde.

A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (9.5 mL, 123 mmol) was added by syringe and then cooled on an ice bath. POCl₃ (37 mL, 397 mmol) was added dropwise by syringe (over 25 minutes). The red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed and the mixture was treated with N-(4-chloro-3-fluorophenyl)acetamide (7.00 g, 37.3 mmol). The tube was then sealed and the solution was stirred at 80 °C overnight. The solution was pipetted onto ice, resulting in formation of a yellow precipitate. The precipitate was collected on a Buchner funnel and washed with water (500 mL), during which most of the precipitate dissolved. The filter cake was dried to provide 427.6 mg of the title compound as a pale yellow solid. LCMS and ¹H NMR are consistent with impure 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (427.6 mg, 1.752 mmol, 4.70% yield). The material was used as is. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 10.36 (s, 1 H), 8.99 (s, 1 H), 8.67 (d, J = 8.21 Hz, 1 H), 8.13 (d, J = 10.26 Hz, 1 H), 5.76 (s, 1 H). LCMS (Method 1): m/z 244 [M+H]⁺.

Step-3: N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide.
[0115] A mixture of 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (424.4 mg, 1.739 mmol) and 2-methylpropane-2-sulfonamide (253.8 mg, 2.094 mmol) was placed under an atmosphere of nitrogen. THF (4 mL) and titanium (IV) isopropoxide (Ti(O\text{OPr})4) (1.00 mL, 3.41 mmol) were then added by syringe and the resulting suspension was stirred at room temperature for 48 hours. Once LCMS indicated the reaction had gone cleanly to completion. The reaction was quenched by dropwise addition of aqueous saturated NH4Cl (2 mL). The mixture was triturated with EtOAc (100 mL), and the solid was collected on a Buchner funnel, and was washed with EtOAc (50 mL). The filtrate was washed with brine (50 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure to provide 574.3 mg of the title compound as a yellow solid. LCMS and 1H NMR are consistent with (E)-N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfonamide (574.3 mg, 1.654 mmol, 95% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 9.13 (s, 1 H), 8.87 (s, 1 H), 8.67 (d, J = 8.21 Hz, 1 H), 8.11 (d, J = 10.26 Hz, 1 H), 1.25 (s, 9 H). LCMS (Method 1): m/z 347 [M+H]⁺.

Step-4: N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide.

[0116] N-((2,6-dichloro-7-fluoroquinolin-3-yl)methylene)-2-methylpropane-2-sulfonamide (573.6 mg, 1.652 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen. DCM (14 mL) was added and the resulting suspension was cooled in a dry ice/chloroform bath (to approx. -60 °C). Methyl magnesium bromide (MeMgBr) (3M in ethyl ether, 0.83 mL, 2.490 mmol) was then added dropwise. The reaction was stirred at -60 °C for several hours, and then at -20 °C overnight. The mixture was placed in an ice bath and treated dropwise with water (7 mL). The mixture was diluted with water (150 mL) and extracted with EtOAc (3 x 50 mL). Silica gel was added to the combined extracts and the sample was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 100% EtOAc in hexanes and with isocratic elution when peaks eluted) to provide 226.3 mg of the title compound as a yellowish solid. LCMS and 1H NMR are consistent with N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide (226.3 mg, 0.623 mmol, 25.02% yield). 1H NMR indicates a
single diastereomer. 1H NMR (300 MHz, DMSO-d_6): δ ppm 8.52 (s, 1 H), 8.47 ($d, J = 7.92$ Hz, 1 H), 8.01 ($d, J = 10.26$ Hz, 1 H), 5.66 ($d, J = 6.16$ Hz, 1 H), 4.83 (q, $J = 6.60$ Hz, 1 H), 1.60 ($d, J = 6.74$ Hz, 3 H), 1.13 (s, 9 H). LCMS (Method 1): m/z 363 [M+H]$^+$.

Step-5: 3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (II-3).

![Chemical Structure of II-3](image)

[0117] A sample of N-(1-(2,6-dichloro-7-fluoroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (226.3 mg, 0.623 mmol) was mixed with 1,4-dioxane (3.5 mL) and 3.6% HCl (aqueous, 3.5 mL) and stirred at 95 °C overnight; the material quickly went into solution upon heating. Once LCMS showed the reaction had gone to completion, the solution was evaporated under reduced pressure. The residue was dissolved in MeOH (~10 mL), treated with hexane (~15 mL), and evaporated again under reduced pressure. The resulting residue was then triturated with Et$_2$O, collected on a Hirsch funnel, and washed with Et$_2$O (20 mL) to provide 179.8 mg of the title compound as a yellow solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (179.8 mg, 0.649 mmol, 104% yield). 1H NMR (300 MHz, Methanol-d_4): δ ppm 8.02 (s, 1 H), 7.92 ($d, J = 7.62$ Hz, 1 H), 7.23 ($d, J = 9.97$ Hz, 1 H), 4.53 (q, $J = 6.84$ Hz, 1 H), 1.68 ($d, J = 6.74$ Hz, 3 H). LCMS (Method 1): m/z 241 [M+H]$^+$.

Example 6 -- Intermediate II-3b: (R)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one

![Chemical Structures](image)
Step-1: 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde

[0118] 2,6-dichloro-7-fluoroquinoline-3-carbaldehyde (2.56 g, 10.49 mmol) was heated at reflux in concentrated HCl (12M, 100 mL) overnight, during which the material did not appear to go into solution. The mixture was allowed to cool, then was poured into water (750 mL). The slurry was filtered on a Buchner funnel, washed with water (750 mL), and dried to provide impure 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.1991 g, 9.75 mmol, 93% yield) as a reddish brown solid. The material was suitable for use as is. 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.41 (s, 1 H), 10.20 (s, 1 H), 8.49 (s, 1 H), 8.28 (d, J=7.92 Hz, 1 H), 7.25 (d, J=10.26 Hz, 1 H). LCMS: m/z +226 [M+H]$^+$.

Step-2: (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide

[0119] A mixture of 6-chloro-7-fluoro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.20 g, 9.75 mmol) and (R)-2-methylpropane-2-sulfinamide (1.42 g, 11.72 mmol) was placed in a 50 mL round bottom flask under an atmosphere of nitrogen. THF (20 mL) and titanium (IV) isopropoxide (Ti(OiPr)$_4$) (5.8 mL, 19.79 mmol) were added by syringe and the resulting suspension was stirred at room temperature for one day, during which the mixture turned dark. The reaction mixture was quenched by dropwise addition of saturated aqueous NH$_4$Cl, resulting in precipitation. The mixture was triturated with EtOAc (400 mL) and filtered on a Buchner funnel. The filter cake was then sonicated in 300 mL EtOAc for 15 minutes. The mixture was filtered on a Buchner funnel, and the filtrates from the two filtrations were combined. The combined filtrate solution was washed with brine (200 mL), dried (Na$_2$SO$_4$), filtered, and evaporated under reduced pressure to provide (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (3.22 g, 9.79 mmol, 100% yield) as an orange solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.40 (br s, 1 H), 8.75 (br s, 1 H), 8.65 (s, 1 H), 8.27 (d, J = 8.21 Hz, 1 H), 7.25 (d, J = 10.26 Hz, 1 H), 1.20 (s, 9 H). LCMS: m/z 329 [M+H]$^+$.

59
Step 3: (R)-N-((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide.

![Chemical Structure](image)

[R120] (R,E)-N-((6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfonamide (3.22 g, 9.79 mmol) was placed in a 500 mL round-bottom flask under an atmosphere of nitrogen. DCM (100 mL) was added and the resulting suspension was cooled on a dry ice/chloroform bath (to approximately -60 °C). Methyl magnesium bromide (MeMgBr) (3M in ether, 10 mL, 30.0 mmol) was added dropwise. The reaction mixture was stirred at -60 °C for several hours, and then allowed to warm to room temperature overnight, resulting in a red solution. The solution was then cooled on an ice bath, treated dropwise with water (40 mL) and concentrated under reduced pressure. The resulting slurry was diluted with water (300 mL) and washed with EtOAc. The resulting emulsion was allowed to separate overnight. The layers were separated, and silica gel was added to the organic layer. Most of the solvent was evaporated under reduced pressure. MeOH and heptane were added and the mixture was evaporated under reduced pressure to dryness. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using 50 g silica gel column; eluted with 0 to 50% EtOAc in hexanes, with isocratic elution when peaks eluted) to provide (R)-N-((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide (774.3 mg, 2.245 mmol, 23% yield) as a greenish solid. 1H NMR shows a single diastereomer. 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.03 (s, 1 H), 7.98 (d, $J = 7.92$ Hz, 1 H), 7.89 (s, 1 H), 7.22 (d, $J = 10.26$ Hz, 1 H), 5.67 (d, $J = 7.92$ Hz, 1 H), 4.41 - 4.55 (m, 1 H), 1.37 (d, $J = 6.74$ Hz, 3 H), 1.12 (s, 9 H). LCMS: m/z +345 [M+H]$^+$.

Step 4: (R)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (II-3b).
A solution of (R)-N-((R)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide (773 mg, 2.242 mmol) in MeOH (20 mL) was cooled on an ice bath and treated dropwise with 4M HCl in dioxane (12 mL), during which the material went into solution. The reaction was stirred 25 minutes, during which time precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with ethyl ether (50 mL), then the solid was collected on a Hirsch funnel and washed with more ethyl ether (50 mL) to provide (R)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride (613.5 mg, 2.214 mmol, 99% yield) as a yellow solid. 1H NMR (300 MHz, Methanol-d4): δ ppm 7.99 (s, 1 H), 7.90 (d, J = 7.62 Hz, 1 H), 7.22 (d, J = 9.67 Hz, 1 H), 4.51 (q, J = 6.64 Hz, 1 H), 1.66 (d, J = 7.04 Hz, 3 H). LCMS: m/z +241 [M+H]+.

Example 7 -- Intermediate II-4:3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one.

Step 1: 2,6-dichloro-7-methoxyquinoline-3-carbaldehyde.

A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (6.4 mL, 83 mmol) was added by syringe and then cooled on an ice bath. POCl3 (25 mL, 268 mmol) was added dropwise by syringe (over 20 minutes). The red solution was allowed to warm to room temperature (over 20 minutes), then the septum was removed, and the mixture was treated with N-(4-chloro-3-methoxyphenyl)acetamide (5 g, 25.05 mmol). The tube was sealed and the solution was stirred at 80 °C overnight. The solution was then pipetted onto ice, resulting in formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (1200 mL), and dried to provide 5.06 g of the title compound as a pale yellow
solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-methoxyquinoline-3-carbaldehyde (5.06 g, 19.76 mmol, 79% yield). 1H NMR (300 MHz, DMSO-d_6): δ ppm 10.33 (s, 1 H), 8.87 (s, 1 H), 8.47 (s, 1 H), 7.64 (s, 1 H), 4.08 (s, 3 H). LCMS (Method 1): m/z 256 [M+H]$^+$.

Step-2: 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde.

![Chemical Structure](image)

[0123] 2,6-Dichloro-7-methoxyquinoline-3-carbaldehyde (5.06 g, 19.76 mmol) was heated at reflux in concentrated HCl (12M, 185 mL) overnight. The material went into solution during heating and then a solid precipitated during the course of the reaction. The mixture was allowed to cool and then was poured into water (1500 mL) resulting in further precipitation. The slurry was filtered on a Buchner funnel, washed with water (1500 mL), and dried to provide 4.04 g of the title compound as a yellowish-brown solid. LCMS and 1H NMR are consistent with 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4.04 g, 17.00 mmol, 86% yield). 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.22 (s, 1 H), 10.16 - 10.18 (m, 1 H), 8.43 (s, 1 H), 8.08 (s, 1 H), 6.95 (s, 1 H), 3.94 (s, 3 H). LCMS (Method 1): m/z 238 [M+H]$^+$.

Step-3: N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfonamide.

![Chemical Structure](image)

[0124] A mixture of 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.00 g, 8.42 mmol) and 2-methylpropane-2-sulfonamide (1.22 g, 10.07 mmol) was placed under an atmosphere of nitrogen. THF (20 mL) and titanium (IV) isopropoxide (Ti(O'Pr)$_4$) (5.0 mL, 17.06 mmol) were added by syringe and the resulting suspension was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the reaction was quenched by dropwise addition of aqueous saturated NH$_4$Cl (10 mL). The mixture was triturated with EtOAc (450 mL), then filtered through Celite© 545, and the Celite© was washed further with EtOAc (200 mL). The filter cake was then sonicated in EtOAc (450 mL) for 15 minutes,
then filtered on a Buchner funnel. The two filtrates were combined, washed with brine (200 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 1.01 g of the title compound as a yellow solid. LCMS and ¹H NMR are consistent with (E)-N-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfamidate (1.01 g, 2.96 mmol, 35.2% yield). ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.21 (s, 1 H), 8.74 (s, 1 H), 8.59 (s, 1 H), 8.08 (s, 1 H), 6.97 (s, 1 H), 3.94 (s, 3 H), 1.19 (s, 9 H). LCMS (Method 1): m/z 341 [M+H]⁺.

Step-4: N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfamidate.

![Chemical Structure](image)

[0125] N-((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfamidate (265 mg, 0.778 mmol) was placed in a 50 mL round-bottom flask under an atmosphere of nitrogen. DCM (7 mL) was added, and the suspension was cooled on a dry ice/chloroform bath (to approx. -60 ºC). Methylmagnesium bromide (MeMgBr) (3M in ether, 0.80 mL, 2.40 mmol) was added dropwise. The reaction mixture was stirred at -60 ºC for several hours, then allowed to warm to room temperature overnight, resulting in an orange solution. Once LCMS indicated the reaction had gone to completion, the suspension was cooled on an ice bath and treated dropwise with water (3 mL). The resulting mixture was diluted with water (75 mL) and extracted with EtOAc (75mL + 20 mL). Silica gel was added and the EtOAc was evaporated under reduced pressure to provide a wet globular mass. Heptane and MeOH were added and the mixture was evaporated under reduced pressure to provide a powder. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 4.2% MeOH in DCM, with isocratic elution when peaks eluted). The product fractions provided 152.7 mg of the title compound as a blue-green brittle foam. LCMS and ¹H NMR are consistent with N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfamidate (152.7 mg, 0.428 mmol, 55% yield). LCMS (Method 1): m/z 357 [M+H]⁺.

Step-5: 3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride (II-4).
A solution of N-(1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfonamide (149.6 mg, 0.419 mmol) in MeOH (3.8 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (2.2 mL). The reaction was stirred for 25 minutes, during which time a small amount of precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 10 mL of ethyl ether, then collected on a Hirsch funnel, and washed with more ethyl ether to provide 115.6 mg of the title compound as a pale green solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride (115.6 mg, 0.400 mmol, 95% yield). 1H NMR (300 MHz, Methanol-d_4): δ ppm 7.95 (s, 1 H), 7.77 (s, 1 H), 6.97 (s, 1 H), 4.51 (q, $J = 6.84$ Hz, 1 H), 3.98 (s, 3 H), 1.68 (d, $J = 7.04$ Hz, 3 H). LCMS (Method 1): m/z 253 [M+H]$^+$.

Example 8 -- Intermediate II-4a: (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one.
Step 1: \((R,E)-N-[(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene]-2-methylpropane-2-sulfonamide.**

A mixture of 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (1.00 g, 4.21 mmol) and \((R)-2\)-methylpropane-2-sulfonamide (0.61 g, 5.03 mmol) was placed in a 50 mL round bottom flask under an atmosphere of nitrogen. THF (10 mL) and titanium (IV) isopropoxide (Ti(O"Pr)₄) (2.5 mL, 8.53 mmol) were added by syringe, and the suspension was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the reaction was quenched by dropwise addition of saturated aqueous \(\text{NH}_4\text{Cl}\) (5 mL). The mixture was triturated with EtOAc (200 mL), filtered on a Buchner funnel, and the filter cake was washed with EtOAc (50 mL). The filter cake was then sonicated in EtOAc (200 mL) for 15 minutes and then filtered on a Buchner funnel. The two filtrates were combined,
washed with brine (100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide impure \((R,E)-N-((6\text{-chloro}-7\text{-methoxy}-2\text{-oxo}-1,2\text{-dihydroquinolin-3-yl})\text{methylene})-2\text{-methyl propane-2-sulfinamide}\) (776.0 mg, 2.277 mmol, 54.1 % yield) as a yellow solid. The sample was used as is. LCMS: \(m/z\) 341 [M+H]⁺.

Step 2: \((R)-N-((1\text{-}6\text{-chloro}-7\text{-methoxy}-2\text{-oxo}-1,2\text{-dihydroquinolin-3-yl})\text{ethyl})-2\text{-methyl propane-2-sulfinamide}.\)

![Chemical Structure]

\[\text{[0128]}\] \((R,E)-N-((6\text{-chloro}-7\text{-methoxy}-2\text{-oxo}-1,2\text{-dihydroquinolin-3-yl})\text{methylene})-2\text{-methyl propane-2-sulfinamide}\) (774 mg, 2.271 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen. DCM (20 mL) was added, and the suspension was cooled on a dry ice/chloroform bath (to approximately -60 °C). Methylmagnesium bromide (MeMgBr) (3M in ethyl ether, 2.25 mL, 6.75 mmol) was added dropwise. The reaction mixture was stirred at -60 °C for several hours, and then allowed to warm to room temperature overnight, resulting in an orange solution. The solution was cooled on an ice bath and treated dropwise with water (10 mL). The resulting mixture was diluted with water (250 mL) and extracted with EtOAc (250 mL + 2 x 100 mL); some water remained mixed with the EtOAc layer. Silica gel was added, and the solvent was evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (silica gel column, eluted with 0 to 5% MeOH in DCM, with isocratic elution when peaks eluted) to provide \((R)-N-((1\text{-}6\text{-chloro}-7\text{-methoxy}-2\text{-oxo}-1,2\text{-dihydroquinolin-3-yl})\text{ethyl})-2\text{-methyl propane-2-sulfinamide}\) (488 mg) as a blue-green solid mixture of diastereomers. The diastereomers were separated by column chromatography (CHIRALPAK IA, 2 x 25 cm, 5µm; 75:25 hexanes-IPA) to provide:

\[\text{[0129]}\] \((R)-N-((S)-1\text{-}6\text{-chloro}-7\text{-methoxy}-2\text{-oxo}-1,2\text{-dihydroquinolin-3-yl})\text{ethyl})-2\text{-methyl propane-2-sulfinamide}\) (221.6 mg, 0.621 mmol, 27% yield). \(^1\text{H}\) NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) ppm 11.82 (s, 1 H), 7.75-7.81 (m, 2 H), 6.95 (s, 1 H), 5.29 (d, \(J = 6.45\) Hz, 1 H), 4.53 (quin, \(J = 6.74\) Hz, 1 H), 3.88 (s, 3 H), 1.43 (d, \(J = 6.74\) Hz, 3 H), 1.12 (s, 9 H). LCMS: Rt 2.52 min, \(m/z\) 355 [M-1]⁺.
(R)-N-((R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfanamide (142.3 mg, 0.399 mmol, 18% yield). 1H NMR (300 MHz, DMSO-d6): δ ppm 11.81 (br s, 1 H), 7.81 (s, 1 H), 7.77 (s, 1 H), 6.96 (s, 1 H), 5.64 (d, J = 7.92 Hz, 1 H), 4.45 (quin, J = 7.11 Hz, 1 H), 3.89 (s, 3 H), 1.36 (d, J = 6.74 Hz, 3 H), 1.11 (s, 9 H). LCMS: Rt 1.87 min, m/z 355 [M-1].

Step-3: (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride, (II-4a).

A suspension of (R)-N-(S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfanamide (219.7 mg, 0.616 mmol) in MeOH (5.5 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (3.3 mL). The material went into solution during the acid addition. The reaction was stirred 25 minutes during which time a small amount of precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 30 mL ethyl ether, then collected on a Hirsch funnel and washed with more ethyl ether (10 mL) to provide (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride (175.4 mg, 0.607 mmol, 99 % yield) as a pale greenish solid. 1H NMR (300 MHz, Methanol-d4): δ ppm 7.93 (s, 1 H), 7.75 (s, 1 H), 6.95 (s, 1 H), 4.49 (q, J = 6.74 Hz, 1 H), 3.96 (s, 3 H), 1.65 (d, J = 6.74 Hz, 3 H). LCMS: m/z +253 [M+H]+.

Step-4: (R)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride. II-4b.

A solution of (R)-N-((R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfanamide (140.5 mg, 0.394 mmol) in MeOH (3.4 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (2.1 mL). The reaction was stirred 25 minutes, during which time a small amount of precipitate formed. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 20
mL ethyl ether, then collected on a Hirsch funnel and washed with more ethyl ether (20 mL) to provide (R)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one hydrochloride (101.3 mg, 0.350 mmol, 89 % yield) as a pale greenish solid. 1H NMR (300 MHz, Methanol-d_4): δ ppm 7.92 (s, 1 H), 7.75 (s, 1 H), 6.95 (s, 1 H), 4.48 (q, J = 6.84 Hz, 1 H), 3.96 (s, 3 H), 1.65 (d, J = 6.74 Hz, 3 H). LCMS: m/z 253 [M+H]$^+$.

[0133] Scheme 2 provides an alternative method to prepared Intermediate II-4a.

Scheme 2

![Chemical reaction diagram](image)

Example 9 -- Intermediate II-5:3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one.
Step-I: 4-chloro-3-(pyridin-2-ylmethoxy)aniline.

[0134] A solution of 5-amino-2-chlorophenol (2.00 g, 13.93 mmol) pyridin-2-ylmethanol (1.4 mL, 14.51 mmol), and triphenylphosphine (4.30 g, 16.39 mmol) in THF (250 mL) was placed under an atmosphere of nitrogen and treated with DEAD (2.6 mL, 16.42 mmol). The solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was treated with silica gel and evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using a 340 g silica gel column, eluted with 0 to 100% EtOAc in hexanes, then 2.3% MeOH in EtOAc) to provide the title compound as a light brown solid. LCMS and 1H NMR are consistent with 4-chloro-3-(pyridin-2-ylmethoxy)aniline (2.29 g, 9.76 mmol, 70.0% yield) with residual triphenylphosphine oxide. The crude was used in the next step without further purification. 1H NMR (300 MHz, DMSO-d_6): δ ppm 8.55 - 8.62 (m, 1 H), 7.86 (dd, $J = 7.77, 7.77, 1.76$ Hz, 1 H), 7.52 ($d, J = 7.92$ Hz, 1 H), 7.35 (dd, $J = 6.89, 5.42$ Hz, 1 H), 7.02 ($d, J = 8.50$ Hz, 1 H), 6.37
(d, J = 2.35 Hz, 1 H), 6.15 (dd, J = 8.50, 2.35 Hz, 1 H), 5.28 (s, 2 H), 5.14 (s, 2 H). LCMS (Method 1, ESI): m/z 235 [M+H]+.

Step-2: N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide.

A solution of 4-chloro-3-(pyridin-2-ylmethoxy)aniline (5.22 g, 22.24 mmol) and DIEA (4.30 mL, 24.62 mmol) in EtOAc (125 mL) was treated with Ac₂O (2.30 mL, 24.38 mmol) The solution was stirred at room temperature overnight, after which a thick white precipitate formed. EtOAc (300 mL) was added and the mixture was shaken until most of the precipitate dissolved. The organic layer was then washed with water and brine (125 mL each), dried (Na₂SO₄) and filtered. Silica gel was added, and the mixture was evaporated under reduced pressure. The residue was purified by column chromatography on a Biotage® MPLC chromatography system (using a100 g silica gel column, eluted with 0 to 5% MeOH in DCM) to provide 3.23 g of the title compound as a white solid. LCMS and ¹H NMR are consistent with N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (3.23 g, 11.67 mmol, 52.5% yield) ¹H NMR (300 MHz, DMSO-d₆): δ ppm 10.06 (s, 1 H), 8.56 - 8.62 (m, 1 H), 7.87 (ddd, J = 7.80, 7.80, 1.80 Hz, 1 H), 7.53 (d, J = 7.62 Hz, 1 H), 7.49 (d, J = 2.05 Hz, 1 H), 7.33 - 7.40 (m, 2 H), 7.22 (ddd, J = 8.65, 2.20 Hz, 1 H), 5.21 (s, 2 H), 2.02 (s, 3 H). LCMS (Method 1): m/z 277 [M+H]+.

Step-3: 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde.

A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (2.9 mL, 37.5 mmol) was added by syringe and then cooled on an ice bath. POCl₃ (11.4 mL, 122 mmol) was added dropwise by syringe (over 20 minutes). The solution was allowed to warm to room temperature (over 15 minutes) and the septum was removed. The mixture was treated with
N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (3.16 g, 11.42 mmol). The tube was again sealed and the solution was stirred at 80 °C overnight. The solution was then pipetted onto ice, resulting in the formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (500 mL), and dried to provide 2.88 g of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (2.88 g, 8.64 mmol, 76% yield). 1H NMR (300 MHz, DMSO-<d6>): δ ppm 10.34 (s, 1 H), 8.89 (s, 1 H), 8.66 (br d, J = 4.10 Hz, 1 H), 8.52 (s, 1 H), 7.92 - 8.01 (m, 1 H), 7.75 (s, 1 H), 7.69 (br d, J = 7.62 Hz, 1 H), 7.41 - 7.50 (m, 1 H), 5.55 (s, 2 H). LCMS (Method 1): m/z 333 [M+H]^+.

Step-4: 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde.

![Chemical Structure]

[0137] A solution of 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (2.88 g, 8.64 mmol) in concentrated HCl (81 mL) was stirred at reflux (bath temperature 100 °C) for one day, during which time the solution turned orange. The solution was diluted with water (900 mL), resulting in the formation of a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (750 mL), and dried under vacuum at 60 °C to provide 2.27 g of the title compound as a yellow solid. LCMS and 1H NMR are consistent with 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde (2.27 g, 7.21 mmol, 83% yield). 1H NMR (300 MHz, DMSO-<d6>): δ ppm 12.20 (s, 1 H), 10.16 - 10.19 (m, 1 H), 8.60 - 8.64 (m, 1 H), 8.44 (s, 1 H), 8.14 (s, 1 H), 7.90 (ddd, J = 7.60, 7.60, 1.80 Hz, 1 H), 7.57 (d, J = 7.62 Hz, 1 H), 7.36-7.43 (m, 1 H), 7.05 (s, 1 H), 5.37 (s, 2 H). LCMS (Method 1): m/z 315 [M+H]^+.

Step-5: (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide.
[0138] A mixture of 6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinoline-3-carbaldehyde (2.27 g, 7.21 mmol) and 2-methylpropane-2-sulfinamide (1.05 g, 8.66 mmol) was placed in a 25 mL round bottom flask under an atmosphere of nitrogen. THF (9 mL) and titanium (IV) isopropoxide (Ti(O'Pr)₄) (4.3 mL, 14.68 mmol) were added by syringe and the suspension was stirred at room temperature for one day. Once LCMS indicated the reaction had gone to completion, the material was triturated with EtOAc (400 mL), then filtered through Celite®, and the filter cake was washed with EtOAc (100 mL). The filter cake was sonicated in EtOAc (400 mL) for fifteen minutes and then filtered on a Buchner funnel. The two filtrates were combined and washed with brine (250 mL). The aqueous layer was back-extracted with EtOAc (200 mL + 100 mL). The three combined organic layers were dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 1.44 g of the title compound as a yellow solid. LCMS and ¹H NMR are consistent with (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide (1.44 g, 3.45 mmol, 47.8% yield). ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.20 (s, 1 H), 8.74 (s, 1 H), 8.62 (d, \(J = 4.10 \) Hz, 1 H), 8.60 (s, 1 H), 8.13 (s, 1 H), 7.90 (ddd, \(J = 7.80, 1.80 \) Hz, 1 H), 7.58 (d, \(J = 7.92 \) Hz, 1 H), 7.40 (ddd, \(J = 7.18, 4.54 \) Hz, 1 H), 7.06 (s, 1 H), 5.36 (s, 2 H), 1.19 (s, 9 H). LCMS (Method 1): m/z 418 [M+H]+.

Step-6: N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide.

[0139] (E)-N-((6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylene)-2-methyl propane-2-sulfinamide (1.44 g, 3.45 mmol) was placed in a 250 mL round-bottom flask under an atmosphere of nitrogen. DCM (27 mL) was added and the
suspension was cooled on a dry ice/chloroform bath (to approx. -60 °C). Methylmagnesium bromide (MeMgBr) (3M in ether, 3.50 mL, 10.50 mmol) was added dropwise. The cold bath was allowed to warm to room temperature overnight resulting in an orange suspension. Once LCMS indicated the reaction had gone to completion, the suspension was cooled on an ice bath and treated dropwise with water (10 mL) resulting in emulsification. The emulsion was diluted with EtOAc (400 mL) and washed with water (400 mL). Silica gel was added to the organic layer and the solvent was evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 6% MeOH in DCM with isocratic elution when peaks eluted) to provide 1.17 g of the title compound as a yellow brittle foam. LCMS and 1H NMR are consistent with N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (1.17 g, 2.70 mmol, 78% yield). NMR indicated a mixture of diastereomers. LCMS (Method 1): m/z 434 [M+H]$^+$.

Step 7: 3-(1-aminooethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one hydrochloride (II-5).

![Chemical Structure](attachment:image.png)

[0140] A solution of N-(1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (167.3 mg, 0.386 mmol) in MeOH (3.5 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (2 mL). The reaction was stirred for 20 minutes and within five minutes a precipitate began to form. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 10 mL of ethyl ether, collected on a Hirsch funnel and washed with more ethyl ether to provide 145.8 mg of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 3-(1-aminooethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one hydrochloride (145.8 mg, 0.398 mmol, 103% yield). 1H NMR (300 MHz, Methanol-d$_4$): δ ppm 8.91-8.95 (m, 1 H), 8.68 (dd, $J = 7.90$, 7.90, 1.50 Hz, 1 H), 8.29 (d, $J = 7.62$ Hz, 1 H), 8.04-8.11 (m, 1 H), 8.00 (s, 1 H), 7.90 (s, 1 H), 7.17 (s, 1 H), 5.66 (s, 2 H), 4.53 (q, $J = 6.84$ Hz, 1 H), 1.69 (d, $J = 6.74$ Hz, 3 H). LCMS (Method 1): m/z 352 [M+Na]$^+$.

114574415 v1
Example 10 -- Intermediate II-5a: (S)-3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one.

\[
\begin{align*}
&\text{Cl} \quad \text{OH} \\
\text{HO} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{NH}_2 \\
\text{Ac}_2\text{O} & \quad \text{DIEA, EtOAc} \\
\end{align*}
\]

\[
\begin{align*}
\text{POCl}_3, \text{DMF} & \quad \text{CHO} \\
\text{Ti(O'Pr)}_4 & \quad \text{N}^{(R)} \\
\text{Toluen, THF} & \quad \text{L-selectride} \\
\text{THF} & \quad \text{1N HCl} \\
\text{Dioxane} & \quad \text{S}^{(R)} \\
\end{align*}
\]

II-5a

Step 1: 4-Chloro-3-(pyridin-2-ylmethoxy)aniline.

[0141] To a mixture of 5-amino-2-chlorophenol (10 g, 69.63 mmol), pyridin-2-ylmethanol (7.98 g, 73.13 mmol) and triphenylphosphine (21.5 g, 82.07 mmol) in THF (1.1 L) was added slowly diethylazadicarboxylate (DEAD) (13 mL, 82.07 mmol) at room temperature. The resulting mixture was stirred at room temperature for 24 hours. Upon completion of reaction,
SiO₂ was added and solvents were evaporated to dryness. The crude product was purified by SiO₂ column chromatography eluted with 0-100% EtOAc-hexanes and then with 2% MeOH in EtOAc to afford the title compound (11.8 g, 72%) as an off-white solid. Note: The ¹H NMR showed a small amount of triphenylphosphine oxide impurity. This material was used in the next step without further purification.

Step-2: N-(4-Chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide.

![Chemical structure of N-(4-Chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide.]

To a mixture of 4-chloro-3-(pyridin-2-ylmethoxy)aniline (11.8 g, 50.27 mmol) and diisopropylethylamine (DIEA) (9.93 mL, 57.81 mmol) in ethyl acetate (250 mL) was added acetic anhydride (Ac₂O) (5.22 mL, 55.3 mmol). The resulting mixture was stirred overnight at ambient temperature. The mixture was diluted with EtOAc (1 L), and washed with water (200 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The resulting residue was triturated with hexanes-dichloromethane to afford the title compound as white solid (11.62 g, 84% yield).

Step-3: 2,6-Dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde.

![Chemical structure of 2,6-Dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde.]

Dimethylformamide (4 mL, 51.6 mmol) was placed in a 150 mL scaled tube and cooled to 0 °C. To the DMF was added phosphorous oxychloride (POCl₃) (15.6 mL, 168 mmol) dropwise over 30-40 minutes. The resulting mixture was warmed to room temperature and N-(4-chloro-3-(pyridin-2-ylmethoxy)phenyl)acetamide (4.34 g, 15.68 mmol) was added. The reaction mixture was heated at 80 °C overnight. The mixture was then cooled to room temperature and carefully quenched with ice. The solution turned red and a yellow precipitate was formed, filtered, washed with water and dried over P₂O₅ overnight to afford the title compound as yellow solid (3.53 g, 68% yield).

Step-4: 1-(2,6-Dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethanone.
To a solution of 2,6-dichloro-7-(pyridin-2-ylmethoxy)quinoline-3-carbaldehyde (1.0 g, 3.0 mmol) in CH$_2$Cl$_2$ (40 mL) was added dropwise methyl magnesium bromide (MeMgBr) (3 M solution in diethyl ether, 1.5 mL, 4.50 mmol) at 0 °C. The resulting mixture was then stirred at ambient temperature for 1.5 hours. Upon completion of reaction, the mixture was slowly quenched with water (3 mL) and extracted with CH$_2$Cl$_2$ (50 mL). The organic layer was separated and dried over anhydrous Na$_2$SO$_4$. The solvents were evaporated to dryness. The resulting residue was dissolved in CH$_2$Cl$_2$ (25 mL) and treated with Dess-Martin Periodinane (2.54 g, 6.00 mmol). The mixture was stirred at ambient temperature overnight. The mixture was then quenched with an aqueous co-solution of 20% NaHCO$_3$ and 20% Na$_2$S$_2$O$_3$ (10 mL) and stirred for 5 minutes at room temperature. The solution was extracted with CH$_2$Cl$_2$ (40 mL), dried over anhydrous Na$_2$SO$_4$, filtered and evaporated. The resulting residue was purified by column chromatography on an ISCO$^\text{®}$ chromatography system (SiO$_2$ column: eluted with CH$_2$Cl$_2$/MeOH 0 to 10%) to afford the title compound (800 mg, 79%).

Step-5: (R,E)-N-(1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethyldene)-2-methylpropane-2-sulfinamide.

To a mixture of 1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethanone (2.18 g, 6.56 mmol) and (R)-2-methylpropane-2-sulfinamide (1.19 g, 9.84 mmol) in THF:Toluene (40 mL:180 mL), was added titanium (IV) isopropoxide (Ti(O$^\text{OPr}_t$)$_4$) (3.96 mL, 13.30 mmol). The resulting mixture was refluxed with a Dean-Stark apparatus for 7 hours. The mixture was then cooled to room temperature, quenched with water, and diluted with EtOAc (300 mL). The organic layer was washed with water (100 mL), dried over anhydrous Na$_2$SO$_4$, filtered and evaporated to dryness. The resulting residue was purified by column chromatography on an ISCO$^\text{®}$ chromatography system (SiO$_2$ column: eluted with Hex/EtOAc 0
to 100%) to afford the title compound as yellow solid (1.4 g, 50% yield). The starting material ketone was also recovered (250 mg, 11% yield).

Step-6: \((R)-N-(S)-1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide.

![Chemical Structure](image)

\[0146\] To a solution of \((R,E)-N-(1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethylidene)-2-methyl propane-2-sulfinamide\) (900 mg, 1.99 mmol) in THF (25 mL) at -40 to -50 °C was added L-selctride (1M in THF, 1.98 mL, 2.59 mmol) dropwise. The resulting mixture was stirred at -40 to -50 °C for 2 hours. Upon completion of reaction, the mixture was quenched with ice at -50 °C, extracted with EtOAc (100 mL), dried, and evaporated. The resulting residue was purified by column chromatography on an ISCO® chromatography system (SiO₂ column: Hex/EtOAc 0 to 100%) followed by trituration with hexanes-methylene chloride to afford the title compound (266 mg, 30% yield).

Step-7: \((S)-3-(1-Aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one TFA salt (II-5a).

![Chemical Structure](image)

\[0147\] To a mixture of \((R)-N-(S)-1-(2,6-dichloro-7-(pyridin-2-ylmethoxy)quinolin-3-yl)ethyl)-2-methyl propane-2-sulfinamide\) (1.1 g, 2.43 mmol) in 1,4-dioxane (6.6 mL), was added aqueous 1N HCl (6.6 mL) at room temperature. The resulting mixture was heated to 120 °C overnight. After TLC and MS showed completion of reaction, the solvents were removed on a rotary evaporator and lyophilized to provide yellow solid. The crude solid was purified by reverse phase chromatography on an ISCO® chromatography system (C18 column: eluted with H₂O/MeCN/0.1% CF₃CO₂H 0 to 100%) and the fractions were monitored by LCMS. The pure fractions were combined and lyophilized to afford the title compound II-5a (920 mg, 86% yield) as the TFA salt. \(^1\)H NMR (300 MHz, DMSO-d₆): \(\delta\) 12.17 (br s, 1 H), 8.62 (d, \(J = 4.95\) Hz, 1 H),
8.09 (br s, 2 H), 7.96-7.85 (m, 3 H), 7.59 (d, J = 7.9 Hz, 1 H), 7.42-7.37 (m, 1 H), 7.08 (d, J = 2.5 Hz, 1 H), 5.33 (s, 2 H), 4.39-4.38 (m, 1 H), 1.51 (d, J = 6.8 Hz, 3 H). LCMS (method 3): Rt 3.3 min, m/z 329.1 [M+H]^+.

Example 11 -- Intermediate II-6: (S)-3-(1-amoenoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one.

`[Image of chemical structures]`

Step-1: 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one.

`[Image of chemical structures]`

[0148] A mixture of 2-amino-5-chloronicotinaldehyde (1 g, 6.39 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (1.362 g, 9.58 mmol) in xylenes (10 mL) was heated to reflux for 3 hours, then cooled to room temperature, filtered, and washed with xylenes twice to afford 914 mg of 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one (64.3% yield). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) 12.68 (br, 1 H), 8.63 (s, 1 H), 8.49 (s, 1 H), 8.39 (s, 1 H), 2.48 (s, 3 H). LCMS (Method 1): Rt 1.60 min, m/z 223.03[M+H]^+.

Step-2: (S)-N-((S)-1-(2,6-dichloroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide.

`[Image of chemical structures]`

[0149] A mixture of tetraethoxytitanium (512 mg, 2.25 mmol), \((R)\)-2-methylpropane-2-sulfinamide (163 mg, 1.35 mmol) and 3-acetyl-6-chloro-1,8-naphthyridin-2(1H)-one (200 mg,
0.898 mmol) in THF (15 mL) was heated to 80 °C overnight, then cooled to room temperature. To this mixture was added NaBH₄ (170 mg, 4.49 mmol) and the mixture was slowly warmed up to room temperature overnight. MeOH was then added to quench any excess NaBH₄, followed by the addition of water. The mixture was filtered to remove solids, then extracted with EtOAc twice, dried over Na₂SO₄ and concentrated. The residue was purified on a Biotage® chromatography system using a 25 g SiO₂ column eluted on a gradient (first 20% to 100% EtOAc /Hexanes, then 0-5% MeOH/DCM) to afford (S)-N-((S)-1-(2,6-dichloroquinolin-3-y1)ethyl)-2-methylpropane-2-sulfinamide (123 mg, 42% yield). ¹H NMR (300 MHz, DMSO-d₆): δ 8.40 (s, 1 H), 7.74 (s, 1 H), 7.75 (s, 1 H), 7.24 (s, 1 H), 5.24 (d, J = 9.45 Hz, 1 H), 4.42 (m, 3 H), 1.54 (d, J = 6.93 Hz, 3 H), 1.20 (s, 9H). LCMS (Method 1): Rt 2.07 min, m/z 328.98 [M+H]⁺.

Step-3: (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one (II-6).

![Chemical Structure](attachment:image.png)

[0150] To a solution of (S)-N-((S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (123 mg, 0.375 mmol) in MeOH (5 mL) was added HCl (2 mL, 8.00 mmol, 4M in 1,4-dioxane). The mixture was then stirred at room temperature overnight. To this mixture was added 6 mL of ethyl ether and the resulting precipitate was filtered, washed with ethyl ether (2 x), dried and concentrated to afford (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one, HCl (96 mg, 98% yield). ¹H NMR (300 MHz, DMSO-d₆): δ 12.75 (br s, 1 H), 8.60-8.35 (s, 1 H), 8.26 (br, 1 H) 8.07 (s, 1 H), 4.40-4.50 (m, 1 H), 1.51 (d, J = 6.78 Hz, 3 H). LCMS (Method 1): Rt 0.87 min, m/z 224.99 [M+H]⁺.

Example 12 -- Intermediate II-7a: (R)-3-(1-aminoethyl)-6-chloroquinoxalin-2(1H)-one
Step 1: Ethyl 3-((4-chloro-2-nitrophenyl)amino)-3-oxopropanoate.

[0151] To a solution of 4-chloro-2-nitroaniline (42.3 g, 245 mmol) in CH₂Cl₂ (1 L) was added ethyl 3-chloro-3-oxopropanoate (48 g, 319 mmol) dropwise and the reaction mixture was stirred at room temperature overnight. The solvent was removed under vacuum and the resulting residue was dissolved in a minimum amount of MTBE (200 mL) and hexanes (800 mL) which was slowly added. Any product that precipitated out from solution was filtered and the filtrate was concentrated and purified by column chromatography ISCO® chromatography system with hexanes/ethyl acetate gradient elution to afford additional desired product. The title compound was obtained in 98% yield (69.85 g).
Step 2: 7-Chloro-2-(ethoxycarbonyl)-3-oxo-3,4-dihydroquinoxaline 1-oxide (A) and 7-Chloro-2-(methoxycarbonyl)-3-oxo-3,4-dihydroquinoxaline 1-oxide (B).

[0152] To a solution of ethyl 3-((4-chloro-2-nitrophenyl)amino)-3-oxopropanoate (68 g, 238 mmol) and methyl benzoate (150 mL) in anhydrous DMF (500 mL) at 0 °C was added dropwise KO'Bu (1M solution in THF, 500 mL, 500 mmol). The reaction mixture was stirred at 0 °C for 4 hours and then quenched with saturated NH₄Cl aqueous solution. The mixture was extracted with CH₂Cl₂ (300 mL x 3). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by SiO₂ flash chromatography and eluted with CH₂Cl₂/MeOH to afford a mixture of A/B (42.54 g, 67% yield, A/B ratio 1:2) as a solid. This was used in the next step without further purification.

Step 3: Ethyl 7-chloro-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (D) and methyl 7-chloro-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (C).

[0153] To a mixture of compounds A and B (42.54 g, 159 mmol) in DMF (200 mL) was added PBr₃ (85.9 g, 318 mmol) dropwise at room temperature. The reaction mixture was stirred at room temperature for 3 hours and was then quenched with ice water and extracted with CH₂Cl₂ (200 mL x 3). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by flash chromatography using CH₂Cl₂/MeOH (9:1) as eluent to afford C/D (36.6 g, 91% yield) as a solid. This was used in the next step without further purification.

Step 4: Ethyl 3,7-dichloroquinoxaline-2-carboxylate (E) and methyl 3,7-dichloro quinoxaline-2-carboxylate (F).
[0154] To a mixture of compounds C/D (36.6 g, 145 mmol) in a 1 L flask was added POCl₃ (150 mL) in one portion and the resulting mixture was refluxed for 3 hours. The mixture was then cooled to room temperature and carefully quenched with aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ (200 mL x 3). The combined organic layer was dried (Na₂SO₄), concentrated, and purified by SiO₂ flash chromatography using hexane/ethyl acetate (9:1) as eluent to afford E/F (23.7 g, 61% yield) as a solid. This mixture was used in the next step without further purification.

Step-5: Methyl 7-chloro-3-methoxyquinoxaline-2-carboxylate.

[0155] To a mixture of compounds E/F (22.11 g, 81.9 mmol) in THF/MeOH (9:1, 300 mL) was added NaOMe (0.5 M, 360 mL) dropwise at 0 °C. The resulting mixture was stirred at room temperature for 3 hours and quenched with solid NH₄Cl (20 g). The solvent was removed under vacuum and water was added (200 mL). The mixture was extracted with CH₂Cl₂ (150 mL x 3) and the combined organic layers were dried (Na₂SO₄), concentrated, and purified by SiO₂ flash chromatography using hexanes/ethyl acetate (9:1) as eluent to afford the title compound (19.1 g, 88 % yield) as a solid.

Step-6: 7-Chloro-3-methoxyquinoxaline-2-carbaldehyde (G) and oxybis(7-chloro-3-methoxyquinoxalin-2-yl)methanol) (H).
To methyl 7-chloro-3-methoxyquinoxaline-2-carboxylate (5.3 g, 20 mmol) in CH$_2$Cl$_2$ (250 mL) was added diisobutylaluminum hydride (1 M, 30 mL) drop-wise at -78 °C. The resulting mixture was stirred at -78 °C for 3 hours and was then quenched with MeOH (at -78 °C, 20 mL). After stirring for 0.5 hours, the mixture was warmed to room temperature and potassium sodium L-tartrate aqueous solution (100 mL) was added. The organic layer was then separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (50 mL x 3). The combined organic layers were dried (Na$_2$SO$_4$), concentrated, and purified by SiO$_2$ flash chromatography using hexanes/ethyl acetate (1:1) as eluent to afford G (1.02 g, 23 % yield) and H (2.24 g, 50% yield). The structure of H was assigned based on MS and 1H NMR.

Step-7: \((R,E)-N-((7\text{-chloro-3-methoxyquinoxalinen-2-yl})\text{methylene})\text{-2-methylpropane-2-sulfinamide}. \)

![Chemical structure of \((R,E)-N-((7\text{-chloro-3-methoxyquinoxalinen-2-yl})\text{methylene})\text{-2-methylpropane-2-sulfinamide}. \)](image)

To compound H (2.24 g, 5.1 mmol) in DCE (300 mL) at room temperature was added \((R)-2\text{-methylpropane-2-sulfinamide} \) (2.44 g, 20.1 mmol) and CuSO$_4$ (4.85 g, 30.3 mmol). The reaction was heated to 60 °C and stirred for 4 hours. The reaction mixture was then cooled to room temperature and quenched with 50 mL of saturated aqueous NaHCO$_3$ solution. After stirring for 10 minutes, the reaction mixture was filtered through a pad of Celite®. The filtrate was extracted with CH$_2$Cl$_2$ (50 mL x 3), dried (Na$_2$SO$_4$), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (2.21 g, 67% yield).

Step-8: \((R)-N-((R)-1-((7\text{-chloro-3-methoxyquinoxalinen-2-yl})\text{ethyl})\text{-2-methylpropane-2-sulfinamide}. \)

![Chemical structure of \((R)-N-((R)-1-((7\text{-chloro-3-methoxyquinoxalinen-2-yl})\text{ethyl})\text{-2-methylpropane-2-sulfinamide}. \)](image)

To \((R,E)-N-((7\text{-chloro-3-methoxyquinoxalinen-2-yl})\text{methylene})\text{-2-methylpropane-2-sulfinamide} \) (2.21 g, 6.8 mmol) in CH$_2$Cl$_2$ (150 mL) was added methyl magnesium chloride (MeMgCl) (3M in THF, 3.4 mL) dropwise at -78 °C. The resulting mixture was stirred at -78 °C
for 2 hours and was then quenched with aqueous NH₄Cl solution (20 mL). After stirring for 10 minutes, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (25 mL x 3). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (1.18 g, 51% yield).

Step-9: (R)-3-(1-aminoethyl)-6-chloroquinazolin-2(1H)-one (II-7a).

![Diagram](image)

Example 13 -- Intermediate II-7b: (S)-3-(1-aminoethyl)-6-chloroquinazolin-2(1H)-one

![Diagram](image)

Step-1: (S,E)-N-((7-chloro-3-methoxyquinazolin-2-yl)methylene)-2-methylpropane-2-sulfinamide.
To compound H (2.31 g, 5.2 mmol) in DCE (300 mL) at room temperature was added (S)-2-methylpropane-2-sulfinamide (2.52 g, 20.8 mmol) and CuSO₄ (5.0 g, 31.2 mmol). The resulting reaction mixture was heated to 60 °C and stirred for 4 hours. The reaction mixture was then cooled to room temperature and quenched with 50 mL of saturated aqueous NaHCO₃ solution. After stirring for 10 minutes, the mixture was filtered through a pad of Celite®. The filtrate was extracted with CH₂Cl₂ (50 mL x 3), dried (Na₂SO₄), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (2.62 g, 78% yield).

Step 2: (S)-N-((S)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide.

To compound (S,E)-N-((7-chloro-3-methoxyquinoxalin-2-yl)methylene)-2-methylpropane-2-sulfinamide (2.62 g, 8.0 mmol) in CH₂Cl₂ (150 mL) was added methyl magnesium chloride (MeMgCl) (3M in THF, 4.0 mL) dropwise at -78 °C. The resulting mixture was stirred at -78 °C for 2 hours and was then quenched with aqueous NH₄Cl solution (20 mL). After stirring for 10 minutes, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (25 mL x 3). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by column chromatography on an ISCO® chromatography system using hexanes/ethyl acetate as eluent to afford the title compound (1.69 g, 62%).

Step 14: (S)-3-(1-aminoethyl)-6-chloroquinazolin-2(1H)-one (II-7b).

To the compound (S)-N-((S)-1-(7-chloro-3-methoxyquinoxalin-2-yl)ethyl)-2-methylpropane-2-sulfinamide (350 mg, 1.03 mmol) in CH₃CN (40 mL) was added
iodotrimethylsilane (1.03 g, 5.15 mmol) dropwise at 0 °C. The mixture was then refluxed for 2 hours. After it was cooled to room temperature, the reaction was quenched with MeOH (2 mL). The solvent was removed under vacuum, and the residue was purified by reverse C-18 chromatography on an ISCO® chromatography system using water (0.1% TFA)/CH₃CN (0.1% TFA) as eluent to afford the title compound (267 mg, 79% yield) as a TFA salt.

Example 14 -- Intermediate II-8:

(3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one

\[
\begin{align*}
\text{Cl} & \quad \text{HO} & \quad \text{Cl} & \quad \text{Cl} & \quad \text{HO} \\
\text{HO} & \quad \text{NH}_2 & \quad \text{Cl} & \quad \text{NH} & \quad \text{O} \\
\end{align*}
\]

1. Boc₂O THF
2. TBDMSCl imidazole DMF
1. tBuLi ether -40°
2. DMF

\[
\begin{align*}
\text{HO} & \quad \text{NH} & \quad \text{O} \\
\text{OH} & \quad \text{Cl} & \quad \text{O} \\
\end{align*}
\]

1. HN(i-Pr)₂ n-BuLi THF, -78°
2. HCl/dioxane 100°C

II-8

\[
\begin{align*}
\text{Cl} & \quad \text{NH}_2\text{HCl} \\
\text{HO} & \quad \text{NH} & \quad \text{O} \\
\text{HO} & \quad \text{NH} & \quad \text{O} \\
\end{align*}
\]

1. SOCl₂ EtOH
2. Boc₂O TEA, DCM

Step 1: tert-butyl (3-((tert-butyldimethylsilyl)oxy)-4-chlorophenyl)carbamate.

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{HO} & \quad \text{NH} & \quad \text{O} \\
\end{align*}
\]
A solution of 5-amino-2-chlorophenol (10.00 g, 69.7 mmol) in THF (350 mL) was treated with di-tert-butyl dicarbonate (20 mL, 86 mmol) and stirred at reflux overnight. The solvent was evaporated under reduced pressure to provide a brown oil. The oil was then dissolved in EtOAc (300 mL), washed with water, saturated aqueous NaHCO₃, and brine (300 mL each), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 21.01 g of impure tert-butyl (4-chloro-3-hydroxyphenyl)carbamate as a brown oil (LCMS: m/z 244 [M+H]+). This material was dissolved in DMF (130 mL) and cooled on an ice bath. Imidazole (11.74 g, 172 mmol) was then added slowly (over ~10 minutes). A solution of TBDMS-Cl (14.98 g, 99 mmol) in DMF (45 mL) was added (over ~2 minutes). The ice bath was removed and the solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, the solution was diluted with EtOAc (1L) and washed with water (2 x 600 mL), half-saturated aqueous NaHCO₃ (600 mL), half-saturated aqueous NH₄Cl (600 mL), saturated NaHCO₃ (600 mL), and brine (600 mL). The organic layer was dried (MgSO₄), filtered, and evaporated under reduced pressure to provide 28.00 g of a brown solid. The sample was dissolved in EtOAc, silica gel (33 g) was added, and the solvent was evaporated under reduced pressure. The material was divided into two batches, each of which was purified by column chromatography on a Biotage® MPLC chromatography system using a 330 g silica gel column eluted with 0 to 5% EtOAc in hexanes and with isocratic elution at 4.5% or 5% EtOAc when the product eluted. The product fractions were collected and provided 21.76 g of tert-butyl (3-((tert-butyldimethylsilyloxy)-4-chlorophenyl)carbamate (21.76 g, 60.8 mmol, 88% yield) as a peach-colored solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 9.43 (s, 1 H), 7.23-7.28 (m, 1 H), 7.22 (d, J = 2.35 Hz, 1 H), 7.09-7.16 (m, 1 H), 1.46 (s, 9 H), 0.99 (s, 9 H), 0.21 (s, 6 H). LCMS (Method 1): m/z 358 [M+H]+.

Step-2: tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate (J).

An oven-dried 3-necked 500 mL round bottom flask was charged with tert-butyl (3-((tert-butyldimethylsilyloxy)-4-chlorophenyl)carbamate (10 g, 27.9 mmol). An oven-dried
addition funnel was attached, and the system was flushed with nitrogen. Ethyl ether (113 mL) was added by syringe. The resulting yellow solution was cooled on an acetonitrile/dry ice bath (to approximately -40 °C). t-BuLi (1.7 M in pentane, 40 mL, 68.0 mmol) was then added to the addition funnel by cannula. The t-BuLi solution was added dropwise to the ether solution (over ~10 minutes), during which time the ether solution gradually became cloudy with a precipitate. The mixture was stirred at about -40 °C for 2.5 hours, then DMF (11 mL) was added dropwise by syringe (over ~10 minutes), during which time the solids went back into solution. The acetonitrile / dry ice bath was replaced with an ice bath, and the yellow solution was stirred at 0 °C for 1.75 hours. The reaction was then quenched by dropwise addition of water (25 mL), resulting in formation of an orange precipitate. The ice bath was removed and the sample was diluted with water (125 mL), resulting in dissolution of the precipitate. The mixture was shaken, and the layers were separated. The aqueous layer was acidified to pH ~4-5 with AcOH. The resulting precipitate was extracted with EtOAc (200 mL), washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate as a yellow solid (4.79 g, 17.63 mmol, 63% yield). ¹H NMR (300 MHz, DMSO-d₆): δ ppm 11.72 (s, 1 H), 10.50 (s, 1 H), 9.68 (br s, 1 H), 7.99 (s, 1 H), 7.88 - 7.91 (m, 1 H), 1.48 (s, 9 H). LCMS (Method 1): m/z 216 (M-56, loss of t-Bu).

Step-3: (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate.

[0165] A mixture of (S)-1-(pyridin-2-yl)ethanol (454.3 mg, 3.69 mmol), tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate (1 g, 3.68 mmol) and triphenylphosphine (1.158 g, 4.42 mmol) was placed in a 100 mL round bottom flask under an atmosphere of nitrogen. THF (40 mL) was added by syringe. The resulting yellow solution was cooled on an ice bath and then DIAD (0.86 mL, 4.42 mmol) was added dropwise. The ice bath was removed and the solution was stirred at room temperature overnight. Once LCMS indicated the reaction had gone to completion, silica gel was added and the solvent was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system.
(using a 50 g silica gel column eluted with 0 to 13% EtOAc in hexanes) to provide 473.7 mg of a white solid. LCMS and NMR are consistent with (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate contaminated with phenolic starting material (~5:1 product to starting material by NMR). The material was used for next step without further purification. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\) ppm 10.42 (s, 1 H), 9.73 (s, 1 H), 8.54-8.60 (m, 1 H), 7.98 (s, 1 H), 7.92 (s, 1 H), 7.82 (ddd, \(J = 7.80, 7.80, 1.80\) Hz, 1 H), 7.44 (br d, \(J = 7.90\) Hz, 1 H), 7.30-7.36 (m, 1 H), 5.64 (q, \(J = 6.35\) Hz, 1 H), 1.67 (d, \(J = 6.45\) Hz, 3 H), 1.46 (s, 9 H). LCMS (Method 1): \(m/z\) 377 [M+H]\(^+\).

Step-4: (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate (K).

![Chemical structure](image)

[0166] A suspension of (S)-3-aminobutanoic acid (6.25 g, 60.6 mmol) in EtOH (27.5 mL) was cooled on an ice bath. Thionyl chloride (7.5 mL, 103 mmol) was then added dropwise over 40 minutes, during which time the amino acid went into solution. The ice bath was allowed to melt, and the solution was stirred at room temperature overnight. The mixture was evaporated under reduced pressure, and the residue was mixed with more EtOH (60 mL) and again evaporated under reduced pressure to provide an oil. The oil was dissolved in DCM (55 mL) and cooled on an ice bath. TEA (25 mL, 179 mmol) was added dropwise over 15 minutes with stirring, resulting in a milky mixture. Di-tert-butyl dicarbonate (17 mL, 73.2 mmol) was then added. The ice bath was allowed to melt, and the mixture was stirred at room temperature for five days. The resulting mixture was filtered through Celite\(^\circledast\) 545 on a Buchner funnel, and the filter cake was washed with DCM (50 mL). The filtrate was washed with saturated aqueous citric acid (20 mL) and water (2 x 100 mL), dried (MgSO\(_4\)), filtered, and evaporated under reduced pressure to provide the title compound as a clear oil. \(^1\)H NMR is consistent with (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate (13.47 g, 58.2 mmol, 96% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) ppm 4.95 (br s, 1 H), 4.15 (q, \(J = 7.13\), 2 H), 3.98-4.10 (m, 1 H), 2.40-2.57 (m, 2 H), 1.44 (s, 9 H), 1.27 (t, \(J = 7.18\), 3 H), 1.22 (d, \(J = 6.74\), Hz, 3 H).

Step-5 & 6: 3-((S)-1-aminomethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride (II-8).
An oven-dried 25 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen. THF (2.25 mL) and diisopropylamine (0.27 mL, 1.894 mmol) were then added by syringe. The solution was cooled using a dry ice/acetone bath (-78 °C) and n-BuLi (1.6 M in hexane, 1.15 mL, 1.84 mmol) was added dropwise over 5 minutes. After stirring for 10 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (115.3 mg, 0.499 mmol) in THF (0.5 mL) was added dropwise (over 5 minutes). The solution was stirred for 75 minutes at -78 °C and then a solution of (R)-tert-butyl (4-chloro-2-formyl-5-(1-(pyridin-2-yl)ethoxy)phenyl)carbamate (188.7 mg, 0.501 mmol) in THF (1.0 mL) was added dropwise by syringe. The reaction solution became yellow when the aldehyde was added. The reaction was stirred at -78 °C for 13 minutes and then quenched by the addition of saturated aqueous NH₄Cl solution (2.5 mL). The mixture was partitioned between EtOAc and water (10 mL each). The organic layer was dried (MgSO₄), filtered, and evaporated under reduced pressure to provide an impure mixture of isomers of (3S)-ethyl 3-((tert-butoxycarbonyl)amino)-2-((2-((tert-butoxycarbonyl)amino)-5-chloro-4-((R)-1-(pyridin-2-yl)ethoxy)phenyl)(hydroxy)methyl)butanoate as a yellow oil (344.8 mg; LCMS: m/z +608 [M+H]+). The crude material (334 mg) was dissolved in 1,4-dioxane (5 mL), treated with 12M aqueous HCl (0.125 mL), and stirred at 110 °C for 90 minutes, during which time a red material precipitated. The mixture was allowed to cool and the supernatant was decanted and discarded. Heptane (~4 mL) was added to the red precipitate remaining in the round bottom and then evaporated under reduced pressure to provide 161.8 mg of a red solid. The material was triturated with 1PrOH (5 mL) and the resulting precipitate was collected on a Hirsch funnel and washed with 1PrOH (1 mL) and ethyl ether (~20 mL) to provide 3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride (104.2 mg, 0.274 mmol, 55% yield) as a red solid, impure but suitable for use as it is. 1H NMR (300 MHz, Methanol-d₄): δ ppm 8.81-8.87 (m, 1 H), 8.55-8.64 (m, 1 H), 8.18 (d, J = 7.92 Hz, 1 H), 7.96-8.04 (m, 1 H), 7.95 (s, 1 H), 7.85 (s, 1 H), 6.99 (s, 1 H), 5.98 (q, J = 6.84 Hz, 1 H), 4.48 (q, J = 6.84 Hz, 1 H), 1.86 (d, J = 6.45 Hz, 3 H), 1.64 (d, J = 6.74 Hz, 3 H). LCMS (Method 1): m/z 344 [M+H]+.
Example 15 -- Intermediate II-9: (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy) quinolin-2(1H)one

Step 1: tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate.

[0168] A mixture of cyclopropylmethanol (0.145 mL, 1.838 mmol), tert-butyl (4-chloro-2-formyl-5-hydroxyphenyl)carbamate J (499.4 mg, 1.838 mmol) and triphenylphosphine (579.4 mg, 2.209 mmol) was placed in a 100 mL round bottom flask under an atmosphere of nitrogen and THF (20 mL) was then added by syringe. The resulting orange solution was cooled on an ice bath and DIAD (0.43 mL, 2.184 mmol) was added dropwise. The ice bath was removed and the solution was stirred at room temperature for 48 hours. Once LCMS indicated the reaction had gone to completion, silica gel was added and the solvent was evaporated under reduced pressure. The sample was purified by column chromatography on a Biotage® MPLC chromatography system using a 25 g silica gel column eluted with 0 to 3% EtOAc in hexanes to provide tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate (410.6 mg, 1.260 mmol, 68.6% yield) as a yellowish solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 10.57 (s, 1 H), 9.75 (s, 1 H), 7.95-8.00 (m, 2 H), 4.02 (d, J = 7.04 Hz, 2 H), 1.49 (s, 9 H), 1.23-1.31 (m, 1 H), 0.57-0.66 (m, 2 H), 0.38-0.46 (m, 2 H). LCMS (Method 1): m/z 270 (loss of t-Bu).
Step 2 & 3: (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride (II-9).

[0169] An oven-dried 25 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen and THF (5.6 mL) and diisopropylamine (0.53 mL, 3.72 mmol) were added by syringe. The solution was cooled on a dry ice/acetone bath (-78 °C) and n-BuLi (1.6 M in hexane, 2.35 mL, 3.76 mmol) was added dropwise over a 5 minute period. After stirring for 15 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (286 mg, 1.238 mmol) in THF (1.25 mL) was added dropwise (over 5 minutes). The solution was stirred for 80 minutes at -78 °C and a solution of tert-butyl (4-chloro-5-(cyclopropylmethoxy)-2-formylphenyl)carbamate (403.2 mg, 1.238 mmol) in THF (2.5 mL) was added dropwise by syringe. The reaction solution became yellow when the aldehyde was added. The reaction was stirred at -78 °C for 12 minutes and then quenched by addition of saturated aqueous NH₄Cl solution (6 mL). The mixture was partitioned between EtOAc and water (25 mL each) and the organic layer was dried (MgSO₄), filtered, and evaporated under reduced pressure to provide 724.5 g of a yellowish oil. The material was dissolved in 1,4-dioxane (12.5 mL), treated with 12M HCl (aqueous; 0.32 mL), and stirred at 110 °C for 70 minutes during which time the solution became thick with a pink precipitate. The sample was allowed to cool and the solvent was evaporated under reduced pressure to provide 1.13 g of a fibrous red solid. The material was triturated with i-PrOH (15 mL) and the resulting precipitate was collected on a Buchner funnel and washed with i-PrOH (20 mL) and ethyl ether (~60 mL) to provide (S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride (146.1 mg, 0.444 mmol, 36 % yield) as a papery white solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.13 (br s, 1 H), 8.21 (br s, 3 H), 7.98 (s, 1 H), 7.86 (s, 1 H), 6.98 (s, 1 H), 4.32-4.46 (m, 1 H), 3.96 (d, J = 6.40 Hz, 2 H), 1.51 (d, J = 6.70 Hz, 3 H), 1.21-1.35 (m, 1 H), 0.55-0.68 (m, 2 H), 0.35-0.46 (m, 2 H). LCMS (Method 1): m/z 293 [M+H]⁺.
Example 16 -- Intermediate II-10: 3-(1-Aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one

Step-1: N-(4-Chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide.

[0170] A solution of 5-amino-2-chlorophenol (3 g, 20.90 mmol) (3,3-difluorocyclobutyl)methanol (2.66 g, 21.78 mmol) in THF (375 mL) was placed under an atmosphere of nitrogen and treated with DEAD (3.90 mL, 24.63 mmol). The solution was stirred at room temperature for 48 hours. Once LCMS indicated adequate progression of the reaction, the silica gel was added to the solution and evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (using a 340 g silica gel column eluted with 0 to 100% EtOAc in hexanes with isocratic elution when peaks eluted) to provide 3.89 g of the title compound as a brown liquid. LCMS was consistent with impure 4-chloro-3-((3,3-difluorocyclobutyl)methoxy)aniline (m/z 248 [M+H]+). The sample was dissolved in EtOAc (80 mL) and treated with DIEA (3.00 mL, 17.18 mmol) and Ac₂O (1.60 mL, 16.96 mmol). The solution was stirred at room temperature overnight. The solution was then washed with water and brine (50 mL each), dried (Na₂SO₄), filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on a
Biotage® MPLC chromatography system (using a 50 g silica gel column, eluted with 0 to 50% EtOAc in hexanes with isocratic elution when peaks eluted) to provide 3.16 g of the title compound as a light brown oil, which slowly crystallized on standing. LCMS and 1H NMR are consistent with N-(4-chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide (3.16 g, 10.91 mmol, 52% yield) In the NMR one proton is obscured by the solvent signal. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.91 (s, 1 H), 8.54-8.67 (m, 1 H), 7.80-7.95 (m, 2 H), 7.68 (s, 1 H), 7.56 (d, J = 7.30 Hz, 1 H), 7.34-7.44 (m, 1 H), 7.29 (d, J = 9.10 Hz, 1 H), 7.13-7.22 (m, 1 H), 7.03 (s, 1 H), 6.31 (br s, 1 H), 6.22 (d, J = 7.90 Hz, 1 H), 5.30 (s, 2 H), 4.10-4.26 (m, 2 H), 3.78 (s, 3 H). LCMS (Method 1): m/z 290 [M+H]$^+$.

Step-2: 2,6-Dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde.

![Chemical Structure]

[0171] A tube was capped with a septum and placed under an atmosphere of nitrogen. DMF (2.15 mL, 27.8 mmol) was then added by syringe and the resulting reaction mixture was cooled on an ice bath. POCl$_3$ (8.40 mL, 90 mmol) was added dropwise by syringe (10 minutes) during which time a white material precipitated. The solution was then allowed to warm to room temperature over 10 minutes and the mixture was treated with N-(4-chloro-3-((3,3-difluorocyclobutyl)methoxy)phenyl)acetamide (2.44 g, 8.42 mmol). The mixture was stirred at 80 °C for two days. The resulting thick red solution was pipetted onto ice, resulting in a yellow precipitate. The precipitate was collected on a Buchner funnel, washed with water (~500 mL), and dried to provide 2.38 g of the title compound as a pale yellow solid. LCMS and 1H NMR are consistent with 2,6-dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde (2.38 g, 6.88 mmol, 82% yield). 1H NMR (300 MHz, DMSO-d_6): δ ppm 10.31-10.36 (m, 1 H), 8.88 (s, 1 H), 8.48 (s, 1 H), 7.65 (s, 1 H), 4.37 (d, J = 4.69 Hz, 2 H), 2.53-2.84 (m, 5 H). LCMS (Method 1): m/z 346 [M+H]$^+$.

Step-3: 6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde.
[0172] A solution of 2,6-dichloro-7-((3,3-difluorocyclobutyl)methoxy)quinoline-3-carbaldehyde (2.66 g, 7.68 mmol) in concentrated HCl (75 mL) was stirred at 100 °C for one day during which time a red crust formed on the surface of the flask. The mixture was diluted with water (800 mL), resulting in formation of a red precipitate. The mixture was allowed to stand at room temperature for 4 days. The precipitate was then collected on a Buchner funnel, washed with water (1 L), and dried under vacuum at 50 °C to provide 2.16 g of the title compound as a red solid. LCMS and 1H NMR are consistent with 6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (2.16 g, 6.59 mmol, 86% yield). 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.21 (s, 1 H), 10.16-10.18 (m, 1 H), 8.43 (s, 1 H), 8.09 (s, 1 H), 6.94 (s, 1 H), 4.20 (d, $J = 4.10$ Hz, 2 H), 2.54-2.80 (m, 5 H). LCMS (Method 1): m/z +328 [M+H]$^+$.

Step-4: (E)-N-((6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfinamide.

[0173] A mixture of 6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (499.6 mg, 1.525 mmol) and 2-methylpropane-2-sulfinamide (222.1 mg, 1.832 mmol) was placed in a 25 mL round bottom flask under an atmosphere of nitrogen. THF (3.0 mL) and titanium (IV) isopropoxide ($\text{Ti(O}^\text{iPr})_4$) (0.90 mL, 3.07 mmol) were added by syringe, and the suspension was stirred at room temperature overnight. Once LCMS indicated near completion of reaction, the reaction was quenched by dropwise addition of saturated aqueous NH$_4$Cl solution (2 mL). The material was then triturated with EtOAc (100 mL) and the resulting precipitate was filtered through Celite®. The filter cake was washed with EtOAc (50 mL), sonicated in EtOAc for 15 minutes and filtered using a Buchner funnel. The
filtrates were combined and washed with brine (100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 413 mg of the title compound as a yellow solid. LCMS and ¹H NMR are consistent with (E)-N-((6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfamamide (413 mg, 0.958 mmol, 62.9% yield). ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.21 (s, 1 H), 8.74 (s, 1 H), 8.59 (s, 1 H), 8.09 (s, 1 H), 6.95 (s, 1 H), 4.19 (d, J = 4.40 Hz, 2 H), 2.55-2.79 (m, 5 H), 1.19 (s, 9 H). LCMS (Method 1): m/z 431 [M+H]⁺.

Step 5: N-((1-(6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfamamide.

[0174] (E)-N-((6-Chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-methylpropane-2-sulfamamide (411.3 mg, 0.955 mmol) was placed in a 100 mL round-bottom flask under an atmosphere of nitrogen. DCM (7.6 mL) was added, and the suspension was cooled on a dry ice/chloroform bath (to approx. -60 °C). Methylmagnesium bromide (MeMgBr, 3 M in ether) (0.95 mL, 2.85 mmol) was added dropwise. The cold bath was then allowed to warm to room temperature overnight, resulting in an orange solution. Once LCMS indicated reaction completion, the solution was cooled on an ice bath and treated dropwise with water (5 mL), resulting in precipitation. The mixture was diluted with EtOAc (100 mL) and washed with water (100 mL). Silica gel was added to the organic layer and the solvent was evaporated under reduced pressure. The material was purified by column chromatography on a Biotage® MPLC chromatography system (eluted with 0 to 5% MeOH in DCM with isocratic elution at 3.2% MeOH) to provide 345.5 mg of the title compound as a brown brittle foam. LCMS and ¹H NMR are consistent with N-(1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfamamide (345.5 mg, 0.773 mmol, 81% yield). NMR shows a ~1:1 mixture of diastereomers. LCMS (Method 1): m/z 447 [M+H]⁺.
Step-6: 3-(1-Aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride (II-10).

![Chemical Structure]

[0175] A solution of N-(1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfonamide (342.7 mg, 0.767 mmol) in MeOH (7.0 mL) was cooled on an ice bath and treated dropwise with 4M HCl in 1,4-dioxane (4 mL). The solution was then stirred for 25 minutes. The solvents were evaporated under reduced pressure at room temperature. The residue was triturated with 20 mL ethyl ether and the resulting precipitate was collected on a Hirsch funnel and washed with more ethyl ether to provide 271.4 mg of a pink solid. LCMS and 1H NMR are consistent with 3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride (271.4 mg, 0.716 mmol, 93% yield). 1H NMR (300 MHz, Methanol-d_4): δ ppm 7.95 (s, 1 H), 7.79 (s, 1 H), 6.96 (s, 1 H), 4.48-4.55 (m, 1 H), 4.20 (d, J = 4.10 Hz, 2 H), 2.56 - 2.79 (m, 5 H), 1.68 (d, J = 7.04 Hz, 3 H). LCMS (Method 1): m/z 343 [M+H]$^+$.
Example 17 -- Intermediate II-11: (S)-3-(1-Aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one

\[\text{Cl} \quad \text{NH}_2 \quad \text{Cl} \quad \text{NH} \quad \text{Cl} \quad \text{NH} \quad \text{Cl} \quad \text{O} \]

1. Boc$_2$O, dioxane, reflux

2. DMF

1. HNP$_2$, n-BuLi, THF, -78°C

2. HCl/dioxane, 100°C

II-11

Step-1: tert-Butyl (4-chloro-2-fluorophenyl)carbamate.

[0176] A solution of 4-chloro-2-fluoroaniline (2 g, 13.74 mmol) and di-tert-butyl dicarbonate (6.4 mL, 27.6 mmol) in 1,4-dioxane (50 mL) was stirred at reflux for 2 days. The solvent was then evaporated. The resulting oil was diluted with MeOH, water, and aqueous ammonium hydroxide solution (10 mL each) and vigorously stirred for 45 minutes. The organic lower layer was separated. The organic material was diluted with EtOAc (50 mL), and washed with water (50 mL), 3.6% aqueous HCl solution (2 x 50 mL), saturated aqueous NaHCO$_3$ solution (50 mL), and then again with water (2 x 50 mL). The organic layer was dried (MgSO$_4$), filtered, and evaporated under reduced pressure to provide tert-butyl (4-chloro-2-fluorophenyl)carbamate (3.0011 g, 12.22 mmol, 89% yield) as a reddish liquid that solidified on standing. 1H NMR (300 MHz, DMSO-d_6): δ ppm 9.12 (s, 1 H), 7.63 (t, $J = 8.65$ Hz, 1 H), 7.42 (dd, $J = 10.85, 2.35$ Hz, 1 H), 7.18-7.24 (m, 1 H), 1.45 (s, 9 H). LCMS (Method 1): m/z 246 [M+H]$^+$.

Step-2: tert-Butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate.
An oven-dried 3-necked 500 mL round bottom flask was fitted with an oven-dried addition funnel and placed under an atmosphere of nitrogen. tert-Butyl (4-chloro-2-fluorophenyl)carbamate (5.44 g, 22.14 mmol) and ethyl ether (91 mL) were added by syringe. The clear solution was cooled on an acetonitrile/dry ice bath (to approximately -40 °C). tert-Butyllithium (1.7M in pentane, 33 mL, 22.14 mmol) was added to the addition funnel by cannula. The t-BuLi solution was added dropwise to the ether solution (over ~10 minutes), during which time the ether solution began to turn orange. The solution was stirred at about -40 °C for 2 hours, during which time it progressively became more orange. DMF (8.7 mL, 112 mmol) was added dropwise (over ~10 minutes), resulting in precipitation of a yellow solid. The MeCN/dry ice bath was replaced with an ice bath and the mixture was stirred for an additional 2 hours. The reaction was then quenched by dropwise addition of water (20 mL), resulting in a brown mixture and the ice bath was removed. The mixture was diluted with EtOAc (100 mL), washed with water (2 x 100 mL), dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 5.45 g of an oily black solid. The material was triturated with hexanes (50 mL), collected on a Buchner funnel and washed with more hexanes to provide 2.73 g tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate as a yellow powder. The filtrate was evaporated under reduced pressure, the residue was triturated in hexanes (~15 mL), and the resulting yellow solid was collected on a Hirsch funnel to provide a second crop of the title compound (0.66 g).

A total of 3.39 g (12.4 mmol, 56% yield) of tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate was recovered. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 9.93 (d, J = 0.88 Hz, 1 H), 9.47 (s, 1 H), 7.81-7.90 (m, 1 H), 7.55-7.61 (m, 1 H), 1.44 (s, 9 H). LCMS (Method 1): m/z 296 [M+Na].

Steps 3 & 4: (S)-3-(1-Aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one hydrochloride (II-11).
An oven-dried 200 mL round bottom flask and stir bar were placed under an atmosphere of nitrogen. THF (17 mL) and diisopropylamine (1.59 mL, 11.16 mmol) were added by syringe. The resulting solution was cooled on a dry ice/acetone bath (to approximately -78 °C) and then n-butyllithium (1.6M in hexane, 7.1 mL, 11.36 mmol) was added dropwise over a 5 minute period. After stirring for 15 minutes, a solution of (S)-ethyl 3-((tert-butoxycarbonyl)amino)butanoate K (860.7 mg, 3.72 mmol) in THF (3.75 mL) was added dropwise over 5 minutes. The solution was stirred for 80 minutes at -78 °C, and a solution of tert-butyl (4-chloro-2-fluoro-6-formylphenyl)carbamate (1016.4 mg, 3.71 mmol) in THF (7.5 mL) was then added dropwise by syringe. The reaction was stirred at -78 °C for another 22 minutes and then quenched by addition of saturated aqueous NH₄Cl solution (17 mL). The mixture was partitioned between EtOAc and water (100 mL each). The organic layer was dried (MgSO₄), filtered, and evaporated under reduced pressure to provide 1.88 g of the title compound as an orange gum. The material was dissolved in 1,4-dioxane (38 mL), treated with 12M aqueous HCl (0.96 mL), and stirred at 110 °C for 50 minutes. The sample was then allowed to cool. The solvent was evaporated under reduced pressure to provide 1.24 g of a red solid. The material was triturated in IPA (25 mL), collected on a Hirsch funnel and washed sequentially with IPA (5 mL) and ethyl ether (~20 mL) to provide (S)-3-(1-aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one hydrochloride (370.4 mg, 1.337 mmol, 36% yield) as a red solid. ¹H NMR (300 MHz, DMSO-δ₆): δ ppm 12.41 (s, 1 H), 8.33 (br s, 3 H), 8.10 (s, 1 H), 7.67-7.76 (m, 2 H), 4.38-4.53 (m, 1 H), 1.52 (d, J = 7.04 Hz, 3 H). LCMS (Method 1): m/z 241 [M+H]⁺.
Example 18 -- Intermediate II-12: (S)-3-(1-aminoethyl)-7-bromo-6-chloroquinolin-2(1H)-one

\[
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{OH} \\
\text{Br} \quad \text{Cl} \quad \text{NH}_2 \\
\text{Cl} \quad \text{Br} \quad \text{NH}_2
\end{array}
\xrightarrow{\text{LAH/ether}}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{NH}_2 \\
\text{Br} \quad \text{Cl} \quad \text{OH}
\end{array}
\xrightarrow{\text{MnO}_2, \text{CHCl}_3}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{NH}_2 \\
\text{Br} \quad \text{Cl}
\end{array}
\xrightarrow{\text{reflux, xylenes}}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\xrightarrow{\text{HCl/MeOH}}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\xrightarrow{\text{Hg(NH}_2)_2}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\xrightarrow{\text{NaBH}_4}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\xrightarrow{\text{HCl/MeOH}}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\xrightarrow{\text{II-12}}
\begin{array}{c}
\text{Cl} \quad \text{Br} \quad \text{O}
\end{array}
\]

Step 1: (2-Amino-4-bromo-5-chlorophenyl)methanol.

[0179] A suspension of 2-amino-4-bromo-5-chlorobenzoic acid (4.97 g, 19.84 mmol) in dry ethyl ether (20 mL) was added dropwise to an ice cooled solution of lithium aluminum hydride (20 mmol) in dry ethyl ether (100 mL). The mixture was stirred at room temperature for 2 hours. Water (10 mL) was then added dropwise followed by aqueous sodium hydroxide solution (1M, 20 mL). After stirring at room temperature for one hour, the mixture was filtered. Solids were rinsed with EtOAc twice. The organic layer was separated, dried over sodium sulfate, and concentrated under reduced pressure to afford 4.03 g of crude (2-amino-4-bromo-5-chlorophenyl)methanol (86% yield). 1H NMR (300 MHz, CDCl$_3$): δ ppm 7.13 (s, 1 H), 6.94 (br, 1 H) 4.61 (s, 2 H), 4.24 (br, 2 H). LCMS (Method 1): Rt 1.92 min, m/z 237.87 [M+H]$^+$.

Step 2: 2-Amino-4-bromo-5-chlorobenzaldehyde.

[0180] A mixture of manganese dioxide (14.81 g, 170 mmol) and (2-amino-4-bromo-5-chlorophenyl)methanol (4.03 g, 17.04 mmol) in CHCl$_3$ (500 mL) was stirred at room temperature over 2 days. The mixture was filtered, and the filtrate was collected and
concentrated to afford 3.6 g of crude 2-amino-4-bromo-5-chlorobenzaldehyde (90% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) ppm 9.77 (s, 1 H), 7.52 (br, 1 H) 6.98 (s, 2 H), 6.12 (br, 2 H). LCMS (Method 1): Rt 2.21 min, m/z 235.89 [M+H]\(^+\).

Step 3: 3-Acetyl-7-bromo-6-chloroquinolin-2(1H)-one.

![Chemical structure](image)

A mixture of 2-amino-4-bromo-5-chlorobenzaldehyde (1.08 g, 4.61 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (1.310 g, 9.21 mmol) in xylenes (30 mL) was heated to reflux overnight. The reaction was cooled to room temperature and filtered. Solids were washed with xylenes, and the filtrate was dried and concentrated. The crude material was purified by chromatography on a Biotage\(^\text{®}\) chromatography system on a 25 g SiO\(_2\) column and eluted with 0-70% EtOAc/DCM to afford 140 mg of 3-acetyl-7-bromo-6-chloroquinolin-2(1H)-one (52.4% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) ppm 12.23 (s, 1 H), 8.40 (br, 1 H) 8.20 (s, 1 H), 7.65 (s, 1 H), 2.58 (s, 3 H). LCMS (Method 1): Rt 2.31 min, m/z 301.87 [M+H]\(^+\).

Step 4 & 5: (S)-N-((S)-1-(7-Bromo-6-chlro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methyl propane-2-sulfinate.

![Chemical structure](image)

A mixture of tetraethoxytitanium (380 mg, 1.664 mmol) (S)-2-methylpropane-2-sulfinate (121 mg, 0.998 mmol), and 3-acetyl-7-bromo-6-chloroquinolin-2(1H)-one (200 mg, 0.665 mmol) in THF (15 mL) was heated to 80 °C overnight and then cooled to room temperature. To this mixture was added NaBH\(_4\) (126 mg, 3.33 mmol) at -60 °C. The mixture was stirred and slowly warmed up to room temperature overnight. MeOH (2 mL) was added to quench excess NaBH\(_4\) followed by addition of water. The mixture was filtered to remove solids and then extracted with EtOAc twice. The combined organic layers were dried over Na\(_2\)SO\(_4\) and concentrated. The residue was purified on a Biotage\(^\text{®}\) chromatography system using a 25 g column with gradient elution (first 20 to 100% EtOAc/Hexanes, then 0-5% MeOH/DCM) to
afford 137 mg of (S)-N-((S)-1-(7-bromo-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (50.7% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) ppm 11.22 (s, 1 H), 7.34 (s, 1 H), 7.28 (s, 1 H), 7.26 (s, 1 H), 7.22 (s, 1 H), 6.08 (d, \(J = 9.87\) Hz, 1 H), 4.29 (m, 1 H), 1.55 (d, \(J = 6.96\) Hz, 3 H), 1.35 (s, 9H). LCMS (Method 1): Rt 2.40 min, m/z 406.80 [M+H]+.

Step-6: (S)-3-(1-Aminoethyl)-7-bromo-6-chloroquinolin-2(1H)-one (II-12).

![Chemical structure diagram](image)

[0183] To a solution of (S)-N-((S)-1-(7-bromo-6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide (137 mg, 0.338 mmol) in MeOH (5 mL) was added HCl (2 mL, 4M in 1,4-dioxane, 8.00 mmol). The mixture was stirred at room temperature overnight and then diluted with 6 mL of ethyl ether. The solids were collected by filtration, washed with ethyl ether 2 times, and dried to afford 90 mg of (S)-3-(1-aminoethyl)-7-bromo-6-chloroquinolin-2(1H)-one as the hydrochloride salt (79% yield). \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\) ppm 12.34 (br, 1 H), 8.22 (br, 1 H), 8.04 (s, 1 H), 8.02 (s, 1 H), 7.69 (s, 1 H), 4.40 (m, 1 H), 1.49 (d, \(J = 6.81\) Hz, 3 H). LCMS (Method 1): Rt 1.60 min, m/z 302.89 [M+H]+.

Example 19 — Intermediate IV-1: (S)-6-chloro-3-(1-(4-iodopyridin-2-ylamino)ethyl)quinolin-2(1H)-one.

![Chemical structure diagram](image)

[0184] A mixture of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (99.4 mg, 0.384 mmol) and 2-fluoro-4-iodopyridine (90.8 mg, 0.407 mmol) was treated with DMSO (1.3 ml) and DIEA (0.20 mL, 1.145 mmol). The solution was stirred at 90 °C for six hours, then 100 °C for two days, then 120 °C for one day. The sample was mixed with water (20 mL) and extracted with DCM (3x15 mL). The extracts were dried (Na\(_2\)SO\(_4\)), filtered, treated
with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 50% EtOAc in hexanes, with isocratic elution at 42% EtOAc) to provide (S)-6-chloro-3-(1-(4-iodopyridin-2-ylamino)ethyl)quinolin-2(1H)-one IV-1 (50.7 mg, 0.119 mmol, 31.1% yield) as a yellowish solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.94 (s, 1 H), 7.76 (d, $J=2.35$ Hz, 1 H), 7.70 (s, 1 H), 7.59 (d, $J=5.28$ Hz, 1 H), 7.47 (dd, $J=8.79$, 2.05 Hz, 1 H), 7.29 (d, $J=8.50$ Hz, 1 H), 7.15 (d, $J=7.04$ Hz, 1 H), 7.01 (s, 1 H), 6.79 (dd, $J=5.42$, 1.32 Hz, 1 H), 4.99 - 5.13 (m, 1 H), 1.38 (d, $J=6.74$ Hz, 3 H). LCMS (Method 1): Rt 2.15 min., m/z 425.8 [M+H]$^+$.

Example 20 -- Intermediate IV-2: (S)-3-(1-((4-bromopyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one

![Chemical Structure](image)

[0185] In a sealed tube under nitrogen flow were combined 4-bromo-2-fluoropyridine (1.0 g, 5.7 mmol), (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (500 mg, 1.9 mmol) and K$_2$CO$_3$ (0.54 g, 4.0 mmol) in 4 mL of anhydrous DMSO. The reaction mixture was stirred at 110-115°C for 3h 30 min in a sealed tube, cooled to a room temperature, diluted with EtOAc, washed with water and brine. Organic phase was dried over Na$_2$SO$_4$, filtered and concentrated to dryness under reduced pressure. The crude was purified by ISCO, using 40 g SiO$_2$-column with a gradient elution of EtOAc in CH$_2$Cl$_2$, to provide 175 mg (24% yield) of the title compound IV-1. 1H NMR (300 MHz, CDCl$_3$): δ ppm: 11.66 (br s 1 H), 7.89 (d, $J = 5.5$ Hz, 1H), 7.71 (s, 1H), 7.51 (d, $J = 2.2$ Hz, 1H), 7.44 (dd, $J1 = 8.8$ Hz, $J2 = 2.2$ Hz, 1H), 7.28 (d, $J = 8.8$ Hz, 1H), 6.70 (dd, $J1 = 5.5$ Hz, $J2 = 1.6$ Hz, 1H), 6.50 (d, $J = 1.6$ Hz, 1H), 5.55 (br d, 1H), 5.05-5.15 (m, 1H), 1.61 (d, $J = 6.6$ Hz, 3H). LCMS (Method 3), Rt 3.70 min. m/z 378.0/380.0 [M + H]$^+$. MP= 124-125°C.
Example 21 -- Intermediate IV-3: (S)-3-(1-(6-bromopyridin-2-ylamino)ethyl)-6-chloroquinolin-2(1H)-one

![Chemical structure]

[0186] A mixture of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (59.8 mg, 0.231 mmol) and 2-bromo-6-fluoropyridine (41.2 mg, 0.234 mmol) in DMSO (0.60 ml) was treated with DIEA (0.12 mL, 0.687 mmol) and stirred at 90 °C for twenty hours, then at 120 °C for one day. The sample was mixed with water (20 mL) and extracted with DCM (3x15 mL). The extracts were dried (Na₂SO₄), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 50% EtOAc in hexanes, with isocratic elution at 42% EtOAc) to provide (S)-3-(1-(6-bromopyridin-2-ylamino)ethyl)-6-chloroquinolin-2(1H)-one IV-3 (56.2 mg, 0.148 mmol, 64.3 % yield) as a white solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 11.98 (s, 1 H), 7.76 (d, J=2.05 Hz, 1 H), 7.74 (s, 1 H), 7.49 (dd, J=8.79, 2.05 Hz, 1 H), 7.40 (d, J=7.33 Hz, 1 H), 7.24 - 7.35 (m, 2 H), 6.63 (d, J=7.04 Hz, 1 H), 6.44 (d, J=8.20 Hz, 1 H), 4.91 - 5.05 (m, 1 H), 1.40 (d, J=6.74 Hz, 3 H). LCMS (Method 1): Rt 2.59 min., m/z 378, 380 [M+H]⁺.

Example 22 -- Intermediate IV-4: (S)-6-chloro-3-(1-((3-fluoro-4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one

![Chemical structure]

[0187] A mixture of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (6.93 g, 26.74 mmol), 2,3-difluoro-4-iodopyridine (6.5 g, 26.97 mmol) and K₂CO₃ (11.1 g, 80.31 mmol) in DMSO (70 mL) was heated at 110 °C for 4 h. The mixture was cooled to room temperature and poured onto crushed ice. The mixture was extracted with CH₂Cl₂ (3 x 100 mL),
dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The resulting residue was purified by ISCO (SiO₂; hexanes/EtOAc 0 to 100%) followed by trituration with hexanes-isopropanol to give the title compound as an off-white solid (3.27 g, 28%). ¹H NMR (300 MHz, DMSO-d₆): δ 11.95 (br s, 1H), 7.75-7.73 (m, 1H), 7.49-7.39 (m, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 6.89-6.86 (m, 1H), 5.25-5.18 (m, 1H), 1.44 (d, J = 6.9 Hz, 3H). LCMS (method 3): Rt 5.14 min, m/z 444 [M+H]⁺.

Example 23 -- Intermediate III-5: 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile

![Chemical Diagram]

Step-1: 2-cyano-5-fluoropyridine 1-oxide.

[0188] A solution of 5-fluoropicolinonitrile (7.27 g, 59.5 mmol) in CHCl₃ (60 mL) was added dropwise by addition funnel to a solution of m-CPBA (<77%, 22.00 g, 98 mmol) in CHCl₃ 160 mL). The solution was stirred at reflux 4 days, at which time LCMS showed ~85% conversion. The sample was allowed to cool, then sodium sulfite (12.4 g, 98 mmol) was added and the sample was stirred at room temperature three hours, during which time the solution became thick with a white precipitate. The sample was diluted with DCM (300 mL) and filtered on a Buchner funnel, and the filter cake was washed with DCM (~400 mL). A white material precipitated in the filtrate. The filtrate mixture was washed with saturated aqueous NaHCO₃
(400 mL), during which the solids went into solution. The organic layer was washed with water (300 mL), then dried (MgSO₄) and filtered. Silica gel was added and the mixture was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (340 g silica gel column) with 0 to 100% EtOAc in hexanes, with isocratic elution when peaks came off to provide 2-cyano-5-fluoropyridine 1-oxide (4.28 g, 31.0 mmol, 52 % yield) as a white solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 8.85 - 8.93 (m, 1 H), 8.23 (dd, J=9.09, 6.74 Hz, 1 H), 7.53 - 7.64 (m, 1 H). LCMS (Method 1): Rt 0.57 min., m/z 138.9 [M+H]⁺.

Step 2: **6-cyano-3-fluoropyridin-2-yl acetate**

![Chemical structure of 6-cyano-3-fluoropyridin-2-yl acetate]

[0189] A solution of 2-cyano-5-fluoropyridine 1-oxide (4.28 g, 31.0 mmol) in acetic anhydride (40 ml, 424 mmol) was heated at reflux (150 °C bath) three days, during which the clear solution turned dark. The sample was concentrated under reduced pressure. The residue was dissolved in MeOH (30 mL) and stirred 1 hour. Silica gel was added and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (100 g silica gel column) with 0 to 23% EtOAc in hexanes to provide 6-cyano-3-fluoropyridin-2-yl acetate (3.32 g, 18.43 mmol, 60 % yield) as a clear liquid that solidified on cooling. ¹H NMR (300 MHz, CHLOROFORM-d): δ ppm 7.65 - 7.75 (m, 2 H), 2.42 (s, 3 H). LCMS (Method 1): Rt 1.54 min., m/z 138.8 (loss of acetate).

Step 3: **5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile.**

[0190] A solution of 6-cyano-3-fluoropyridin-2-yl acetate (3.32 g, 18.43 mmol) in MeOH (40 ml) was treated with potassium carbonate (5.10 g, 36.9 mmol) and stirred at room temperature four hours. LCMS at 2 hours showed the reaction had gone to completion. The
solvent was evaporated under reduced pressure. The residue was dissolved in water (100 mL) and acidified to pH ≤1 with 1M HCl. The solution was extracted with EtOAc (3x100 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated under reduced pressure to provide 5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile (2.34 g, 16.94 mmol, 92 % yield) as a white solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.92 (br s, 1 H), 7.73 (br s, 1 H), 7.43 (br s, 1 H). LCMS (Method 1): Rt 0.70 min., m/z 138.9 [M+H]⁺.

Step 4: 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (III-5)

A mixture of 5-fluoro-6-oxo-1,6-dihydropyridine-2-carbonitrile (2.31 g, 16.73 mmol) and potassium carbonate (4.86 g, 35.2 mmol) in a 200 mL round bottom flask was treated with DMF (46 ml) and stirred 15 minutes. MeI (1.2 ml, 19.19 mmol) was added and the mixture was stirred at room temperature 45 minutes. The solvent was evaporated under reduced pressure. The residue was mixed with water (150 mL) and extracted with DCM (2x150 mL). The combined organic extracts were dried (MgSO₄), filtered, treated with silica gel, and evaporated under reduced pressure, then evaporated further at 60 °C under high vacuum. The material was chromatographed by Biotage MPLC with 0 to 35% EtOAc in hexanes, with isocratic elution at 16% EtOAc and 35% EtOAc while peaks came off. The peak that came off with 16% EtOAc was O-methylated material and was discarded. The peak that came off with 35% EtOAc provided the title compound **III-5** (1.70 g, 11.17 mmol, 67 % yield) as a solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 7.53 (dd, J=9.38, 7.62 Hz, 1 H), 7.18 (dd, J=7.77, 4.84 Hz, 1 H), 3.60 (s, 3 H). LCMS (Method 1): Rt 0.94 min., m/z 152.9 [M+H]⁻.

Example 24 -- Intermediate VI-2: 5-amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile
Step 1: N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide.

A solution of 5-aminopicolinonitrile (5.50 g, 46 mmol, 1 eq.) in 300 mL DCM was cooled to 0°C, and then treated with TEA (20 mL, 144 mmol, 3.1 eq.) followed by dropwise addition of trifluoroacetic anhydride (20 mL, 144 mmol, 3.1 eq.). After stirring overnight at room temperature, the reaction mixture was poured onto ice, and extracted with DCM. Purification by passing over a silica gel plug (hexane/EtOAc, 75/25) provided N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (7.24 g, 73%) as a white solid. TLC: Hexane/EtOAc, 8/2.

Step 2: N-(6-cyanopyridin-3-yl)-2,2,2-trifluoroacetamide-N-oxide.

A solution of N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (7.24 g, 33.7 mmol, 1 eq.) in 270 mL CHCl₃ was cooled in an ice bath, then treated dropwise with a solution of mCPBA (7.68 g, 39 mmol, 1.15 eq.) in 65 mL CHCl₃. The reaction mixture was refluxed for 24 hours and then poured into H₂O. After stirring with 10% aqueous NaHSO₃ and NaHCO₃, the solid was collected and rinsed with H₂O, then CHCl₃. This provided 1.86 g (24%) of the title compound as a white solid. Unreacted N-(6-Cyanopyridin-3-yl)-2,2,2-trifluoroacetamide (4.70 g, 65%) was recovered by extraction of the filtrate, and purification by chromatography on silica gel (hexane/EtOAc, 75/25).

Step 3: 5-Amino-6-oxo-1,6-dihydropyridine-2-carbonitrile.
A suspension of N-(6-cyanopyridin-3-yl)-2,2,2-trifluoroacetamide-N-oxide (0.81 g, 3.5 mmol, 1 eq.) in 10.5 mL THF was treated with TEA (0.75 mL, 5.3 mmol, 1.5 eq.) followed by dropwise addition of trifluoroacetic anhydride (1.74 mL, 12.5 mmol, 3.5 eq.). After stirring overnight at room temperature, ice chips and 12 mL 10% NaOH were added. After stirring at room temperature for 1 hour, the reaction mixture was acidified to pH ~ 4 with HOAc and the precipitated solid was collected, providing 0.31 g 5-Amino-6-oxo-1,6-dihydropyridine-2-carbonitrile (64%) as a beige solid. TLC: DCM/MeOH, 97/3.

Step 3: 5-Amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (VI-2).

A solution of 5-Amino-6-oxo-1,6-dihydropyridine-2-carbonitrile (500mg, 3.7 mmol, 1 eq.) in 18 mL DMF was treated with anhydrous K₂CO₃ (1.0 g, 7.26 mmol, 2 eq.) and CH₃I (0.175 mL, 4.0 mmol, 1.1 eq) and stirred at room temperature for 1.5 h. To the reaction mixture water was added followed by extraction with EtOAc (2x), the extracts were dried (Na₂SO₄) and evaporated to provide a tan solid. Analysis of the crude product by NMR indicated a ~ 8/2 ratio of desired product vs the O-methylated isomer. Trituration of the solid with Et₂O provided 160 mg of the desired product (29%). Purification of the Et₂O washes by C18 ISCO preparative chromatography provided an additional 82 mg of the title compound VI-2 as the TFA salt (15%).

TLC: Hexane/EtOAc, 1/1. ¹H-NMR (300 MHz, d₆DMSO) δ: 6.94 (d, J = 7.68), 6.42 (broad s, 2H), 6.33 (d, J = 7.68), 3.55 (s, 3H). LC/MS (Methods 3): Rt 3.0 min., m/z 150 [M+H]⁺.

Example 25 – Intermediate VII-1: 4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile.

![Diagram of reaction steps]

Step 1: 6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde.
A suspension of damp 6-chloro-7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (see Step 2, II-4 for preparation; maximum 39.0 mmol) in 48% hydrobromic acid (210 ml) was heated on a 110 °C bath. After an hour the bath temperature was raised to 115 °C, and after another ~30 minutes the suspension went into solution. The solution was heated at 115 °C for four days, during which time a small quantity of brown precipitate formed. The mixture was poured into water and diluted to 2 L, resulting in more precipitation. The precipitate was collected on a Buchner funnel, washed with water (800 mL), and dried in a vacuum oven to provide 6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (6.47 g, 28.9 mmol, 74.2 % yield) as a brown solid, impure but suitable for use. 1H NMR (300 MHz, DMSO-d_6); δ ppm 12.11 (s, 1 H), 11.67 (s, 1 H), 10.13 - 10.18 (m, 1 H), 8.38 (s, 1 H), 8.01 (s, 1 H), 6.93 (s, 1 H). LCMS (Method 1): Rt 1.74 min., m/z 224.0 [M+H]$^+$.

Step 2: 4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (VII-1, Cmpd 165).

A suspension of 6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (58.0 mg, 0.259 mmol) and 4-amino-2-methoxybenzonitrile (48.0 mg, 0.324 mmol) in DCM (4.0 mL) was treated with acetic acid (0.07 mL, 1.223 mmol) and stirred 10 minutes. Sodium triacetoxycarbonylborohydride (84.0 mg, 0.396 mmol) was added. The mixture was stirred at room temperature overnight. The mixture was diluted with EtOAc (50 mL), washed with water (2x50 mL) and brine (50 mL), dried (Na$_2$SO$_4$), filtered, and evaporated under reduced pressure. The residue was dissolved in methanol, treated with silica gel, and evaporated. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 20 to 100% EtOAc in hexanes to provide the title compound Cmpd 165 (18.6 mg, 0.052 mmol, 20.2 % yield) as a peach-
colored solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.82 (s, 1 H), 10.89 (s, 1 H), 7.70 (s, 1 H), 7.63 (s, 1 H), 7.28 (d, $J=8.50$ Hz, 1 H), 7.12 (dd, $J=6.00$, 6.00 Hz, 1 H), 6.91 (s, 1 H), 6.32 (d, $J=1.76$ Hz, 1 H), 6.22 (dd, $J=8.60$, 1.60 Hz, 1 H), 4.17 (d, $J=5.60$ Hz, 2 H), 3.78 (s, 3 H). LCMS (Method 4): Rt 1.17 min., m/z 356.1 [M+H]$^+$.

Example 26 -- Intermediate VII-2: 4-((6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile

Step 1: 3-(bromomethyl)-6-chloro-8-hydroxyquinolin-2(1H)-one.

[0198] A sample of 6-chloro-3-(hydroxymethyl)-8-methoxyquinolin-2(1H)-one II-14 (237.5 mg, 0.991 mmol) was placed under nitrogen in a 100 mL round-bottom flask. Chloroform (15 ml) was added. The mixture was cooled on an ice bath, and BBr$_3$ (1.0 M in DCM, 3.0 mL, 3.00 mmol) was added dropwise (3 minutes). The ice bath was removed and the mixture was stirred at 40 °C, during which the material went into solution and then a yellow solid precipitated. At 4.25 hours and 7.5 hours the sample was removed from heat, more BBr$_3$ solution (1.0 mL) was added dropwise, and the sample was returned to 40 °C. At a total reaction time ~9.25 hours, the sample was allowed to cool, then cooled on an ice bath and treated dropwise with water (10 mL). The organic solvents were removed by evaporation under reduced pressure, resulting in precipitation in the remaining aqueous phase. The precipitate was collected on a Hirsch funnel, washed with water (~15 mL), and air dried to provide 287.0 mg yellow solid. LCMS indicated a 69:22:6 mixture of 6-chloro-8-hydroxy-3-(hydroxymethyl)quinolin-2(1H)-one (m/z 226 [M+H]$^+$), 3-(bromomethyl)-6-chloro-8-hydroxyquinolin-2(1H)-one (m/z 288, 290 [M+H]$^+$), and starting material. The mixture was treated with 48% hydrobromic acid (8.0 mL, 69.2 mmol) and stirred at 100 °C for 1 hour. The suspension was removed from heat, then diluted with water to 50 mL. The solids were collected on a Buchner funnel, washed with water (40 mL), and air-

112
dried on the funnel to provide 3-(bromomethyl)-6-chloro-8-hydroxyquinolin-2(1H)-one (243.0 mg, 0.842 mmol, 85%) as a tan powder, suitable for use as is. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.13 (s, 1 H), 10.88 (s, 1 H), 8.07 (s, 1 H), 7.25 (d, J=2.05 Hz, 1 H), 6.92 (d, J=2.05 Hz, 1 H), 4.55 (s, 2 H). LCMS (Method 1): Rt 2.20 min., m/z 289.8 [M+H]$^+$.

Step 2: 4-((6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (VII-2, Cmpd 208).

![Chemical structure](image)

[0199] A suspension of 3-(bromomethyl)-6-chloro-8-hydroxyquinolin-2(1H)-one (32.9 mg, 0.114 mmol) and 4-amino-2-methoxybenzonitrile (25.1 mg, 0.169 mmol) in DMF (1.3 ml) was treated with a 10% (v/v) solution of 2,6-lutidine in DMF (130.0 µL) and stirred at room temperature over the weekend. LCMS showed ~5:1 product and bromide starting material. The solution was evaporated under high vacuum at 60 °C. The residue was dissolved in a few mL MeOH, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 10% MeOH in DCM, with isocratic elution when peaks came off) to provide the title compound (VII-2, Cmpd 208) (7.3 mg, 0.020 mmol, 17.35 % yield, HPLC purity 96.4% at 220 nm) as a white solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 10.96 (br s, 2 H), 7.66 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.14 - 7.24 (m, 2 H), 6.87 (d, J=2.05 Hz, 1 H), 6.32 (s, 1 H), 6.18 - 6.27 (m, 1 H), 4.23 (d, J=5.90 Hz, 2 H), 3.78 (s, 3 H). LCMS (Method 4): Rt 1.22 min., m/z 356.0 [M+H]$^+$.

Table 1: The Intermediates listed in Table 1 were either prepared using the methods described above or obtained from commercial sources.
<table>
<thead>
<tr>
<th>Intermediate No.</th>
<th>Chemical names</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>(S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>(R)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-3</td>
<td>3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-3a</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-3b</td>
<td>(R)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-4</td>
<td>3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-4a</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-4b</td>
<td>(R)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-5</td>
<td>3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>II-5a</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-7-(pyridin-2-ylmethoxy)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-6</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-7a</td>
<td>(R)-3-(1-aminoethyl)-6-chloroquinoxalin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-7b</td>
<td>(S)-3-(1-aminoethyl)-6-chloroquinoxalin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-8</td>
<td>(3-((S)-1-aminoethyl)-6-chloro-7-((R)-1-(pyridin-2-ylmethoxy)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-9</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molecule</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>II-10</td>
<td>3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-11</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-12</td>
<td>(S)-3-(1-aminoethyl)-7-bromo-6-chloroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-13</td>
<td>(S)-3-(1-aminoethyl)-6-chloro-7-isopropoxyquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>II-14</td>
<td>6-chloro-3-(hydroxymethyl)-8-methoxyquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>III-1</td>
<td>4-fluoro-2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td>III-2</td>
<td>6-fluoro-2-methylnicotinonitrile</td>
<td></td>
</tr>
<tr>
<td>III-3</td>
<td>6-chloro-4-methoxynicotinonitrile</td>
<td></td>
</tr>
<tr>
<td>III-4</td>
<td>3-(4,6-difluoropyridin-2-yl)oxazolidin-2-one</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>III-5</td>
<td>5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>III-6</td>
<td>3-fluoro-1-methylpyridin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>IV-1</td>
<td>(S)-6-chloro-3-(1-((4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>IV-2</td>
<td>(S)-3-((1-((4-bromopyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>IV-3</td>
<td>(S)-3-((1-((6-bromopyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td>IV-4</td>
<td>(S)-6-chloro-3-(1-((3-fluoro-4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Name</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>V-1</td>
<td></td>
<td>6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>V-2</td>
<td></td>
<td>7-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>V-3</td>
<td></td>
<td>6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>V-4</td>
<td></td>
<td>7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>V-5</td>
<td></td>
<td>6,7-dimethyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>V-6</td>
<td></td>
<td>6-(tert-butyl)-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</td>
</tr>
<tr>
<td>VI-1</td>
<td></td>
<td>4-amino-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>VI-2</td>
<td></td>
<td>5-amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
</tbody>
</table>
Examples 27 -- (S)-4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)(amino)-2-methoxybenzonitrile (Cmpd 1) and (R)-4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)(amino)-2-methoxybenzonitrile (Cmpd 2).

\[
\text{Cl} \quad \text{MeMgBr / ether} \quad \text{THF, -78 °C to 0 °C} \quad \text{Cl} \quad \text{MnO}_2 \quad \text{CHCl}_3 \quad 50^\circ
\]

1. \[
\text{H}_2\text{N} \quad \text{CN} \quad \text{III-1} \quad \text{Ti(IV)} \quad \text{DCM, STAB} \quad \text{chromatographic separation}
\]

2. \[
\text{Cl} \quad \text{OH} \quad \text{Cmpd 1} \quad \text{Cl} \quad \text{Cmpd 2}
\]

Step 1: 6-chloro-3-(1-hydroxyethyl)quinolin-2(1H)-one

A stirred suspension of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (498.3 mg, 2.400 mmol) in THF (Volume: 24 ml) under nitrogen was cooled on a dry ice/acetone bath (approximately -78 °C). Methylmagnesium bromide (3.0 M in ether, 2.00 mL, 6.00 mmol) was
added dropwise (~10 minutes). The suspension was warmed incrementally to 0 °C during 1.5 hours, during which time the suspension gradually became a clear red solution. The solution was stirred at 0 °C for 45 minutes, then the reaction was quenched by addition of several mL water. Water (100 mL) and EtOAc (150 mL) were added and the mixture was shaken, then allowed to settle overnight. The organic layer was evaporated under reduced pressure. The resulting material (~2 g) was dissolved in MeOH, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (50 g silica gel column, 0 to 100% EtOAc in hexanes) to provide 6-chloro-3-(1-hydroxyethyl)quinolin-2(1H)-one (337 mg, 1.507 mmol, 63 % yield) as a yellow solid. 1H NMR (300 MHz, DMSO-d6) δ ppm 11.89 (s, 1 H), 7.90 (s, 1 H), 7.84 (d, J=2.35 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 5.24 (d, J=4.40 Hz, 1 H), 4.73 - 4.84 (m, 1 H), 1.30 (d, J=6.45 Hz, 3 H). LCMS (Method 1): Rt 1.85 min., m/z 224.0 [M+H]+.

Step 2: 3-acetyl-6-chloroquinolin-2(1H)-one

![Chemical Structure]

[0201] A suspension of 6-chloro-3-(1-hydroxyethyl)quinolin-2(1H)-one (335 mg, 1.498 mmol) and manganese dioxide (391.7 mg, 4.51 mmol) in chloroform (15 ml) was stirred at 45 °C overnight. The temperature was increased to 50 °C and the reaction was continued 1.5 days. The mixture was diluted with MeOH (20 mL), then filtered through Celite 545, and the Celite was washed with 1:1 DCM-MeOH (40 mL). The filter cake was slurried with DMF (50 mL), then filtered again through Celite. The filtrate was evaporated under reduced pressure to provide 181 mg gray solid. The material was mixed with MeOH, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 20% MeOH in DCM) to provide 3-acetyl-6-chloroquinolin-2(1H)-one (136.5 mg, 0.616 mmol, 41 % yield) as an off-white solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 12.24 (s, 1 H), 8.43 (s, 1 H), 8.02 (d, J=2.05 Hz, 1 H), 7.65 (dd, J=8.94, 2.49 Hz, 1 H), 7.35 (d, J=9.09 Hz, 1 H), 2.61 (s, 3 H). LCMS (Method 1): Rt 2.00 min., m/z 221.9 [M+H]+.
Step 3: (S)-4-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methoxybenzonitrile (Cmpd 1) and (R)-4-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methoxybenzonitrile (Cmpd 2).

[0202] A mixture of 3-acetyl-6-chloroquinolin-2(1H)-one (39.4 mg, 0.178 mmol) and 4-amino-2-methoxybenzonitrile (27.2 mg, 0.184 mmol) was placed under nitrogen in a dram vial. DCM (1.0 ml) was added and the suspension was stirred 10 minutes. Triisopropoxytitanium(IV) chloride (0.09 mL, 0.377 mmol) was added and the suspension was stirred overnight. Sodium triacetoxyborohydride (148.3 mg, 0.700 mmol) was added and the mixture was stirred one day. The sample was diluted with several mL MeOH, treated with silica gel, and evaporated under reduced pressure. The sample was chromatographed by Biotage MPLC (0 to 20% MeOH in DCM, with isocratic elution when peaks came off). The material thus obtained was redissolved on silica gel and rechromatographed (10 g silica gel column, 0 to 80% EtOAc in hexanes, with isocratic elution while peaks came off) to provide 20.3 mg racemic product, which was subjected a chiral chromatographic separation to yield Cmpd 1 and Cmpd 2.

Example 30 -- an alternative approach to Cmpd 1: (S)-4-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methoxybenzonitrile.

[0203] A solution of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (201.1 mg, 0.776 mmol) and 4-fluoro-2-methoxybenzonitrile (235.7 mg, 1.560 mmol) in DMSO (5 ml) was treated with DIEA (400 µl, 2.290 mmol) and stirred at 110 °C for three days. The sample was diluted with water (75 mL) and extracted with DCM (2x50 mL), dried, and filtered.
Silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (silica gel, 0 to 70% EtOAc in hexanes, with isocratic elution when peaks came off) to provide a gum. The material was dissolved in DCM (10 mL), washed with water (2x10 mL), dried (Na$_2$SO$_4$), filtered, and evaporated to provide 76 mg yellow powder. The sample was mixed with MeCN (4 mL) and water (2 mL), frozen on a dry icer/acetone bath, and lyophilized to provide the title compound **Cmpd 1** (71.1 mg, 0.193 mmol, 24.93 % yield, HPLC purity 96.3% at 220 nm) as a solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.07 (s, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.74 (s, 1 H), 7.50 (dd, J=8.65, 1.91 Hz, 1 H), 7.20 - 7.35 (m, 3 H), 6.27 (s, 1 H), 6.06 (d, J=7.90 Hz, 1 H), 4.65 - 4.79 (m, 1 H), 3.75 (s, 3 H), 1.43 (d, J=6.45 Hz, 3 H). LCMS (Method 1): Rt 2.37 min., m/z 354.0 [M+H]$^+$.

Example 31 -- (S)-4-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methoxy benzonitrile (Cmpd 3).

![Chemical Structure](image)

[0204] In a 80 mL microwave vessel were combined 6-chloro-4-methoxynicotinonitrile (1g, 60 mmol), (S)-3-(1-amoxyethyl)-6-chloroquinolin-2(1H)-one hydrochloride **II-2** (1.34 g, 53 mmol) and DIEA (1.98 mL, 11.4 mmol) in 21 mL of EtOH (200 proof). The reaction mixture was microwaved at 140°C for 4h 30 min, cooled to a room temperature, concentrated to dryness under reduced pressure and purified twice by SC, using 40 g “gold” column with a gradient elution of EtOAc in CH$_2$Cl$_2$, providing the title compound 3 (478 mg, 24% yield). 1H NMR (300 MHz, DMSO-d$_6$): δ ppm: 11.99 (br s 1H), 8.16 (s, 1H), 7.90 (d, J = 7.41Hz, 1H), 7.75 (d, J = 2.46 Hz, 1H), 7.72 (s, 1H), 7.48 (dd, J1 = 8.52 Hz, J2 = 2.46 Hz, 1H), 7.29 (d, J = 8.52 Hz, 1H), 6.25 (br s, 1H), 5.22 (br s, 1H), 3.85 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H). LCMS (Method 3): Rt 4.38 min. m/z 355.1/357.1 [M + H]$^+$. MP= 248-249°C.

Example 30 -- (S)-6-(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethylamino)-2-methyl nicotinonitrile. (Cmpd 6).
A mixture of 6-fluoro-2-methylnicotinonitrile (28.6 mg, 0.210 mmol) and (S)-3-(1-aminoethyl)-6-chlorquinolin-2(1H)-one hydrochloride II-1 (49.6 mg, 0.191 mmol) was treated with DMSO (1.4 ml) and DIEA (0.10 mL, 0.573 mmol). The solution was stirred at 110 °C for two hours. LCMS indicated the reaction had gone to completion. The sample was mixed with water (20 mL) and extracted with DCM (3x15 mL). The extracts were dried (Na₂SO₄), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 50% EtOAc in hexanes) to provide the title compound 6 (51.5 mg, 0.145 mmol, 76 % yield, HPLC purity 95.6% at 220 nm) as a solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 11.99 (s, 1 H), 7.91 (d, J=7.30 Hz, 1 H), 7.72 - 7.80 (m, 2 H), 7.62 (d, J=8.80 Hz, 1 H), 7.45 - 7.53 (m, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.35 - 6.55 (m, 1 H), 5.12 - 5.34 (m, 1 H), 2.36 (s, 3 H), 1.42 (d, J=6.70 Hz, 3 H). LCMS (Method 1): Rt 2.40 min., m/z 339.0 [M+H]^+.

Example 31 -- (S)-6-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methoxynicotinonitrile (Cmpd 8).

A solution of (S)-3-(1-aminoethyl)-6-chlorquinolin-2(1H)-one hydrochloride II-1 (69.7 mg, 0.269 mmol) and 6-fluoro-2-methoxynicotinonitrile (45.2 mg, 0.297 mmol) in DMSO (1.5 ml) was treated with DIEA (141 μL, 0.807 mmol) and stirred at 110 °C one hour. LCMS at 45 minutes showed the reaction had gone to completion. The sample was pipetted onto water (20 mL), resulting in formation of a white precipitate. The precipitate was extracted with EtOAc (2x15 mL), dried (Na₂SO₄), and filtered. Silica gel was added and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel
column) with 0 to 75% EtOAc in hexanes, with isocratic elution when peaks came off to provide the title compound 8 (68.8 mg, 0.194 mmol, 72.1 % yield, HPLC purity 100% at 220 nm) as a white solid. 1H NMR (300 MHz, DMSO-d_6) δ ppm 11.97 (br s, 1 H), 8.13 (br s, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.73 (s, 1 H), 7.60 (d, J=8.50 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.29 (d, J=9.09 Hz, 1 H), 6.26 (br s, 1 H), 5.20 (br s, 1 H), 3.72 (br s, 3 H), 1.44 (d, J=7.04 Hz, 3 H). LCMS (Method 1): Rt 2.38 min., m/z 355.0 [M+H]$^+$.

Table 2: The compounds listed in Table 2 were prepared using methods similar to those described for the preparation of **Compounds 28-32**.
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m/z: 354.05 (M+H)+
Rt (min): 1.34</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07 (s, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.74 (s, 1 H), 7.50 (dd, J=8.65, 1.91 Hz, 1 H), 7.20 - 7.35 (m, 3 H), 6.27 (s, 1 H), 6.06 (d, J=7.90 Hz, 1 H), 4.65 - 4.79 (m, 1 H), 3.75 (s, 3 H), 1.43 (d, J=6.45 Hz, 3 H).</td>
<td>4-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>2</td>
<td>m/z: 354.03 (M+H)+
Rt (min): 1.33</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm: 11.99 (br s 1H), 8.16 (s, 1H), 7.90 (d, J = 7.41 Hz, 1H), 7.75 (d, J = 2.46 Hz, 1H), 7.72 (s, 1H), 7.48 (dd, J1 = 8.52 Hz, J2 = 2.46 Hz, 1H), 7.29 (d, J = 8.52 Hz, 1H), 6.25 (br s, 1H), 5.22 (br s, 1H), 3.85 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H).</td>
<td>4-{{(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>3</td>
<td>m/z: 355.03 (M+H)+
Rt (min): 1.24</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm: 11.99 (br s 1H), 8.16 (s, 1H), 7.90 (d, J = 7.41 Hz, 1H), 7.75 (d, J = 2.46 Hz, 1H), 7.72 (s, 1H), 7.48 (dd, J1 = 8.52 Hz, J2 = 2.46 Hz, 1H), 7.29 (d, J = 8.52 Hz, 1H), 6.25 (br s, 1H), 5.22 (br s, 1H), 3.85 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H).</td>
<td>6-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl}amino}-4-methoxypyridine-3-carbonitrile</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>m/z: 369.19 (M+H)+
Rt (min): 1.43</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 8.15 ppm (s, 1H), 7.91 ppm (d, J = 7.41 Hz, 1H), 7.82 ppm (d, J = 2.56 Hz, 1H), 7.72 ppm (s, 1H), 7.61 ppm (dd, J1 = 8.8 Hz, J2 = 2.2 Hz, 1H), 7.53 ppm (J = 8.8 Hz, 1H), 6.26 ppm (br s, 1H), 5.23 ppm (br s), 3.85 ppm (s, 3H), 3.66 ppm (s, 3H), 1.42 ppm (d, J = 6.8 Hz, 3H)</td>
<td>6-[(1S)-1-(6-chloro-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile</td>
</tr>
<tr>
<td>5</td>
<td>m/z: 355.20 (M+H)+
Rt (min): 1.24</td>
<td>1H NMR (300 MHz, CHLOROFORM-d): δ ppm 11.70 ppm (br s, 1H), 8.17 ppm (s, 1H), 7.71 ppm (s, 1H), 7.53 ppm (d, J = 2.05 Hz, 1H), 7.36 ppm (m, 1H), 7.15 ppm - 7.31 ppm (m, 1H), 6.14 ppm (br d, J = 7.92 Hz, 1H), 5.81 ppm (s, 1H), 5.12 ppm - 5.43 ppm (m, 1H), 3.60 ppm (s, 3H), 1.64 ppm (d, J = 7.04 Hz, 3H)</td>
<td>6-[(1R)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methoxypyridine-3-carbonitrile</td>
</tr>
<tr>
<td>6</td>
<td>m/z: 339.18 (M+H)+
Rt (min): 1.35</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.99 ppm (s, 1H), 7.91 ppm (d, J = 7.30 Hz, 1H), 7.72 ppm - 7.80 ppm (m, 2H), 7.62 ppm (d, J = 8.80 Hz, 1H), 7.45 ppm - 7.53 ppm (m, 1H), 7.30 ppm (d, J = 8.79 Hz, 1H), 6.35 ppm - 6.55 ppm (m, 1H), 5.12 ppm - 5.34 ppm (m, 1H), 2.36 ppm (s, 3H), 1.42 ppm (d, J = 6.70 Hz, 3H)</td>
<td>6-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>7</td>
<td>m/z: 339.19 (M+H)+
Rt (min): 1.29</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.97 ppm (br s, 1H), 8.13 ppm (br s, 1H), 7.77 ppm (d, J = 2.35 Hz, 1H), 7.73 ppm (s, 1H), 7.60 ppm (d, J = 8.50 Hz, 1H), 7.48 ppm (dd, J = 8.79, 2.35 Hz, 1H), 7.29 ppm (d, J = 9.09 Hz, 1H), 6.26 ppm (br s, 1H), 5.20 ppm (br s, 1H), 3.72 ppm (br s, 3H), 1.44 ppm (d, J = 7.04 Hz, 3H)</td>
<td>6-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>8</td>
<td>m/z: 355.17 (M+H)+
Rt (min): 1.36</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07 ppm (s, 1H), 7.72 ppm - 7.79 ppm (m, 2H), 7.50 ppm (dd, J = 8.79, 2.35 Hz, 1H), 7.33 ppm (m, 2H), 6.65 ppm (d, J = 7.62 Hz, 1H), 6.48 ppm (d, J = 7.92 Hz, 1H), 4.72 ppm (quin, J = 6.82 Hz, 1H), 3.97 ppm (s, 3H), 1.50 ppm (d, J = 6.74 Hz, 3H)</td>
<td>6-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-2-methoxypyridine-3-carbonitrile</td>
</tr>
<tr>
<td>9</td>
<td>m/z: 355.06 (M+H)+
Rt (min): 1.44</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07 ppm (s, 1H), 7.72 ppm - 7.79 ppm (m, 2H), 7.50 ppm (dd, J = 8.79, 2.35 Hz, 1H), 7.33 ppm (m, 2H), 6.65 ppm (d, J = 7.62 Hz, 1H), 6.48 ppm (d, J = 7.92 Hz, 1H), 4.72 ppm (quin, J = 6.82 Hz, 1H), 3.97 ppm (s, 3H), 1.50 ppm (d, J = 6.74 Hz, 3H)</td>
<td>6-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-4-methylpyridine-2-carbonitrile</td>
</tr>
</tbody>
</table>
| 10 | m/z: 402.04 (M+H)+ | 1H NMR (300 MHz, DMSO-d6): δ ppm 12.12 ppm (br s, 1H), 7.95 ppm (d, J = 2.05 Hz, 1H), 6.48 ppm (d, J = 7.92 Hz, 1H), 4.72 ppm (quin, J = 6.82 Hz, 1H), 3.97 ppm (s, 3H), 1.50 ppm (d, J = 6.74 Hz, 3H) | 4-[(1S)-1-(6-chloro-2-oxo-1,2-dihydroquinolin-
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rt (min): 1.46</td>
<td>7.89(s, 1H), 7.72-7.85(m, 2H), 7.47-7.52(m, 1H), 7.29(d, J=8.47Hz, 1H), 6.74(d, J=8.89Hz, 1H), 4.87(m, 1H), 3.31(s, 3H), 1.40(d, J=6.85 Hz, 3H)</td>
<td>3-yl)ethyl]amino}-3-methanesulfonylbenzonitrile</td>
</tr>
<tr>
<td>11</td>
<td>m/z: 339.18 (M+H)+, Rt (min): 1.35</td>
<td>6-{{1R}-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methylpyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m/z: 354.05 (M+H)+, Rt (min): 1.32</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.05 (s, 1 H), 7.76 (d, J=7.00 Hz, 2 H), 7.50 (d, J=8.80 Hz, 1 H), 7.15 - 7.36 (m, 3 H), 6.27 (s, 1 H), 6.06 (d, J=7.60 Hz, 1 H), 4.72 (m, 1 H), 3.75 (s, 3 H), 1.44 (d, J=6.40 Hz, 3 H).</td>
<td>4-{{1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>13</td>
<td>m/z: 339.08 (M+H)+, Rt (min): 1.3</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.99 (s, 1 H), 7.92 (d, J=7.60 Hz, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.40 (s, 1 H), 7.62 (d, J=8.50 Hz, 1 H), 7.49 (dd, J=8.79, 2.05 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.44 (br s, 1 H), 5.07 - 5.37 (m, 1 H), 2.36 (s, 3 H), 1.42 (d, J=7.04 Hz, 3 H),</td>
<td>6-{{1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methylpyridine-3-carbonitrile</td>
</tr>
</tbody>
</table>

Example 32 -- (S)-3-(2-(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethylamino)pyridin-4-yl)oxazolidin-2-one (Cmpd 14).

![Chemical structure](image)

[0207] A 2 dram vial was charged with (S)-3-(1-(4-bromopyridin-2-ylamino)ethyl)-6-chloroquinolin-2(1H)-one IV-2 (21.4 mg, 0.057 mmol), copper(I) iodide (24.3 mg, 0.128 mmol), oxazolidin-2-one (13.0 mg, 0.149 mmol), and tripotassium phosphate (111.4 mg, 0.525 mmol)
and placed under nitrogen. A solution of trans-cyclohexane-1,2-diamine (16 μl, 0.133 mmol) in dioxane (3 ml) was added by syringe and the mixture was stirred at 100° overnight. LCMS indicated the reaction had gone to completion. The sample was diluted with MeOH and DCM, filtered through a syringe filter, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 5% MeOH in DCM) to provide the title compound 14 (16.9 mg). LCMS (Method 4): Rt 0.89 min., m/z 385.1 [M+H]⁺.

Example 33 -- (S)-3-(6-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)pyridin-2-yl)oxazolidin-2-one (Compd 15)

```
IV-3
```

oxazolidin-2-one, Cul
trans-1,2-diaminocyclohexane
K₃PO₄, dioxane, 100 °C

```
Compd 15
```

[0208] A 2 dram vial was charged with (S)-3-(1-(6-bromopyridin-2-ylamino)ethyl)-6-chloroquinolin-2(1H)-one IV-3 (30.2 mg, 0.080 mmol), Cul (27.4 mg, 0.144 mmol), oxazolidin-2-one (11.9 mg, 0.137 mmol), and tripotassium phosphate (139.1 mg, 0.655 mmol) and placed under nitrogen. A solution of trans-1,2-diaminocyclohexane (16.0 μl, 0.133 mmol) in dioxane (2.3 ml) was added by syringe and the mixture was stirred at 100 °C five hours. The sample was diluted with MeOH, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 80% EtOAc in hexanes, with isocratic elution when peaks came off) to provide Compd 15 (21.6 mg). LCMS (Method 4): Rt 1.29 min., m/z 385.1 [M+H]⁺.

Example 34 -- (S)-3-(2-(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethylamino)-6-methyl pyridin-4-yl)oxazolidin-2-one (Compd 16)
Step 1: (S)-3-(1-((4-bromo-6-methylpyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one

A mixture of 4-bromo-2-fluoro-6-methylpyridine (62.6 mg, 0.329 mmol) and (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (80.6 mg, 0.311 mmol) was treated with DMSO (2.2 ml) and DIEA (0.16 ml, 0.916 mmol). The solution was stirred at 80 °C overnight, then at 90 °C over the weekend, then at 100 °C for two days. The sample was mixed with water (30 mL) and extracted with DCM (3×15 mL). The extracts were dried (Na2SO4), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel snap column, 0 to 8% MeOH in DCM, with isocratic elution at 3.2% MeOH) to provide 38.4 mg crude (S)-3-(1-((4-bromo-6-methylpyridin-2-ylamino)ethyl)-6-chloroquinolin-2(1H)-one. LCMS (Method 1): Rt 2.18 min., m/z 393.9 [M+H]+).

Step 2: (S)-3-(2-(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethylamino)-6-methyl pyridin-4-yl)oxazolidin-2-one (Cmpd 16)

The crude material of (S)-3-(1-((4-bromo-6-methylpyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one was treated with copper(I) iodide (19.1 mg, 0.100 mmol), oxazolidin-2-one (14.3 mg, 0.164 mmol), and tripotassium phosphate (167.8 mg, 0.791 mmol) and placed under nitrogen. A solution of trans-1,2-diaminocyclohexane (12 μL, 0.100 mmol) in dioxane (2.8 ml) was added by syringe and the mixture was stirred at 100 °C for 6.5 hours. More trans-1,2-diaminocyclohexane (15 μL), Cul (18.9 mg), and oxazolidinone (9.8 mg) were added, and...
the sample was placed back under nitrogen and stirred at 100 °C overnight. The sample was
diluted with MeOH and DCM and filtered. The filtrate was treated with silica gel and
evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g
silica gel cartridge, 0 to 8% MeOH in DCM, with isocratic elution at ~4.5% MeOH) to yield
22.1 mg residue. The crude was further purified by reverse phase HPLC to provide the title
compound 16 (5.6 mg, 0.014 mmol, 4.5% yield, HPLC purity 100% at 220 nm) as a white solid.
LCMS (Method 4): Rt 0.91 min., m/z 399.1 [M+H]^+

Example 35 -- (S)-3-(2-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-3-
fluoropyridin-4-yl)oxazolidin-2-one (Cmpd 18)

[0211] To a mixture of (S)-6-chloro-3-(1-((3-fluoro-4-iodopyridin-2-
yl)amino)ethyl)quinolin-2(1H)-one IV-4 (200 mg, 0.45 mmol), oxazolidin-2-one (38 mg, 0.437
mmol), K$_2$PO$_4$ (805 mg, 3.79 mmol) and Cul (98 mg, 0.51 mmol) in dioxane (13 mL) was added
trans-cyclohexanediamine (67 µL, 0.55 mmol). The resultant mixture was heated at 115 °C for 2
h in a sealed tube. The mixture was diluted with MeOH and filtered through sintered funnel.
The filtrate was evaporated with silica gel and purified by ISCO (SiO$_2$: hexanes/EtOAc 0 to
100%) to give the title compound 18 (82 mg, 45%) as white solid. 1H NMR (300 MHz, DMSO-
d$_6$): δ 11.96 (br s, 1H), 7.75-7.73 (m, 2H), 7.69 (d, $J = 5.49$ Hz, 1H), 7.49-7.45 (m, 1H), 7.30 (d,
$J = 8.8$ Hz, 1H), 7.05 (d, $J = 8.8$ Hz, 1H), 6.79-6.75 (m, 1H), 5.30-5.25(m, 1H), 4.49-4.44 (m,
2H), 4.12-4.06 (m, 1H), 1.44 (d, $J = 6.9$ Hz, 3H). LCMS (method 3): Rt 4.02 min, m/z
403.1[M+H]^+.

Example 36 -- (S)-3-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-4-fluoro-
pyridin-2-yl)oxazolidin-2-one (Cmpd 20) and (S)-3-(2-((1-(6-chloro-2-oxo-1,2-
dihydroquinolin-3-yl)ethyl)amino)-6-fluoropyridin-4-yl)oxazolidin-2-one (Cmpd 21)
In a 4 mL vial was added (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one **II-1** (80 mg, 0.359 mmol) and 3-(4,6-difluoropyridin-2-yl)oxazolidin-2-one (71.9 mg, 0.359 mmol) in DMSO (0.8 ml). To this solution was then added DIEA (0.314 ml, 1.796 mmol). The reaction mixture was stirred at 120 °C over weekend. The mixture was diluted with EtOAc and washed with brine (x2). The organic extract was dried over Na₂SO₄, filtered, concentrated under reduced pressure to give a crude product. This crude was purified by column chromatography (Biotage, using 0-100% EtOAc in hexanes) to yield a mixture of **Cmpd 20** (18.8 mg, minor) and **Cmpd 21** (39.7 mg, major):

(S)-3-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-4-fluoropyridin-2-yl)oxazolidin-2-one (**Cmpd 20**); ¹H NMR (300 MHz, CHLOROFORM-d) δ ppm 11.64 (br s, 1 H), 7.61 (s, 1 H), 7.45 (m, 1 H), 7.33 - 7.40 (m, 1 H), 7.21-7.25 (m, 1H), 7.17 (m, 1 H), 5.76 (dd, J=9.97, 1.17 Hz, 1 H), 5.02 (br s, 1 H), 4.24 - 4.38 (m, 2 H), 3.93 - 4.22 (m, 2 H), 1.55 (d, J=6.45 Hz, 3 H). LCMS (method 1): Rt 2.41 min, m/z 402.88 [M+H]⁺.

(S)-3-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-6-fluoropyridin-4-yl)oxazolidin-2-one (**Cmpd 21**); ¹H NMR (300 MHz, CHLOROFORM-d) δ ppm 10.95 - 11.50 (m, 1 H), 7.68 (s, 1 H), 7.38 - 7.57 (m, 2 H), 7.29 (s, 1 H), 5.74 (s, 1 H), 4.81 (br d, J=6.16 Hz, 1 H), 4.38 - 4.49 (m, 2 H), 4.10 - 4.24 (m, 2 H), 1.65 (br s, 3 H). LCMS (method 1): Rt 2.30 min, m/z 402.88 [M+H]⁺.

Table 4: The compounds listed in Table 4 were prepared using methods similar to those described for the preparation of **Compounds 33-37**.
<table>
<thead>
<tr>
<th>Cmpd 14</th>
<th>Cmpd 15</th>
<th>Cmpd 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 17</td>
<td>Cmpd 18</td>
<td>Cmpd 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 20</td>
<td>Cmpd 21</td>
<td>Cmpd 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 23</td>
<td>Cmpd 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. LCMS signal and NMR chemical shifts of each compound listed in Table 4.
<table>
<thead>
<tr>
<th>Compd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>m/z: 385.10 (M+H)+
Rt (min): 0.89</td>
<td>6-chloro-3-[(1S)-1-[(4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>m/z: 385.12 (M+H)+
Rt (min): 1.29</td>
<td>6-chloro-3-[(1S)-1-[(6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>m/z: 399.10 (M+H)+
Rt (min): 0.91</td>
<td>6-chloro-3-[(1S)-1-[(6-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>m/z: 413.14 (M+H)+
Rt (min): 0.96</td>
<td>6-chloro-3-[(1S)-1-[(4-(4,4-dimethyl-2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>m/z: 403.12 (M+H)+
Rt (min): 1.19</td>
<td>1H NMR (300 MHz, DMSO-d6) δ ppm: 11.97 (s, 1 H), 7.72 - 7.78 (m, 2 H), 7.69 (d, J=5.57 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 7.08 (d, J=7.60 Hz, 1 H), 6.78 (dd, J=5.30, 5.30 Hz, 1 H), 5.21 - 5.37 (m, 1 H), 4.42 - 4.52 (m, 2 H), 4.02 - 4.18 (m, 2 H), 1.44 (d, J=7.04 Hz, 3 H).</td>
<td>6-chloro-3-[(1S)-1-[(3-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>19</td>
<td>m/z: 399.04 (M+H)+
Rt (min): 0.91</td>
<td>6-chloro-3-[(1S)-1-[(3-methyl-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>m/z: 403.06 (M+H)+
Rt (min): 1.38</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 11.64 (br s, 1 H), 7.61 (s, 1 H), 7.45 (m, 1 H), 7.33 - 7.40 (m, 1 H), 7.21 - 7.25 (m, 1 H), 7.17 (m, 1 H), 5.76 (dd, J=9.97, 1.17 Hz, 1 H), 5.02 (br s, 1 H), 4.24 - 4.38 (m, 2 H), 3.93 - 4.22 (m, 2 H), 1H NMR (300 MHz, DMSO-d6) δ ppm: 11.97 (s, 1 H), 7.72 - 7.78 (m, 2 H), 7.69 (d, J=5.57 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 7.08 (d, J=7.60 Hz, 1 H), 6.78 (dd, J=5.30, 5.30 Hz, 1 H), 5.21 - 5.37 (m, 1 H), 4.42 - 4.52 (m, 2 H), 4.02 - 4.18 (m, 2 H), 1.44 (d, J=7.04 Hz, 3 H).</td>
<td>6-chloro-3-[(1S)-1-[(4-fluoro-6-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>21</td>
<td>m/z: 403.08 (M+H)+, Rt (min): 1.28</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 10.95 - 11.50 (m, 1 H), 7.68 (s, 1 H), 7.38 - 7.57 (m, 2 H), 7.29 (s, 1 H), 5.74 (s, 1 H), 4.81 (br d, J=6.16 Hz, 1 H), 4.38 - 4.49 (m, 2 H), 4.10 - 4.24 (m, 2 H), 1.65 (br s, 3 H).</td>
<td>6-chloro-3-[(1S)-1-{{6-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>22</td>
<td>m/z: 427.19 (M+H)+, Rt (min): 1.04</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 11.27 - 11.82 (m, 1 H), 7.74 - 7.95 (m, 3 H), 7.24 - 7.54 (m, 3 H), 6.72 - 7.00 (m, 2 H), 4.94 - 5.13 (m, 1 H), 4.04 - 4.35 (m, 2 H), 2.17 - 2.32 (m, 1 H), 1.94 (br s, 1 H), 1.49 - 1.68 (m, 3 H), 0.89 (br d, J=7.04 Hz, 2 H), 0.65-0.76 (m, 4 H).</td>
<td>6-chloro-3-[(4-{((4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl)pyridin-2-yl}amino)ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>23</td>
<td>m/z: 427.12 (M+H)+, Rt (min): 1.43</td>
<td>6-chloro-3-[(1S)-1-{{6-[(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m/z: 427.09 (M+H)+, Rt (min): 1.46</td>
<td>6-chloro-3-[(1R)-1-{{6-[(4S)-2-oxo-4-(propan-2-yl)-1,3-oxazolidin-3-yl]pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
</tbody>
</table>

Example 37 – (S)-5-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 25)

![Chemical Structure](image)

Cmpd 25
A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile **III-5** (1.23 g, 8.09 mmol), (S)-3-(1-aminooethyl)-6-chloroquinolin-2(1H)-one hydrochloride **II-1** (1.91 g, 7.37 mmol) and N,N-diisopropylethylamine (3.8 mL, 21.8 mmol) in anhydrous dimethyl sulfoxide (57 mL) under N$_2$ was heated to 110 °C and stirred for 6 hours. After cooling to room temperature, the mixture was partitioned between EtOAc/H$_2$O (750 mL/750 mL). The organic layer was separated, dried (Na$_2$SO$_4$) and concentrated in vacuum. The residue was purified on ISCO (40 g silica gel column, EtOAc/hexanes 0~100%; 80 g silica gel column, MeOH/dichloromethane 0~5%). The colorless fractions were combined and dichloromethane was removed under reduced pressure on rotavap until a lot of white solid precipitated out. The white solid was collected by filtration and washed with cold MeOH. It was then mixed with MeCN/H$_2$O (10 mL/25 mL) and lyophilized to afford the title compound **25** as a white solid (790 mg). m.p. 262-264 °C. 1H NMR (300 MHz, DMSO-d_6) δ: 12.07 (s, 1H), 7.75 (s, 1H), 7.73 (d, $J = 2.2$ Hz, 1H), 7.51 (dd, $J = 8.6, 2.3$ Hz, 1H), 7.31 (d, $J = 8.8$ Hz, 1H), 6.97 (d, $J = 8.0$ Hz, 1H), 6.93 (d, $J = 7.7$ Hz, 1H), 5.95 (d, $J = 8.0$ Hz, 1H), 4.68 (m, 1H), 3.58 (s, 3H), 1.50 (d, $J = 6.6$ Hz, 3H). LCMS (Method 3): 100% purc @ 254 nm, Rt 10.78 min, m/z 355, 357 [M+H]+. The filtrate and the colored fractions (TLC pure) from the second ISCO were combined and treated with activated charcoal and filtered (until the filtrate is colorless). The filtrate was then concentrated under reduced pressure on rotavap to remove dichloromethane until a lot of white solid precipitated out. The white solid was collected by filtration and washed with cold MeOH. It was then mixed with MeCN/H$_2$O (10 mL/25 mL) and lyophilized to afford the title compound **25** as a white solid (970 mg). m.p. 262-264 °C. 1H NMR (300 MHz, DMSO-d_6) δ: 12.06 (s, 1H), 7.75 (s, 1H), 7.73 (d, $J = 2.5$ Hz, 1H), 7.51 (dd, $J = 8.6, 2.3$ Hz, 1H), 7.31 (d, $J = 8.8$ Hz, 1H), 6.97 (d, $J = 8.0$ Hz, 1H), 6.92 (d, $J = 8.0$ Hz, 1H), 5.95 (d, $J = 8.0$ Hz, 1H), 4.68 (m, 1H), 3.58 (s, 3H), 1.50 (d, $J = 6.9$ Hz, 3H). LCMS (Method 3): 100% purc @ 254 nm, Rt 5.07 min, m/z 355, 357 [M+H]+. The total yield for combined two batches is 67%.

Example 38 -- (S)-5-[(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile (Cmpd 28)
Step 1: 6-bromo-3-chloro-1-methylpyrazin-2(1H)-one.

[0216] A mixture of 6-bromo-3-chloropyrazin-2(1H)-one (2 g, 9.55 mmol) and potassium carbonate (2.77 g, 20.04 mmol) in a 200 mL round bottom flask was treated with DMF (25 ml) and stirred 15 minutes. Mel (0.69 ml, 11.04 mmol) was added and the mixture was stirred at room temperature for 45 minutes. The solvent was evaporated under reduced pressure. The residue was mixed with water (75 mL) and extracted with DCM (2x75 mL). The combined organic extracts were dried (MgSO₄), filtered, treated with silica gel, and evaporated under reduced pressure, then evaporated further at 60 °C under high vacuum. The material was chromatographed by Biotage MPLC (silica gel, 0 to 35% EtOAc in hexanes), with isocratic elution at 16% EtOAc and 30% EtOAc while peaks of the desired mass came off. The peak that came off with 30% EtOAc provided 6-bromo-3-chloro-1-methylpyrazin-2(1H)-one (1.30 g, 5.82 mmol, 61 % yield) as a white solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 7.50 (s, 1 H), 3.63 (s, 3 H). LCMS (Method 1): Rt 1.44 min., m/z 222.9, 224.9 [M+H]$^+$.

Step 2: (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one
A mixture of (S)-3-(1-aminoethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (200 mg, 0.772 mmol) and 6-bromo-3-chloro-1-methylpyrazin-2(1H)-one (189.2 mg, 0.847 mmol) in DMSO (5 ml) was treated with DIEA (400 µL, 2.290 mmol) and stirred at 110 °C five hours. The sample was mixed with water (75 mL) and extracted with DCM (2x50 mL). The combined organic layers were dried (Na₂SO₄) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The sample was chromatographed by Biotage MPLC (25 g silica gel column, 0 to 100% EtOAc in hexanes, with isocratic elution when peaks came off) to provide (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one (32.9 mg, 0.080 mmol, 10% yield) as an orange solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 11.99 (s, 1 H), 7.70 - 7.75 (m, 2 H), 7.56 (d, J=7.92 Hz, 1 H), 7.46 - 7.52 (m, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.88 - 6.96 (m, 1 H), 5.02 - 5.17 (m, 1 H), 3.50 - 3.60 (m, 3 H), 1.44 (d, J=6.74 Hz, 3 H). LCMS (Method 1): Rt 2.55 min., m/z 410.8 [M+H].

Step 3: (S)-5-((1-(6-chloro-2-oxo-1,2-dihydropyridin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile (Cmpd 28).

A mixture of (S)-3-(1-((5-bromo-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one (31.0 mg, 0.076 mmol), Pd₂(dba)₃ (7.4 mg, 8.08 µmol), 1,1'-bis(diphenylphosphino)ferrocene (8.7 mg, 0.016 mmol), and dicyanocobalt (18.1 mg, 0.154 mmol) was placed under nitrogen in a 2 dram vial. DMF (1.4 mL) was added by syringe. The atmosphere was evacuated and replaced with nitrogen three times. The mixture was stirred at room temperature overnight. LCMS indicated the reaction had gone cleanly to completion. The solvent was evaporated under reduced pressure. The residue was partitioned between water (15 mL) and DCM (2x15 mL). The combined organic extracts were dried (Na₂SO₄) and filtered,
silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (0 to 65% EtOAc in hexanes, with isocratic elution when peaks came off) to provide the title compound 28 (20.1 mg, 0.055 mmol, 72.0 % yield, HPLC purity 96.5% at 220 nm) as an orange solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 12.03 (s, 1 H), 8.59 (d, J=8.50 Hz, 1 H), 7.77 (s, 1 H), 7.72 (d, J=2.35 Hz, 1 H), 7.47 - 7.55 (m, 2 H), 7.31 (d, J=8.79 Hz, 1 H), 5.18 - 5.31 (m, 1 H), 3.48 (s, 3 H), 1.48 (d, J=6.74 Hz, 3 H). LCMS (Method 4): Rt 1.25 min., m/z 356.1 [M+H]$^+$.

Example 39 -- (S)-6-((1-(6-Chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methyl nicotinonitrile (Cmpd 32)

![Chemical structure diagram]

Step-1: 2-Amino-5-chloro-4-fluorobenzoic acid.

![Chemical structure diagram]
To a solution of 2-amino-4-fluorobenzoic acid (50 g, 322.6 mmol) in 700 mL of DMF was added N-chlorosuccinimide (41 g, 305.5 mmol) portion wise. The reaction mixture was heated at 50 °C for 5 h. The mixture was cooled to room temperature, poured on to ice cold water. The solid obtained was filtered. Dissolved the solid in EtOAc, added brine (300 mL) and extracted with EtOAc (3 x 200 mL), combined organic phase was dried (Na₂SO₄) and evaporated to afford 2-amino-5-chloro-4-fluorobenzoic acid as brown solid (42 g, 69%).

Step-2: (2-Amino-5-chloro-4-fluorophenyl)methanol.

![Chemical Structure](image)

2-Amino-5-chloro-4-fluorobenzoic acid (42 g, 221 mmol) was dissolved in 100 mL of THF and BH₃·THF (712 mL of 1 M solution in THF, 712 mmol) was added drop wise at rt over 1 h. The reaction mixture was heated at 50 °C overnight (18 h). The mixture was cooled to room temperature and poured on to ice cold water. Brine was added to the aqueous solution and extracted with EtOAc (3 x 200 mL). Combined organic layers were dried (Na₂SO₄), evaporated and purified by flash chromatography using 0-100% hexanes/ethylacetate as eluent to afford the desired product as a brown solid (17 g, 45%).

Step-3: 2-Amino-5-chloro-4-fluorobenzaldehyde.

![Chemical Structure](image)

To a solution of (2-amino-5-chloro-4-fluorophenyl)methanol (22 g, 125.7 mmol) in 1000 mL of chloroform was added MnO₂ (109 g, 1250 mmol) and the reaction mixture was stirred overnight at ambient temperature. The reaction mixture was filtered and washed with EtOAc. The solvent was evaporated to give the crude product which was passed through a pad of silica gel eluting with 0 to 20% hexanes/EtOAc to afford the pure product 2-Amino-5-chloro-4-fluorobenzaldehyde as a brown solid (19 g, 87%).

Step-4: 3-Acetyl-6-chloro-7-fluoroquinolin-2(1H)-one
A mixture of 2-amino-5-chloro-4-fluorobenzaldehyde (14 g, 173.6 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (16 mL, 121 mmol) in m-xylene (500 mL) was refluxed for 1.5 h. The reaction mixture was cooled to room temperature. The solid precipitate was filtered, washed with m-xylene and dried to give 3-Acetyl-6-chloro-7-fluoroquinolin-2(1H)-one (9.6 g, 50%) as off-white solid.

Step-5: (S)-N-((S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfinamide.

To a mixture of 3-acetyl-6-chloro-7-fluoroquinolin-2(1H)-one (6.4 g, 26.7 mmol) and (S)-2-methylpropane-2-sulfinamide (4.85 g, 40.06 mmol) in THF (450 mL) was added Ti(OEt)$_4$ (14 mL, 66.7 mmol). The resultant mixture was stirred at 80 °C overnight. Upon the completion of the reaction, the reaction mixture cooled to -60 °C and NaBH$_4$ (5.1 g, 134 mmol) was added portion wise and then allowed to warm to room temperature overnight. The excess NaBH$_4$ was quenched with MeOH (20 mL) followed by addition of water (20 mL) and EtOAc (300 mL). The solution was filtered through a pad of celite, the filtrate was taken into separatory funnel and the organic layer was separated, dried (Na$_2$SO$_4$), concentrated and purified by flash chromatography (SiO$_2$: hexanes/PrOH 0 to 20%) to give the title compound (4.5 g, 49%) as a yellow solid.

Step-6: (S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one, HCl (II-3a)
To a mixture of (S)-N-((S)-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)-2-methylpropane-2-sulfamidate (3.5 g, 10.1 mmol) in MeOH (80 mL) was added 3N methanolic HCl (80 mL, 121 mmol). The resultant mixture was stirred at room temperature overnight. To this mixture was added diethyl ether (60 mL) and the resulting solid was filtered and dried to give the title compound (2.1 g, 75%) as a yellow solid. 1H NMR (300 MHz, DMSO-d$_6$): δ 12.40 (br s, 1H), 8.24 (br s, 2H), 8.07- 8.05 (m, 2H), 7.32 (d, $J = 10.4$ Hz, 1H), 4.5-4.15 (m, 1H), 1.53 (d, $J = 6.8$ Hz, 3H). LCMS (method LCMS3, APCI): RT = 3.47 min, m/z = 241.1 [M+H]$^+$.

Step-6: (S)-6-((1-(6-Chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methylnicotinonitrile (Cmpd 32)

![Chemical Structure](image)

A mixture of (S)-3-(1-aminoethyl)-6-chloro-7-fluoroquinolin-2(1H)-one hydrochloride II-3a (84 mg, 0.30 mmol, 1 eq.), 6-fluoro-2-methylnicotinonitrile III-5 (45 mg, 0.33 mmol, 1.1 eq.) and DIEA (111 mg, 0.9 mmol, 3 eq.) in 1.2 mL DMSO was heated in the microwave at 160 °C for 2 hours. The reaction was then poured into water and the precipitate collected and rinsed with water. The beige solid (111 mg) was chromatographed over 3.5 g silica gel, eluting with DCM/2% EtOH. After evaporation of the pure fractions, the resulting solid was triturated with cold MeOH to provide 55 mg Cmpd 32 as a gold solid (51%). 1H-NMR(300 MHz, d$_6$DMSO, 120 °C) δ: 11.60 (broad s, 0.6H), 7.81 (d, $J = 7.95$, 1H), 7.76 (s, 1H), 7.54 (d, $J = 8.79$, 1H), 7.35 (broad d, 1H), 7.21 (d, $J = 10.44$, 1H), 6.44 (d, $J = 8.52$, 1H), 2.40 (s, 3H), 1.47 (d, $J = 6.60$, 3H).

1H-NMR(300 MHz, CDCl$_3$) δ: 11.01 broad s, 0.75H), 7.66 (s, 1H), 7.58 (d, $J = 7.41$, 1H), 7.45 (d, $J = 8.49$, 1H), 7.06 (d, $J = 9.33$, 1H), 6.13 (d, $J = 8.52$, 1H), 5.82 (broad d, 1H), 5.18 (broad m, 1H), 2.55 (s, 3H), 1.61 (d, $J = 6.87$, 3H). LC/MS(Method 3): Rt 4.6 min., m/z 357 [M+H]$^+$.

141
Example 40 — (S)-6-(((1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-4-methylnicotino-nitrile (Cmpd 40)

![Chemical structure of Cmpd 40]

[0226] To a solution of (S)-3-(1-aminoethyl)-6-chloro-7-methoxyquinolin-2(1H)-one HCl salt, 11-4a (400 mg, 1.39 mmol) in DMSO (5 ml) was added 6-chloro-4-methylnicotinonitrile (320 mg, 2.35 mmol) and DIEA (0.56 ml, 2.96 mmol). The reaction was heated at 110 °C for 3 h, MS and TLC showed completed reaction. The reaction mixture was allowed to cool, quenched with water and extracted with EtOAc. The organic layer was separated and washed with water, brine and dried over magnesium sulfate. The organic layer was filtered and concentrated and the residue obtained was purified by column (SiO₂: 0-10% MeOH/DCM) to get a foam 160 mg, which was triturated with MeOH to give the title compound 40 as pale yellow solid (150 mg).

1H NMR (300 MHz, DMSO-d$_6$, 120 °C) δ 11.38 (s, 1H), 8.22 (s, 1H), 7.68 (s, 1H), 7.64 (s, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.02 (s, 1H), 6.52 (s, 1H), 5.17-5.22 (m, 1H), 3.91 (s, 3H), 2.29 (s, 3H), 1.47 (d, J = 6.9 Hz, 3H). LCMS (Method 2): Rt 4.39 min, m/z 369.1 [M + H]$^+$.

Example 41 — (S)-6-(((1-(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methylnicotinonitrile (Cmpd 44)

![Chemical structure of Cmpd 44]
A mixture of (S)-3-(1-aminoethyl)-6-chloro-7-(pyridine-2-ylmethoxy)quinolin-2-(1H)-one II-5a (60 mg, 0.135 mmol), 6-fluoro-2-methylnicotinonitrile (28 mg, 0.202 mmol) and DIPEA (46 μL, 0.27 mmol) in DMSO (1 mL) was heated at 110 °C for 2.5 h. After TLC and MS showed completed reaction, the mixture was cooled to room temperature and poured onto crushed ice. The mixture was extracted with CH₂Cl₂ (3 X 10 mL), dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The resulting residue was purified by ISCO (SiO₂: CH₂Cl₂/MeOH 0 to 10%) to afford the title compound (Cmpd 44) (45 mg, 75%) as white solid.

¹H NMR (300 MHz, DMSO-d₆): δ 11.81 (br s, 1H), 8.61 (d, J = 4.6 Hz, 1H), 7.88-7.82 (m, 3H), 7.67-7.53 (m, 3H), 7.40-7.35 (m, 1H), 7.02 (s, 1H), 6.45 (br m, 1H), 5.29-5.10 (m, 3H), 2.37 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H). LCMS (method LCMS3, APCI): RT = 4.0 min, m/z = 446.1[M+H]+.

Example 42 -- 5-(((S)-1-(6-chloro-2-oxo-7-(R)-1-(pyridin-2-yl)ethoxy)-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 47)

A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (35.2 mg, 0.231 mmol) and 3-((S)-1-aminoethyl)-6-chloro-7-(R)-1-(pyridin-2-yl)ethoxy)quinolin-2(1H)-one hydrochloride II-8 (80 mg, 0.210 mmol) II-8 was treated with DMSO (1.5 mL) and DIEA (111 μL, 0.636 mmol). The solution was stirred at 110 °C for five hours. The sample was mixed with water (20 mL) and extracted with DCM (2x15 mL). The extracts were washed with water (2x20 mL), dried (Na₂SO₄) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 3.4% MeOH in hexanes. The material thus obtained was dissolved in MeCN (2 mL), treated with water (1 mL), frozen on a dry ice/acetone bath, and lyophilized to provide the title compound (Cmpd 47) (32.7 mg, 0.069 mmol, 33% yield, HPLC purity 100% at
220 nm) as a white solid. 1H NMR (300 MHz, DMSO-$_d_6$): δ ppm 11.75 (s, 1 H), 8.55 - 8.62 (m, 1 H), 7.80 (dd, J=7.50, 7.50 Hz, 1 H), 7.74 (s, 1 H), 7.64 (s, 1 H), 7.39 (d, J=7.62 Hz, 1 H), 7.32 (dd, J=7.48, 4.84 Hz, 1 H), 6.96 (d, J=7.62 Hz, 1 H), 6.82 - 6.89 (m, 2 H), 5.93 (d, J=7.92 Hz, 1 H), 5.50 (q, J=6.16 Hz, 1 H), 4.61 (s, 1 H), 3.57 (s, 3 H), 1.66 (d, J=6.16 Hz, 3 H), 1.44 (d, J=6.74 Hz, 3 H). LCMS (Method 1): Rt 2.61 min., m/z 475.9 [M+H]$^+$.

Example 43 -- (S)-5-((1-(6-chloro-7-(cyclopropylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 48)

![Chemical structures](image)

[0229] A solution of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile **III-5** (18.3 mg, 0.120 mmol) and (S)-3-(1-amoethyl)-6-chloro-7-(cyclopropylmethoxy)quinolin-2(1H)-one hydrochloride **II-9** (35 mg, 0.106 mmol) was treated with DMSO (0.8 ml) and DIEA (57 μL, 0.326 mmol). The solution was stirred at 110 °C for 3.5 hours. The sample was mixed with water (20 mL) and extracted with DCM (2x10 mL). The combined extracts were washed with water (2x20 mL), dried (Na$_2$SO$_4$) and filtered, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 70% EtOAc in hexanes. The material thus obtained was dissolved in MeCN (0.8 mL), treated with water (0.4 mL), frozen on a dry ice/acetone bath, and lyophilized to provide the title compound (Cmpd 48) (23.9 mg, 0.056 mmol, 52.9 % yield, HPLC purity 100% at 220 nm) as a white solid. 1H NMR (300 MHz, DMSO-$_d_6$): δ ppm 11.83 (s, 1 H), 7.73 (s, 1 H), 7.67 (s, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.92 (s, 1 H), 6.89 (d, J=7.92 Hz, 1 H), 5.95 (d, J=7.92 Hz, 1 H), 4.61 - 4.70 (m, 1 H), 3.92 (d, J=6.74 Hz, 2 H), 3.58 (s, 3 H), 1.48 (d, J=6.74 Hz, 3 H), 1.21 - 1.33 (m, 1 H), 0.56 - 0.65 (m, 2 H), 0.34 - 0.44 (m, 2 H). LCMS (Method 1): Rt 2.61 min., m/z 424.9 [M+H]$^+$.
Example 44 -- 5-[(1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 49)

A mixture of 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (26.7 mg, 0.176 mmol) and 3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride II-10 (59.7 mg, 0.157 mmol) was treated with DMSO (1 ml) and DIEA (84 μL, 0.481 mmol). The solution was stirred at 110 °C eight hours. LCMS indicated the reaction had gone to completion. The sample was mixed with water (15 mL) and extracted with DCM (3×10 mL). The extracts were dried (Na$_2$SO$_4$), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 75% in EtOAc in hexanes) to provide the title compound Cmpd 49 (40.5 mg, 0.085 mmol, 54.2 % yield, HPLC purity 100% at 220 nm) as an off-white solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.90 (s, 1 H), 7.76 (s, 1 H), 7.68 (s, 1 H), 6.97 (d, J=7.62 Hz, 1 H), 6.94 (s, 1 H), 6.91 (d, J=7.62 Hz, 1 H), 5.95 (d, J=7.62 Hz, 1 H), 4.65 (quin, J=6.82 Hz, 1 H), 4.12 (d, J=4.10 Hz, 2 H), 3.58 (s, 3 H), 2.52 - 2.80 (m, 5 H), 1.48 (d, J=6.74 Hz, 3 H). LCMS (Method 4): Rt 1.51 min., m/z 475.1 [M+H]$^+$.

Example 45 -- (S)-5-[(1-(6-chloro-8-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 50)
A solution of (S)-3-(1-aminoethyl)-6-chloro-8-fluoroquinolin-2(1H)-one hydrochloride II-11 (91.7 mg, 0.331 mmol) and 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (56.8 mg, 0.373 mmol) in DMSO (2.0 ml) was treated with DIEA (172 μl, 0.985 mmol) and stirred at 110 °C for four hours. The sample was added to water (30 mL), and the resulting precipitate was extracted with DCM (2x20 mL) and EtOAc (10 mL). The combined organic extracts were dried (Na₂SO₄), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 45% EtOAc in hexanes, with isocratic elution when peaks came off. Product fractions were combined, washed with water (2x30 mL), and evaporated under reduced pressure. The residue was dissolved in MeCN (4 mL) and water (2 mL), frozen (dry ice & acetone bath), and lyopholized to provide the title compound Cmpd 50 (62.0 mg, 0.166 mmol, 50.3 % yield, HPLC purity 100% at 220 nm) as a grayish-yellow solid. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 12.15 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.65 (m, 2 H), 6.97 (d, J=7.92 Hz, 1 H), 6.93 (d, J=7.62 Hz, 1 H), 5.94 (d, J=7.92 Hz, 1 H), 4.61 - 4.75 (m, 1 H), 3.58 (s, 3 H), 1.50 (d, J=6.74 Hz, 3 H). LCMS (Method 1): Rt 2.39 min., m/z 373.0 [M+H]⁺.

Example 46 -- (S)-5-((1-(6-chloro-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 51)

The mixture of (S)-3-(1-aminoethyl)-6-chloro-1,8-naphthyridin-2(1H)-one II-6 (100 mg, 0.447 mmol), 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (82 mg, 0.537 mmol) and DIEA (0.234 ml, 1.341 mmol) in DMSO (1 ml) was heated to 110°C for two hours. LC-MS showed the formation of the product. The reaction mixture was then cooled to room temperature, follow by addition of water and filtration. The biotage purification of the crude with 0-10% MeOH/DCM on a 25g column afforded (S)-5-((1-(6-chloro-2-oxo-1,2-
dihydro-1,8-naphthyridin-3-yl(ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile

Cmpd 51 (53.8 mg, 33.8%). 1H NMR (300 MHz, DMSO-d_6) δ ppm 12.52 (s, 1 H), 8.49 (d, $J=2.64$ Hz, 1 H), 8.24 (d, $J=2.64$ Hz, 1 H), 7.72 (s, 1 H), 6.71 - 7.07 (m, 2 H), 5.91 (d, $J=8.21$ Hz, 1 H), 4.52 - 4.85 (m, 1 H), 3.46 - 3.74 (s, 3 H), 1.48 (d, $J=6.74$ Hz, 3 H). LCMS (Method 1): Rt 2.22 min, m/z 356.01 [M+H]$^+$.

Example 47 -- (S)-6-chloro-3-(1-(3-methoxy-4-(methylsulfonyl)phenylamino)ethyl) quinolin-2(1H)-one (Cmpd 52)

![Chemical structure of Cmpd 52]

[0233] A mixture of (S)-3-(1-aminomethyl)-6-chloroquinolin-2(1H)-one hydrochloride II-1 (40.1 mg, 0.155 mmol), 4-bromo-2-methoxy-1-(methylsulfonyl)benzene (61.8 mg, 0.233 mmol), BINAP (13.6 mg, 0.022 mmol), Pd$_2$(dba)$_3$ (11.0 mg, 0.012 mmol), and sodium tert-butoxide (35.7 mg, 0.371 mmol) was placed under nitrogen in a 2 dram vial. Toluene (1.0 ml) was added by syringe and the mixture was shaken at 80 °C overnight, during which time the cap popped off the vial and the sample was evaporated to dryness. The sample was diluted with MeOH/DCM, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 10% MeOH in DCM, with isocratic elution at 2.6% MeOH while peaks came off to provide the title compound (Cmpd 52) (9.1 mg, 0.021 mmol, 13.87 % yield, HPLC purity 96% at 220 nm) as a yellow solid. LCMS (Method 4): Rt 1.16 min., m/z 407.1 [M+H]$^+$.

Table 6: The compounds listed in Table 6 were prepared using methods similar to those described for the preparation of Compounds 24-52.
<table>
<thead>
<tr>
<th>Cmpd 25</th>
<th>Cmpd 26</th>
<th>Cmpd 27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 28</th>
<th>Cmpd 29</th>
<th>Cmpd 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 31</th>
<th>Cmpd 32</th>
<th>Cmpd 33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 34</th>
<th>Cmpd 35</th>
<th>Cmpd 36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 37</td>
<td>Cmpd 38</td>
<td>Cmpd 39</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 40</td>
<td>Cmpd 41</td>
<td>Cmpd 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 43</td>
<td>Cmpd 44</td>
<td>Cmpd 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 46</td>
<td>Cmpd 47</td>
<td>Cmpd 48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7. LCMS signal and NMR chemical shifts of each compound listed in Table 5.

<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>m/z: 355.02 (M+H)+
 Rf (min): 1.22</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07 (s, 1 H), 7.71 - 7.76 (m, 2 H), 7.51 (dd, J=8.79, 2.35 Hz, 1 H), 7.31 (d, J=8.79 Hz, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.93 (d, J=7.92 Hz, 1 H), 6.95 (d, J=7.92 Hz, 1 H), 4.62 - 4.75 (m, 1 H), 3.58 (s, 3 H), 1.50 (d, J=6.74 Hz, 3 H).</td>
<td>5-{{[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>26</td>
<td>m/z: 355.17 (M+H)+
 Rf (min): 1.22</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07 (s, 1 H), 7.75 (s, 1 H), 7.74 (d, J=2.35 Hz, 1 H), 7.51 (dd, J=8.79, 2.35 Hz, 1 H), 7.31 (d, J=8.79 Hz, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.93 (d, J=7.62 Hz, 1 H), 6.95 (d, J=7.92 Hz, 1 H), 4.68 (quin, J=6.89 Hz, 1 H), 3.58 (s, 3 H), 1.50 (d, J=6.74 Hz, 3 H).</td>
<td>5-{{[1R]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>27</td>
<td>m/z: 373.09 (M+H)+</td>
<td></td>
<td>5-{{[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-</td>
</tr>
<tr>
<td>Cmpd no</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dihydroquinolin-3-yl(ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>28</td>
<td>m/z: 356.07(M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.03 (s, 1 H), 8.59 (d, J=8.50 Hz, 1 H), 7.77 (s, 1 H), 7.72 (d, J=2.35 Hz, 1 H), 7.47 - 7.55 (m, 2 H), 7.31 (d, J=8.79 Hz, 1 H), 5.18 - 5.31 (m, 1 H), 3.48 (s, 3 H), 1.48 (dd, J=6.74 Hz, 3 H).</td>
<td>5-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile</td>
</tr>
<tr>
<td>29</td>
<td>m/z: 373.09(M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.12 (s, 1 H), 7.95 (d, J=7.92 Hz, 1 H), 7.74 (s, 1 H), 7.21 (d, J=10.26 Hz, 1 H), 6.97 (d, J=7.62 Hz, 1 H), 6.91 (d, J=7.62 Hz, 1 H), 5.93 (d, J=7.92 Hz, 1 H), 4.65 (quin, J=6.90 Hz, 1 H), 3.58 (s, 3 H), 1.49 (d, J=6.74 Hz, 3 H).</td>
<td>5-[[1R]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile</td>
</tr>
<tr>
<td>30</td>
<td>m/z: 373.04(M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.04 (s, 1 H), 7.98 (d, J=7.92 Hz, 1 H), 7.92 (d, J=7.30 Hz, 1 H), 7.74 (s, 1 H), 7.62 (d, J=9.09 Hz, 1 H), 7.20 (d, J=10.26 Hz, 1 H), 6.47 (br s, 1 H), 5.07 - 5.30 (m, 1 H), 2.36 (s, 3 H), 1.42 (d, J=7.04 Hz, 3 H).</td>
<td>5-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile</td>
</tr>
<tr>
<td>31</td>
<td>m/z: 357.04(M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.04 (s, 1 H), 7.98 (d, J=7.92 Hz, 1 H), 7.92 (d, J=7.30 Hz, 1 H), 7.74 (s, 1 H), 7.62 (d, J=9.09 Hz, 1 H), 7.20 (d, J=10.26 Hz, 1 H), 6.47 (br s, 1 H), 5.07 - 5.30 (m, 1 H), 2.36 (s, 3 H), 1.42 (d, J=7.04 Hz, 3 H).</td>
<td>6-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>32</td>
<td>m/z: 357.17(M+H)+</td>
<td>1H NMR (300 Hz, CDCl3) δ ppm: 11.01 broad s, 0.75H), 7.66 (s, 1H), 7.58 (d, J=7.41, 1H), 7.45 (d, J=8.49, 1H), 7.06 (d, J=9.33, 1H), 6.13 (d, J=8.52, 1H), 5.82 (broad d, 1H), 5.18 (broad m, 1H), 2.55 (s, 3H), 1.61 (d, J=6.87, 3H).</td>
<td>6-[[1S]-1-(6-chloro-7-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>33</td>
<td>m/z: 385.12(M+H)+</td>
<td>1H NMR (300 Hz, CDCl3) δ ppm: 11.01 broad s, 0.75H), 7.66 (s, 1H), 7.58 (d, J=7.41, 1H), 7.45 (d, J=8.49, 1H), 7.06 (d, J=9.33, 1H), 6.13 (d, J=8.52, 1H), 5.82 (broad d, 1H), 5.18 (broad m, 1H), 2.55 (s, 3H), 1.61 (d, J=6.87, 3H).</td>
<td>5-[[1R]-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)(ethyl)amino]-1-methyl-6-oxo-1,6-dihydropyrazine-2-carbonitrile</td>
</tr>
<tr>
<td>Cmpd no</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>34</td>
<td>m/z: 385.14 (M+H)+ Rt (min): 1.26</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.92 (s, 1 H), 7.74 (s, 1 H), 7.68 (s, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.95 (s, 1 H), 6.90 (d, J=7.62 Hz, 1 H), 5.95 (d, J=7.92 Hz, 1 H), 4.65 (quin, J=7.04 Hz, 1 H), 3.88 (s, 3 H), 3.57 (s, 3 H), 1.48 (d, J=6.74 Hz, 3 H).</td>
<td>5-{[(1R)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>35</td>
<td>m/z: 385.06 (M+H)+ Rt (min): 1.23</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.92 (s, 1 H), 7.74 (s, 1 H), 7.68 (s, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.95 (s, 1 H), 6.90 (d, J=7.62 Hz, 1 H), 5.95 (d, J=7.92 Hz, 1 H), 4.65 (quin, J=7.04 Hz, 1 H), 3.88 (s, 3 H), 3.57 (s, 3 H), 1.48 (d, J=6.74 Hz, 3 H).</td>
<td>5-{[1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>36</td>
<td>m/z: 369.19 (M+H)+ Rt (min): 1.32</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.84 (s, 1 H), 7.87 (d, J=7.30 Hz, 1 H), 7.78 (s, 1 H), 7.67 (s, 1 H), 7.61 (d, J=8.79 Hz, 1 H), 6.94 (s, 1 H), 6.43 (br s, 1 H), 5.08 - 5.33 (m, 1 H), 3.87 (s, 3 H), 2.37 (s, 3 H), 1.41 (d, J=6.74 Hz, 3 H).</td>
<td>6-{[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>37</td>
<td>m/z: 369.06 (M+H)+ Rt (min): 1.33</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.84 (s, 1 H), 7.87 (d, J=7.30 Hz, 1 H), 7.78 (s, 1 H), 7.67 (s, 1 H), 7.61 (d, J=8.79 Hz, 1 H), 6.94 (s, 1 H), 6.43 (br s, 1 H), 5.08 - 5.33 (m, 1 H), 3.87 (s, 3 H), 2.37 (s, 3 H), 1.41 (d, J=6.74 Hz, 3 H).</td>
<td>6-{[1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>38</td>
<td>m/z: 385.19 (M+H)+ Rt (min): 1.25</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.84 (s, 1 H), 7.87 (d, J=7.30 Hz, 1 H), 7.78 (s, 1 H), 7.67 (s, 1 H), 7.61 (d, J=8.79 Hz, 1 H), 6.94 (s, 1 H), 6.43 (br s, 1 H), 5.08 - 5.33 (m, 1 H), 3.87 (s, 3 H), 2.37 (s, 3 H), 1.41 (d, J=6.74 Hz, 3 H).</td>
<td>6-{[(1S)-1-(6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino}-4-methoxy pyridine-3-carbonitrile</td>
</tr>
</tbody>
</table>
| 39 | m/z: 385.15 (M+H)+ Rt (min): 1.36 | 1H NMR (300 MHz, DMSO-d6, 120 | 6-{[(1S)-1-(6-chloro-7-
<table>
<thead>
<tr>
<th>Compd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M+H)+</td>
<td></td>
<td>oC) δ 11.38 (s, 1 H), 8.22 (s, 1 H), 7.68 (s, 1 H), 7.64 (s, 1 H), 7.31 (d, J = 7.4 Hz, 1 H), 7.02 (s, 1 H), 6.52 (s, 1 H), 5.17-5.22 (m, 1 H), 3.91 (s, 3 H), 2.29 (s, 3 H), 1.47 (d, J = 6.9 Hz, 3 H)</td>
<td>methoxy-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-4-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>m/z: 462.20 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.89 (s, 1 H), 8.61 (d, J = 4.69 Hz, 1 H), 7.88 (d, J = 7.70, 1.91 Hz, 1 H), 7.79 (s, 1 H), 7.68 (s, 1 H), 7.54 (d, J = 7.92 Hz, 1 H), 7.38 (dd, J = 7.33, 4.98 Hz, 1 H), 7.03 (s, 1 H), 6.96 (d, J = 7.62 Hz, 1 H), 6.90 (d, J = 7.62 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.57 - 4.72 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.74 Hz, 3 H).</td>
<td>5-[(1S)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 462.17 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.88 (s, 1 H), 8.61 (d, J = 4.40 Hz, 1 H), 7.83 - 7.93 (m, 1 H), 7.79 (s, 1 H), 7.68 (s, 1 H), 7.54 (d, J = 7.62 Hz, 1 H), 7.33 - 7.43 (m, 1 H), 7.03 (s, 1 H), 6.96 (d, J = 7.92 Hz, 1 H), 6.90 (br d, J = 7.33 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.57 - 4.71 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.74 Hz, 3 H).</td>
<td>5-[(1R)-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 462.08 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.89 (s, 1 H), 8.58 - 8.63 (m, 1 H), 7.88 (ddd, J = 7.62, 7.62, 1.76 Hz, 1 H), 7.79 (s, 1 H), 7.68 (s, 1 H), 7.54 (d, J = 7.92 Hz, 1 H), 7.38 (dd, J = 6.89, 5.42 Hz, 1 H), 7.03 (s, 1 H), 6.97 (d, J = 7.92 Hz, 1 H), 6.90 (d, J = 7.62 Hz, 1 H), 5.94 (d, J = 7.92 Hz, 1 H), 5.30 (s, 2 H), 4.56 - 4.71 (m, 1 H), 3.58 (s, 3 H), 1.48 (d, J = 6.45 Hz, 3 H).</td>
<td>5-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 446.04 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.81 (br s, 1H), 8.61 (d, J = 4.6 Hz, 1H), 7.88-7.82 (m, 3H), 7.67-7.53 (m, 3H), 7.40-7.35 (m, 1H), 7.02 (s, 1H), 6.45 (br m, 1H), 5.29-5.10 (m, 3H), 2.37 (s, 3H), 1.41 (d, J = 6.6 Hz, 3H).</td>
<td>6-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methylpyridine-3-carbonitrile</td>
<td></td>
</tr>
</tbody>
</table>
| m/z: 446.10 (M+H)+ | 1H NMR (300 MHz, DMSO-d6): δ ppm 11.82 (s, 1H), 8.57 - 8.64 (m, 1H). | 6-[[1S]-1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-
<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>m/z: 461.17 (M+H)+
Rt (min): 1.38</td>
<td>H), 7.88 (ddd, J=7.62, 7.62, 1.76 Hz, 2 H), 7.83 (s, 1 H), 7.68 (s, 1 H), 7.62 (d, J=8.79 Hz, 1 H), 7.55 (d, J=7.92 Hz, 1 H), 7.38 (dd, J=6.74, 4.69 Hz, 1 H), 7.02 (s, 1 H), 5.29 (s, 2 H), 2.36 (s, 3 H), 1.40 (d, J=7.04 Hz, 3 H). missing NH, one methyne H (buried in baseline?)</td>
<td>dihydroquinolin-3-yl(ethyl)amino)-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>47</td>
<td>m/z: 476.24 (M+H)+
Rt (min): 1.4</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.75 (s, 1 H), 8.55 - 8.62 (m, 1 H), 7.80 (dd, J=7.50, 7.50 Hz, 1 H), 7.74 (s, 1 H), 7.64 (s, 1 H), 7.39 (d, J=7.62 Hz, 1 H), 7.32 (dd, J=7.48, 4.84 Hz, 1 H), 6.96 (d, J=7.62 Hz, 1 H), 6.82 - 6.89 (m, 2 H), 5.93 (d, J=7.92 Hz, 1 H), 5.50 (q, J=6.16 Hz, 1 H), 4.61 (s, 1 H), 3.57 (s, 3 H), 1.66 (d, J=6.16 Hz, 3 H), 1.44 (d, J=6.74 Hz, 3 H).</td>
<td>4-[[1-[6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>48</td>
<td>m/z: 425.55 (M+H)+
Rt (min): 1.48</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.83 (s, 1 H), 7.73 (s, 1 H), 7.67 (s, 1 H), 6.97 (d, J=7.92 Hz, 1 H), 6.92 (s, 1 H), 6.89 (d, J=7.92 Hz, 1 H), 5.95 (d, J=7.92 Hz, 1 H), 4.61 - 4.70 (m, 1 H), 3.92 (d, J=6.74 Hz, 2 H), 3.58 (s, 3 H), 1.48 (d, J=6.74 Hz, 3 H), 1.21 - 1.31 (m, 1 H), 0.56 - 0.65 (m, 2 H), 0.34 - 0.44 (m, 2 H).</td>
<td>5-[[1S]-1-[6-chloro-2-oxo-7-(1R)-1-(pyridin-2-yl)ethoxy)-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>49</td>
<td>m/z: 475.05 (M+H)+
Rt (min): 1.51</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.90 (s, 1 H), 7.76 (s, 1 H), 7.68 (s, 1 H), 6.97 (d, J=7.62 Hz, 1 H), 6.94 (s, 1 H), 6.91 (d, J=7.62 Hz, 1 H), 5.95 (d, J=7.62 Hz, 1 H), 4.65 (quin, J=6.82 Hz, 1 H), 4.12 (d, J=4.10 Hz, 2 H), 3.58 (s, 3 H), 2.52 - 2.80 (m, 5 H), 1.48 (d, J=6.74 Hz, 3 H).</td>
<td>5-[[1S]-1-[6-chloro-7-[3,3-difluorocyclobutyl]methoxy]-2-oxo-1,2-dihydroquinolin-3-yl]ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
</tbody>
</table>
| 50 | m/z: 373.22 | 1H NMR (300 MHz, DMSO-d6): δ | 5-[[1S]-1-(6-chloro-8-
<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>m/z: 356.20 (M+H)+</td>
<td>ppm 12.15 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.65 (m, 2 H), 6.97 (d, J=7.92 Hz, 1 H), 6.93 (d, J=7.62 Hz, 1 H), 5.94 (d, J=7.92 Hz, 1 H), 4.61 - 4.75 (m, 1 H), 3.58 (s, 3 H), 1.50 (d, J=6.74 Hz, 3 H)</td>
<td>fluoro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino{-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>52</td>
<td>m/z: 407.08 (M+H)+</td>
<td>NMR was not obtained due to having little material. We should still have 4.9 mg- get NMR?</td>
<td>5-{{(1S)-1-(6-chloro-2-oxo-1,2-dihydro-1,8-napthyridin-3-yl)ethy]amino{-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>53</td>
<td>m/z: 373.07 (M+H)+</td>
<td>This was a byproduct. NMR was not obtained. We should still have 15 mg- get NMR?</td>
<td>6-chloro-3-{{(1S)-1-{{4-methanesulfonyl-3-methoxyphenyl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
</tbody>
</table>

Example 48 -- (S)-N-(2-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-3-fluoropyridin-4-yl)acetamide (Cmpd 54).

![Chemical structure](image_url)

Step 1: (S)-3-((4-amino-3-fluoropyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one
A mixture of (S)-6-chloro-3-((3-fluoro-4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one IV-4 (110.2 mg, 0.248 mmol), bis(tri-o-tolylphosphine)palladium(0) (9.5 mg, 0.013 mmol), (R)-(−)-1-[(S)-2-(Dicyclohexylphosphino)ferroceny]ethyl-di-t-butylphosphine (CypF-t-Bu; 6.9 mg, 1.250 mmol), and sodium tert-butoxide (33.7 mg, 0.351 mmol) was placed under nitrogen in a 40 mL vial. Dioxane (4 ml) and ammonia (0.5M in dioxane, 2.5 ml, 1.250 mmol) were added by syringe and the mixture was stirred at 90 °C one day. The sample was diluted with MeOH, silica gel was added, and the solvent was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 8% MeOH in DCM, with isocratic elution at 4% MeOH to provide (S)-3-((4-amino-3-fluoropyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one (30 mg, 0.90 mmol, 36%) as a brown solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 11.93 (s, 1 H), 7.73 (br s, 2 H), 7.47 (dd, J=8.65, 2.49 Hz, 1 H), 7.22 - 7.33 (m, 2 H), 6.28 (d, J=7.90 Hz, 1 H), 5.98 (dd, J=6.00, 6.00 Hz, 1 H), 5.70 (s, 2 H), 5.20 (quin, J=7.04 Hz, 1 H), 1.40 (d, J=6.74 Hz, 3 H). LCMS (Method 1): Rt 1.50 min., m/z 333.0 [M+H]+.

Step 2: (S)-N-(2-((1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-3-fluoropyridin-4-yl)acetamide (Cmpd 54).

A suspension of (S)-3-((4-amino-3-fluoropyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one (26.6 mg, 0.080 mmol) in ethyl acetate (3 ml) was treated with acetic anhydride (7.8 μl, 0.083 mmol) and DIEA (15.4 μl, 0.088 mmol) and stirred at room temperature overnight. LCMS showed only starting material. The suspension was treated with DMF (1 mL) and the material went into solution. LCMS after 4 weeks showed 6% conversion to product. The EtOAc was evaporated under reduced pressure, more DMF (2 mL), Ac₂O (15.6 μL), and DIEA (30.8 μL) were added, and the solution was shaken at 80 °C six days. The solvent was
evaporated under reduced pressure. The residue was dissolved in DCM (10 mL) and washed with water, and the aqueous wash was back-extracted with DCM (10 mL). The organics were combined, silica gel was added, and the mixture was evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 10% MeOH in DCM, with isocratic elution when peaks came off) to provide the title compound Cmpd 54 (2.4 mg, 6.00 μmol, 7.5 % yield, HPLC purity 93.6% at 220 nm). LCMS (Method 4): Rt 1.00 min., m/z 375.1 [M+H]⁺.

Example 49 -- (S)-6-chloro-3-(1-((6-(1,1-dioxidothiazolidin-2-yl)pyridin-2-yl)amino)ethyl)quinolin-2(1H)-one (Cmpd 55).

[0236] A 2 dram vial was charged with (S)-3-(1-((6-bromopyridin-2-yl)amino)ethyl)-6-chloroquinolin-2(1H)-one IV-3 (30.3 mg, 0.080 mmol), CuI (17.1 mg, 0.090 mmol), 1,3-propanesultam (11.7 mg, 0.097 mmol), and tripotassium phosphate (136.3 mg, 0.642 mmol) and placed under nitrogen. A solution of trans-cyclohexane-1,2-diamine (9.5 μl, 0.079 mmol) in dioxane (2.4 ml) was added by syringe and the mixture was stirred at 100 °C for five hours. The sample was diluted with MeOH and DCM and filtered. The filtrate was treated with silica gel and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel cartridge, 0 to 3.4% MeOH in DCM, with isocratic elution at 1.7% MeOH) to provide the title compound (Cmpd 55) (20.9 mg, 0.046 mmol, 57.5 % yield, HPLC purity 92.25% at 220 nm) as a solid. ¹H NMR (300 MHz, DMSO-δ6): δ ppm 11.93 (s, 1 H), 7.74 (s, 1 H), 7.71 (d, J=2.35 Hz, 1 H), 7.46 (dd, J=8.79, 2.35 Hz, 1 H), 7.25 - 7.36 (m, 2 H), 7.03 (d, J=6.74 Hz, 1 H), 6.24 (d, J=7.62 Hz, 1 H), 6.19 (d, J=7.92 Hz, 1 H), 4.99 - 5.12 (m, 1 H), 3.75 - 3.86 (m, 1 H), 3.50 - 3.60 (m, 1 H), 3.46 (t, J=7.33 Hz, 2 H), 2.18 - 2.32 (m, 2 H), 1.40 (d, J=6.74 Hz, 3 H). LCMS (Method 4): Rt 1.25 min., m/z 419.1 [M+H]⁺.

Example 50 -- (S)-6-chloro-3-((3-fluoro-4-(1H-imidazol-1-yl)pyridin-2-yl)amino)ethyl)quinolin-2(1H)-one (Cmpd 57).
A suspension of (S)-6-chloro-3-(1-((3-fluoro-4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one IV-4 (39.7 mg, 0.089 mmol), 1H-imidazole (8.9 mg, 0.131 mmol), copper (I) oxide (5.2 mg, 0.036 mmol), and Cs2CO3 (57.7 mg, 0.177 mmol) in DMSO (0.3 ml) was stirred at 110 °C overnight. LCMS showed a ~1.5:1 mixture of product and iodide starting material. The sample was diluted with MeOH, silica gel was added, and the solvent was evaporated under reduced pressure. The sample was chromatographed by Biotage MPLC (10g silica gel column, 0 to 6% MeOH in DCM, with isocratic elution at 4% MeOH) to provide the title compound (Cmpd 57) (13.7 mg, 0.034 mmol, 38.3 % yield, HPLC purity 96% at 220 nm) as a film. 1H NMR (300 MHz, DMSO-δ6): δ ppm 11.99 (s, 1 H), 7.83 (d, J=5.28 Hz, 1 H), 7.77 (s, 1 H), 7.74 (d, J=2.35 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.37 (d, J=7.60 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.86 (br s, 1 H), 5.25 - 5.40 (m, 1 H), 1.47 (d, J=7.04 Hz, 3 H). LCMS (Method 4): Rf 1.05 min., m/z 384.0 [M+H]+.

Table 8: The compounds listed in Table 8 were prepared using methods similar to those described for the preparation of Compounds 54-57.
Table 9. LCMS signal and NMR chemical shifts of each compound listed in Table 8.

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>m/z: 375.07 (M+H)+
Rt (min): 1.0</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.96 (s, 1 H), 9.93 (s, 1 H), 7.69 - 7.77 (m, 2 H), 7.59 (d, J=5.57 Hz, 1 H), 7.47 (dd, J=8.50, 2.05 Hz, 1 H), 7.29 (d, J=8.79 Hz, 1 H), 7.24 (dd, J=5.10, 5.10 Hz, 1 H), 6.87 (d, J=7.90 Hz, 1 H), 5.18 - 5.32 (m, 1 H), 2.12 (s, 3 H), 1.44 (d, J=7.04 Hz, 3 H).</td>
<td>N-(2-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]-3-fluoropyridin-4-yl)acetamide</td>
</tr>
<tr>
<td>55</td>
<td>m/z: 419.06 (M+H)+
Rt (min): 1.25</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.93 (s, 1 H), 7.74 (s, 1 H), 7.71 (d, J=2.35 Hz, 1 H), 7.46 (dd, J=8.79, 2.35 Hz, 1 H), 7.25 - 7.36 (m, 2 H), 7.03 (d, J=6.74 Hz, 1 H), 6.24 (d, J=7.62 Hz, 1 H), 6.19 (d, J=7.92 Hz, 1 H), 4.99 - 5.12 (m, 1 H), 3.75 - 3.86 (m, 1 H), 3.50 - 3.60 (m, 1 H), 3.46 (t, J=7.33 Hz, 2 H), 2.18 - 2.32 (m, 2 H), 1.40 (d, J=6.74 Hz, 3 H).</td>
<td>2-(6-[[1S]-1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)ethyl]amino]pyridin-2-yl)-1H,6,2-thiazolidine-1,1-dione</td>
</tr>
<tr>
<td>56</td>
<td>m/z: 377.06 (M+H)+
Rt (min): 0.79</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.99 (s, 1 H), 7.83 (d, J=5.28 Hz, 1 H), 7.77 (s, 1 H), 7.74 (d, J=2.35 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.37 (d, J=7.60 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.86 (br s, 1 H).</td>
<td>6-chloro-3-[[1S]-1-(3-fluoro-4-[2-hydroxyethyl]amino]pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
</tbody>
</table>
| 57 | m/z: 384.02 (M+H)+
Rt (min): 1.05 | 1H NMR (300 MHz, DMSO-d6): δ ppm 11.99 (s, 1 H), 7.83 (d, J=5.28 Hz, 1 H), 7.77 (s, 1 H), 7.74 (d, J=2.35 Hz, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.37 (d, J=7.60 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.86 (br s, 1 H). | 6-chloro-3-[[1S]-1-(3-fluoro-4-(1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>m/z: 397.99 (M+H)+ Rt (min): 1.05</td>
<td>H, 5.25 - 5.40 (m, 1 H), 1.47 (d, J=7.04 Hz, 3 H). The three imidazole protons don’t show up - we decided they are spread out in the baseline.</td>
<td>6-chloro-3-[(1S)-1-[(3-fluoro-4-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
</tbody>
</table>

Example 51 – (S)-6-chloro-3-(1-((4-(1,3-dimethyl-1H-pyrazol-5-yl)pyridin-2-yl]amino)ethyl)quinolin-2(1H)-one (Cmpd 57)

![Chemical Structure](image)

[0238] A 2 mL reaction vial was charged with 0.2M 1,4-dioxane solutions of (S)-3-((4-bromopyridin-2-yl]amino)ethyl)-6-chloroquinolin-2(1H)-one IV-2 (100 uL, 20 umol) and 1,3-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (150 uL, 30 umol, 1.5 equivalents). To the mixture was added 1M aqueous potassium phosphate tribasic solution (75 uL, 75 umol, 3.75 equivalents). Nitrogen gas was bubbled through the mixture for 3-5 seconds before a 0.01M solution of palladium tetrakis in 1,4-dioxane (50 uL, 0.5 umol) was added. Nitrogen gas was passed through the mixture once more, then the vial was sealed and heated at 100 oC overnight. LC-MS analysis confirmed the presence of the cross-coupled product. The mixture was diluted with brine (500 uL) and extracted with ethyl acetate (2 x 500 uL). The organic layers were dropped onto a 0.5 gram ion exchange column (benzenesulfonic acid on silica). The column was flushed with ethyl acetate (3 mL), then the title compound was released from the column by eluting with a 10:1:1 solution of ethyl acetate / methanol / triethylamine (3mL). The eluent containing crude product was concentrated under a stream of nitrogen at 50
°C, dissolved in DMSO (500 uL), and purified by mass-triggered preparatory HPLC to yield the title compound (4.5 mg, 57% yield). LCMS (Method 4): Rt 0.99 min, m/z 394.08 [M+H]⁺.

Example 52 – (S)-6-chloro-3-((3-fluoro-4-(1-methyl-1H-pyrrol-2-yl)pyridin-2-yl)amino)ethyl)quinolin-2(1H)-one (Cmpd 62)

[0239] A 2 mL reaction vial was charged with 0.2M 1,4-dioxane solutions of (S)-6-chloro-3-(1-((3-fluoro-4-iodopyridin-2-yl)amino)ethyl)quinolin-2(1H)-one IV-4 (100 uL, 20 umol) and 1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (150 uL, 30 umol, 1.5 equivalents). To the mixture was added 1M aqueous potassium phosphate tribasic solution (75 uL, 75 umol, 3.75 equivalents). Nitrogen gas was bubbled through the mixture for 3-5 seconds before a 0.01M solution of palladium tetrakis in 1,4-dioxane (50 uL, 0.5 umol) was added. Nitrogen gas was passed through the mixture once more, then the vial was sealed and heated at 100 °C overnight. LC-MS analysis confirmed the presence of the cross-coupled product. The mixture was diluted with brine (500 uL) and extracted with ethyl acetate (2 x 500 uL). The organic layers were concentrated under a stream of nitrogen at 50 °C, dissolved in DMSO (500 uL), and purified by mass-triggered preparatory HPLC to yield the title compound (4.3 mg, 54% yield). LCMS (Method 4): Rt 1.54 min, m/z 397.05 [M+H]⁺.

Table 10: The compounds listed in Table 10 were prepared using methods similar to those described for the preparation of Compounds 52 and 53

161
<table>
<thead>
<tr>
<th>Cmpd 59</th>
<th>Cmpd 60</th>
<th>Cmpd 61</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 62</th>
<th>Cmpd 63</th>
<th>Cmpd 64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 65</th>
<th>Cmpd 66</th>
<th>Cmpd 67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 68</th>
<th>Cmpd 69</th>
<th>Cmpd 70</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11. LCMS signal and chemical names of each compound listed in Table 10.

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>m/z: 394.08</td>
<td>6-chloro-3-[(1S)-1-{{4-(1,3-dimethyl-1H-pyrazol-5-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 0.98</td>
</tr>
<tr>
<td>60</td>
<td>m/z: 394.10</td>
<td>6-chloro-3-[(1S)-1-{{4-(1,5-dimethyl-1H-pyrazol-4-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 0.89</td>
</tr>
<tr>
<td>61</td>
<td>m/z: 566.06</td>
<td>6-chloro-3-[(1S)-1-{{4-(1H-pyrazol-5-yl)pyridin-2-yl}amino}ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 0.85</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>62</td>
<td>m/z: 397.05 (M+H)+, Rt (min): 1.54</td>
<td>6-chloro-3-[(1S)-1-[[3-fluoro-4-(1-methyl-1H-pyrrol-2-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>63</td>
<td>m/z: 422.10 (M+H)+, Rt (min): 1.18</td>
<td>6-chloro-3-[(1S)-1-((4-[1-(2-methylpropyl)-1H-pyrazol-5-yl]pyridin-2-yl)amino)ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>64</td>
<td>m/z: 408.16 (M+H)+, Rt (min): 1.1</td>
<td>6-chloro-3-[(1S)-1-((4-[1-(propan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl)amino)ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>65</td>
<td>m/z: 412.03 (M+H)+, Rt (min): 1.23</td>
<td>6-chloro-3-[(1S)-1-((1,5-dimethyl-1H-pyrazol-4-yl)-3-fluoropyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>66</td>
<td>m/z: 414.00 (M+H)+, Rt (min): 1.71</td>
<td>6-chloro-3-[(1S)-1-[[3-fluoro-4-(4-methylthiophen-3-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>67</td>
<td>m/z: 450.11 (M+H)+, Rt (min): 1.14</td>
<td>6-chloro-3-[(1S)-1-((4-[1-(oxan-2-yl)-1H-pyrazol-5-yl]pyridin-2-yl)amino)ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>68</td>
<td>m/z: 396.02 (M+H)+, Rt (min): 1.17</td>
<td>6-chloro-3-[(1S)-1-[(4-(4-methylthiophen-3-yl)pyridin-2-yl)amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>69</td>
<td>m/z: 380.08 (M+H)+, Rt (min): 0.94</td>
<td>6-chloro-3-[(1S)-1-[[4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>70</td>
<td>m/z: 434.03 (M+H)+, Rt (min): 1.0</td>
<td>6-chloro-3-[(1S)-1-((4-[3-(trifluoromethyl)-1H-pyrazol-4-yl]pyridin-2-yl)amino)ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>71</td>
<td>m/z: 412.02 (M+H)+, Rt (min): 1.14</td>
<td>6-chloro-3-[(1S)-1-[[4-(3,5-dimethyl-1H-pyrazol-4-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>72</td>
<td>m/z: 412.09 (M+H)+, Rt (min): 1.37</td>
<td>6-chloro-3-[(1S)-1-[[4-(1,3-dimethyl-1H-pyrazol-5-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>73</td>
<td>m/z: 398.07 (M+H)+, Rt (min): 1.32</td>
<td>6-chloro-3-[(1S)-1-[[3-fluoro-4-(1-methyl-1H-pyrazol-5-yl)pyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>74</td>
<td>m/z: 413.03 (M+H)+, Rt (min): 1.46</td>
<td>6-chloro-3-[(1S)-1-[[4-(dimethyl-1,2-oxazol-4-yl)-3-fluoropyridin-2-yl]amino]ethyl]-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>75</td>
<td>m/z: 468.07</td>
<td>6-chloro-3-[(1S)-1-[[3-fluoro-4-[1-(oxan-2-yl)-...</td>
</tr>
</tbody>
</table>
Example 53 – 5-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl) methyl)(amino))-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Compd 78)

![Reaction Diagram]

To a 100 mL round bottle flask was added 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde V-1 (69.6 mg, 0.335 mmol), 5-amino-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile VI-2 (50 mg, 0.335 mmol) and acetic acid (0.096 ml, 1.676 mmol) in DCM (10 ml). Finally sodium triacetoxyborohydride (107 mg, 0.503 mmol) was charged and stir vigorously at room temperature under N₂ flow overnight. The reaction mixture was diluted with EtOAc (60 mL), then washed with saturated NaHCO₃, water (x2) and brine. The organic extract was dried over Na₂SO₄, filtered and concentrated to yield a crude, which was purified by reverse phase preparative HPLC on Gilson to yield a mixture of product and unknown by-product (~32 mg, 28% yield, 81% HPLC purity). The mixture was subjected 2nd HPLC purification to afford a pure desired product (4 mg, 3.5% yield). ¹H NMR (300 MHz, CDCl₃) δ ppm 7.97 (s, 1 H), 7.56 (br s, 1 H), 7.45 (br d, J=11.43 Hz, 2 H), 7.36 (br d, J=8.79 Hz, 1 H), 7.12 - 7.20 (m, 1 H), 6.66 - 6.78 (m, 1 H), 6.00 (br d, J=7.92 Hz, 1 H), 3.68 (s, 2 H), 3.31 (br s, 3 H). LCMS (Method 1): Rt 2.37 min, m/z 340.97 [M+H]⁺.
Example 54 – 4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile (Cmpd 79)

\[\text{V-1} + \text{VI-1} \xrightarrow{\text{AcOH, NaBH(OAc)₃}} \text{Cmpd 79} \]

[0241] To a 100 mL round bottom flask was added 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde V-1 (200 mg, 0.963 mmol), 4-amino-2-methoxybenzonitrile (150 mg, 1.011 mmol) and AcOH (0.276 ml, 4.82 mmol) in DCE (15 ml). Finally sodium triacetoxysilane (364 mg, 1.927 mmol) was added and the mixture was stirred at room temperature overnight. LC-MS indicated only about 50% conversion. The reaction mixture was diluted with EtOAc (60 mL) and washed with water (x2) and brine. The organic was dried over Na₂SO₄, filtered and concentrated to yield a crude. The crude was dissolved in 3 mL of DMSO and purified by preparative HPLC on Gilson, yielding 34 mg of pure product (10.4% yield). \(^1\)H NMR (300 MHz, CDCl₃) δ ppm 11.11 (br s, 1 H), 7.58 (s, 1 H), 7.43 - 7.49 (m, 1 H), 7.33 - 7.42 (m, 1 H), 7.19 - 7.27 (m, 2 H), 6.14 (dd, J=8.50, 2.05 Hz, 1 H), 6.06 (d, J=1.76 Hz, 1 H), 4.37 (s, 2 H), 3.72 - 3.80 (m, 3 H). LCMS (Method 1): Rt 2.34 min, m/z 340.00 [M+H]⁺.

Example 55 – 6-chloro-3-(((1-ethyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl)quinolin-2(1H)-one (Cmpd 82)
Step 1: 1-ethyl-3-nitropyridin-2(1H)-one.

[0242] A mixture of 3-nitropyridin-2(1H)-one (1.00 g, 7.14 mmol) and K2CO3 (3.00 g, 21.71 mmol) in DMF (30 ml) was treated with ethyl iodide (0.60 ml, 7.42 mmol) and stirred at 50 °C overnight. LCMS indicated a 4:1 mixture of product and starting material. More ethyl iodide (0.25 mL) was added and the reaction was stirred at 60 °C five hours. The yellow mixture was diluted with water (100 mL) and extracted with EtOAc (3x100 mL). The combined organic extracts were dried (MgSO4), filtered, and evaporated under reduced pressure to provide 1.08 g yellow solid. The material was dissolved in a few mL DCM and chromatographed by Biotage MPLC (25 g silica gel column, 0 to 10% MeOH in DCM, with isocratic elution at 3% MeOH) to provide 1-ethyl-3-nitropyridin-2(1H)-one (898.9 mg, 5.35 mmol, 74.9 % yield) as a yellow solid.

1H NMR (300 MHz, DMSO-d6): δ ppm 8.38 (dd, J=7.92, 2.05 Hz, 1H), 8.24 (dd, J=6.60, 2.20 Hz, 1H), 6.44 (dd, J=7.62, 6.45 Hz, 1H), 4.05 (q, J=7.04 Hz, 2H), 1.26 (t, J=7.18 Hz, 3H).

LCMS (Method 1): Rt 0.96 min., m/z 169.0 [M+H]+.

Step 2: 3-amino-1-ethylpyridin-2(1H)-one (notebook 570-13).
A solution of 1-ethyl-3-nitropyridin-2(1H)-one (891.2 mg, 5.30 mmol) and tin (II) chloride dihydrate (5.03 g, 22.29 mmol) in EtOAc (30 ml) in a 200 mL round bottom flask was stirred at 80 °C two hours; LCMS at 1.5 hours showed the reaction had gone cleanly to completion. The solution was allowed to cool and was diluted with EtOAc (50 mL), then NaHCO3 (8 g) was added in small portions and the mixture was stirred 20 minutes, by which time little effervescence had occurred and the mixture was still strongly acidic (pH ~1). Water (50 mL) was added in portions with thorough stirring, first magnetically and then by hand as a precipitate formed, resulting in a dark blue mixture of pH ~8. The mixture was filtered on a Buchner funnel and the filter cake was washed with several portions of EtOAc (~100 mL total). The filtrate layers were separated. The aqueous phase was extracted with EtOAc (3x50 mL), and all the organics were combined and dried (Na2SO4), filtered, and evaporated under reduced pressure. The resulting bluish solid (0.64 g) was dissolved in a few mL DCM and chromatographed by Biotage MPLC (25 g silica gel snap column, 0 to 9% MeOH in DCM, with isocratic elution at 3.8% MeOH). The blue solid thus obtained was dissolved in DCM, treated with silica gel, and evaporated under reduced pressure. The material was rechromatographed by Biotage MPLC (25 g silica gel column, 0 to 100% EtOAc in hexanes, with isocratic elution at 67% EtOAc) to provide 3-amino-1-ethylpyridin-2(1H)-one (517.7 mg, 3.75 mmol, 70.7 % yield) as a slightly blue solid. 1H NMR (300 MHz, DMSO-d6): δ ppm 6.88 (dd, J=6.89, 1.91 Hz, 1 H), 6.41 (dd, J=7.04, 1.76 Hz, 1 H), 6.03 (dd, J=6.90, 6.90 Hz, 1 H), 5.06 (s, 2 H), 3.89 (q, J=7.13 Hz, 2 H), 1.19 (t, J=7.18 Hz, 3 H). LCMS (Method 1): Rt 0.76 min., m/z 139.0 [M+H]+.

Step 3: 6-chloro-3-((1-ethyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl)quinolin-2(1H)-one (Cmpd 82).

[0244] A suspension of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (100.1 mg, 0.482 mmol) and 3-amino-1-ethylpyridin-2(1H)-one (67.1 mg, 0.486 mmol) in MeOH (1.5 mL) and toluene (1.5 mL) was treated with AcOH (27.6 µL) and shaken at 50 °C for 5.5 hours, during which the blue color of the pyridinone starting material was discharged. The solvents were
evaporated under reduced pressure. The red residue was treated with successively with two aliquots of toluene (3 mL each) and evaporated under reduced pressure. The residue was suspended in DCM (3 mL) and treated with AcOH (135.4 μL) and sodium triacetoxyborohydride (164.3 mg, 0.775 mmol), then placed under nitrogen and stirred at room temperature overnight; within a few minutes the material went into solution, and within an hour a material precipitated out. The sample was diluted with DCM/MeOH/EtOAc, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (0 to 100% EtOAc in hexanes) to provide the title compound (Cmpd 82) (25.7 mg, 0.078 mmol, 16.16 % yield, HPLC purity 100% at 220 nm) as a greenish solid. \(^1\text{H}\) NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) ppm 12.02 (s, 1 H), 7.79 (d, \(J=2.05\) Hz, 1 H), 7.65 (s, 1 H), 7.49 (dd, \(J=8.65, 2.20\) Hz, 1 H), 7.30 (d, \(J=8.79\) Hz, 1 H), 6.90 (dd, \(J=4.30, 4.30\) Hz, 1 H), 5.95 - 6.11 (m, 3 H), 4.16 (d, \(J=5.90\) Hz, 2 H), 3.93 (q, \(J=6.84\) Hz, 2 H), 1.22 (t, \(J=7.04\) Hz, 3 H). LCMS (Method 4): Rt 1.15 min., m/z 330.0 [M+H]+.

Table 12: The compounds listed in Table 12 were prepared using methods similar to those described for the preparation of Compounds 53-55.
Table 13. LCMS signal and NMR chemical shifts of each compound listed in Table 12.

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>m/z: 340.93 (M+H)+, Rt (min): 1.76</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 7.97 (s, 1 H), 7.56 (br s, 1 H), 7.45 (br d, J=11.43 Hz, 2 H), 7.36 (br d, J=8.79 Hz, 1 H), 7.12 - 7.20 (m, 1 H), 6.66 - 6.78 (m, 1 H), 6.00 (br d, J=7.92 Hz, 1 H), 3.68 (s, 2 H), 3.31 (br s, 3 H).</td>
<td>5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>79</td>
<td>m/z: 340.03</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 7.97 (s, 1 H), 7.56 (br s, 1 H), 7.45 (br d, J=11.43 Hz, 2 H), 7.36 (br d, J=8.79 Hz, 1 H), 7.12 - 7.20 (m, 1 H), 6.66 - 6.78 (m, 1 H), 6.00 (br d, J=7.92 Hz, 1 H), 3.68 (s, 2 H), 3.31 (br s, 3 H).</td>
<td>4-{{(6-chloro-2-oxo-1,2-</td>
</tr>
<tr>
<td>Compd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>(M+H)+</td>
<td>d) δ ppm 11.11 (br s, 1 H), 7.58 (s, 1 H), 7.43 - 7.49 (m, 1 H), 7.33 - 7.42 (m, 1 H), 7.19 - 7.27 (m, 2 H), 6.14 (dd, J=8.50, 2.05 Hz, 1 H), 6.06 (d, J=1.76 Hz, 1 H), 4.37 (s, 2 H), 3.72 - 3.80 (m, 3 H).</td>
<td>dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 325.00 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6) : δ 12.02(br, 1H), 7.72-7.79(m, 3H), 7.47(dd, J1=2.34Hz, J2=8.79Hz, 1H), 7.29(d, J=8.79Hz, 1H), 6.75(d, J=8.8Hz, 1H), 4.31(sd, J=5.57Hz, 1H), 4.11(s, 1H), 3.14(d, J=5.27Hz, 1H)</td>
<td>6-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methylpyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 315.98 (M+H)+</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 11.42 (br s, 1 H), 7.58 (s, 1 H), 7.41 (d, J=2.05 Hz, 1 H), 7.31 - 7.38 (m, 1 H), 7.21 - 7.27 (m, 1 H), 6.62 (d, J=6.45 Hz, 1 H), 6.13 (br s, 1 H), 5.95 - 6.04 (m, 1 H), 4.34 (s, 2 H), 3.55 (s, 4 H).</td>
<td>6-chloro-3-:[(1-methyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>m/z: 329.99 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.02 (s, 1 H), 7.79 (d, J=2.05 Hz, 1 H), 7.65 (s, 1 H), 7.49 (dd, J=8.65, 2.20 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 6.90 (dd, J=4.30, 4.30 Hz, 1 H), 5.95 - 6.11 (m, 3 H), 4.16 (d, J=5.90 Hz, 2 H), 3.93 (q, J=6.84 Hz, 2 H), 1.22 (t, J=7.04 Hz, 3 H).</td>
<td>6-chloro-3-:[(1-ethyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>m/z: 327.04 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.01(br, 1H), 7.74(s, 1H), 7.55(s, 1H), 7.45(dd, J1=2.35Hz, J2=8.8Hz, 1H), 7.27(d, J=8.79Hz, 1H), 6.60-6.80(m, 2H), 6.00(d, J=7.62Hz, 1H), 4.17(d, J=6.16Hz, 2H)</td>
<td>5-[(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>m/z: 342.01 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.00 (s, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.62 (s, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 5.98 -</td>
<td>6-chloro-3-:[(1-cyclopropyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>m/z: 329.99 (M+H)+</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.00 (s, 1 H), 7.77 (d, J=2.35 Hz, 1 H), 7.62 (s, 1 H), 7.48 (dd, J=8.79, 2.35 Hz, 1 H), 7.30 (d, J=8.79 Hz, 1 H), 5.98 -</td>
<td>6-chloro-3-:[(1,6-dimethyl-2-oxo-1,2-dihydropyridin-3-ylamino)methyl]-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>Compd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>86</td>
<td>m/z: 379.86 (M+H)+ Rt (min): 0.97</td>
<td>1H NMR (300 MHz, DMSO-d6) : δ 12.00(br, 1H), 7.76(d, J=2.32Hz, 1H), 7.59((s, 1H)), 7.45(dd, J1=2.40Hz, J2=8.78Hz, 1H), 7.27(d, J=8.72Hz, 1H), 6.42(br, 1H), 6.18(br, 1H), 5.89(br, 1H), 5.82 (d, J=8.98Hz, 1H) 4.13(d, J=5.38Hz, 2H)</td>
<td>3-{{(6-bromo-2-oxo-1,2-dihydropyridin-3-yl)amino}[methyl]-6-chloro-1,2-dihydroquinolin-2-one}</td>
</tr>
<tr>
<td>87</td>
<td>m/z: 326.05 (M+H)+ Rt (min): 1.17</td>
<td>1H NMR (300 MHz, DMSO-d6) δ ppm 12.01 (s, 1H), 10.34 (s, 1H), 7.74 (d, J=2.35 Hz, 1H), 7.59 (s, 1H), 7.44 (t, J=1.00 Hz, 1H), 7.27 (s, 1H), 7.14 (d, J=8.50 Hz, 1H), 6.07 - 6.16 (m, 1H), 5.99 (d, J=1.76 Hz, 1H), 4.08 (br d, J=4.98 Hz, 2H)</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-hydroxybenzonitrile</td>
</tr>
<tr>
<td>88</td>
<td>m/z: 325.00 (M+H)+ Rt (min): 1.24</td>
<td>1H NMR (300 MHz, DMSO-d6) : δ 11.98(br, 1H), 8.24(s, 1H), 7.86(s, 1H), 7.72(d, J=2.21Hz, 1H), 7.59(s 1H), 7.41(d, J=8.47Hz, 1H), 7.25(d, J=8.78Hz, 1H), 6.49(s, 1H), 4.33(s, 2H), 2.22(s, 3H)</td>
<td>6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-4-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>89</td>
<td>m/z: 370.09 (M+H)+ Rt (min): 1.29</td>
<td>1H NMR (300 MHz, CD3OD) : δ 7.75-7.85(m, 1H), 7.50-7.65((m, 3H), 7.47-7.50(m, 2H), 7.30-7.34(m, 1H), 6.60-6.65((m, 2H), 4.35(s, 2H)</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2,6-dimethoxybenzonitrile</td>
</tr>
<tr>
<td>90</td>
<td>m/z: 394.08 (M+H)+ Rt (min): 1.5</td>
<td>1H NMR (300 MHz, CD3OD) : δ 7.75-7.85(m, 1H), 7.50-7.65((m, 3H), 7.47-7.50(m, 2H), 7.30-7.34(m, 1H), 6.60-6.65((m, 2H), 4.35(s, 2H)</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(trifluoromethoxy)benzonitrile</td>
</tr>
<tr>
<td>91</td>
<td>m/z: 317.03 (M+H)+ Rt (min): 0.96</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.06 (s, 1H), 7.80 (d, J=2.05 Hz, 1H), 7.72 (s, 1H), 7.50 (dd, J=8.79, 2.35 Hz, 1H), 7.30 (m, 2H), 7.10 - 7.21 (m, 1H), 6.32 (s, 1H), 6.23 (d, J=9.10 Hz, 1H), 4.84 - 4.92 (m, 1H), 4.23 (d, J=5.90 Hz,</td>
<td>6-chloro-3-:{{(2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)amino}[methyl]-1,2-dihydroquinolin-2-one}</td>
</tr>
<tr>
<td>92</td>
<td>m/z: 370.09 (M+H)+ Rt (min): 1.15</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.06 (s, 1H), 7.80 (d, J=2.05 Hz, 1H), 7.72 (s, 1H), 7.50 (dd, J=8.79, 2.35 Hz, 1H), 7.30 (m, 2H), 7.10 - 7.21 (m, 1H), 6.32 (s, 1H), 6.23 (d, J=9.10 Hz, 1H), 4.84 - 4.92 (m, 1H), 4.23 (d, J=5.90 Hz,</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(2-hydroxyethoxy)benzonitrile</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>93</td>
<td>m/z: 378.98 (M+H)+ Rt (min): 1.5</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.02 (br, 1H), 8.54 (s, 1H), 7.90 (s, 1H), 7.70 (s, 2H), 7.45 (d, J=7.05 Hz, 1H), 7.25 (d, J=87.8 Hz, 1H), 6.86 (s, 1H), 4.37 (s, 2H)</td>
<td>6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(trifluoromethyl)pyridine-3-carbonitrile</td>
</tr>
<tr>
<td>94</td>
<td>m/z: 381.18 (M+H)+ Rt (min): 0.93</td>
<td>1H NMR (300 MHz, CHLOROFORM-d): δ ppm 7.68 (s, 1H), 7.63 (s, 1H), 7.53 (d, J=2.35 Hz, 1H), 7.42 (dd, J=8.50, 2.35 Hz, 1H), 7.19 (d, J=8.79 Hz, 1H), 7.05 (dd, J=14.80, 8.65 Hz, 2H), 6.29 (d, J=2.35 Hz, 1H), 6.23 (dd, J=8.21, 2.35 Hz, 1H), 4.38 (s, 2H), 3.74 (s, 3H)</td>
<td>6-chloro-3-{{[4-(1H-imidazol-1-yl)-3-methoxyphenyl]amino}methyl}-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>95</td>
<td>m/z: 340.98 (M+H)+ Rt (min): 1.35</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.01 (br, 1H), 7.75 (s, 1H), 7.56 (s, 1H), 7.45 (dd, J=2.64 Hz, J=2=8.79 Hz, 1H), 7.25-7.30 (m, 2H), 6.90 (m, 1H), 6.57 (d, J=7.91 Hz, 1H), 4.22 (d, J=5.57 Hz, 2H), 3.94 (s, 3H)</td>
<td>5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-6-methoxypyridine-2-carbonitrile</td>
</tr>
<tr>
<td>96</td>
<td>m/z: 354.10 (M+H)+ Rt (min): 1.39</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.06 (s, 1H), 7.80 (s, 1H), 7.72 (s, 1H), 7.50 (d, J=7.30 Hz, 1H), 7.23 - 7.37 (m, 2H), 7.09 - 7.22 (m, 1H), 6.15 - 6.35 (m, 2H), 4.23 (br d, J=4.69 Hz, 2H), 4.04 (m, 2H), 1.26 - 1.42 (m, 3H)</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-ethoxybenzonitrile</td>
</tr>
<tr>
<td>97</td>
<td>m/z: 344.89 (M+H)+ Rt (min): 1.48</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.03 (br, 1H), 8.00 (d, J=7.95 Hz, 1H), 7.95 (m, 1H), 7.80 (s, 1H), 7.64 (s, 1H), 7.45-7.48 (m, 1H), 7.29 (d, J=8.79 Hz, 1H), 6.73 (d, J=7.95 Hz, 1H), 4.37 (d, J=5.26 Hz, 2H), 3.31 (s, 3H)</td>
<td>2-(5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-cyanophenoxy)acetamide</td>
</tr>
<tr>
<td>98</td>
<td>m/z: 346.12 (M+H)+ Rt (min): 1.26</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.03 (br, 1H), 8.00 (d, J=7.95 Hz, 1H), 7.95 (m, 1H), 7.80 (s, 1H), 7.64 (s, 1H), 7.45-7.48 (m, 1H), 7.29 (d, J=8.79 Hz, 1H), 6.73 (d, J=7.95 Hz, 1H), 4.37 (d, J=5.26 Hz, 2H), 3.31 (s, 3H)</td>
<td>2-chloro-6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}pyridine-3-carbonitrile</td>
</tr>
</tbody>
</table>
| 99 | m/z: 396.12 (M+H)+ Rt (min): 1.26 | 1H NMR (300 MHz, DMSO-d6): δ 12.03 (br, 1H), 8.00 (d, J=7.95 Hz, 1H), 7.95 (m, 1H), 7.80 (s, 1H), 7.64 (s, 1H), 7.45-7.48 (m, 1H), 7.29 (d, J=8.79 Hz, 1H), 6.73 (d, J=7.95 Hz, 1H), 4.37 (d, J=5.26 Hz, 2H), 3.31 (s, 3H) | 6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-2-(2-oxo-1,3-oxazolidin-3-yl)pyridine-3-
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>m/z: 422.24 (M+H)+ Rt (min): 1.8533</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 11.93(br, 1H), 7.74(s, 1H), 7.37-7.43(m,3H), 7.24(m,1H), 7.06(m, 1H), 5.72 (d, J=−1, 1H) 4.16-4.44(m, 2H),3.70-3.78(m., 1H), 3.10-3.25(m, 1H), 1.82-1.92(m, 1H), 1.66-1.78(m, 2H), 1.54-1.64(m, 2H), 1.14-1.16(m, 1H), 0.25-0.50(m, 6H)</td>
<td>6-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-[2-(propan-2-yl)pyrrolidin-1-yl]pyridine-3-carbonitrile</td>
</tr>
<tr>
<td>101</td>
<td>m/z: 396.22 (M+H)+ Rt (min): 1.735</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 11.93(br, 1H), 7.74(s, 1H), 7.37-7.43(m,3H), 7.24(d, J=8.93Hz,1H), 7.06(m, 1H), 5.82 (d, J=8.98Hz, 1H) 4.29(d, J=4.97Hz, 2H),3.70-3.78(m., 1H), 3.05-3.20(m, 2H), 32.79*s, 3H), 1.64(m, 1H)0.05(s, 6H)</td>
<td>6-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-[methyl(2-methylpropyl)amino]pyridine-3-carbonitrile</td>
</tr>
<tr>
<td>102</td>
<td>m/z: 340.92 (M+H)+ Rt (min): 1.43</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 11.95(br, 1H), 7.79(s, 1H), 7.75(d, J=8.36Hz,1H), 7.62(s, 1H), 7.56(m, 1H), 7.42 (m, 1H) 7.26(d, J=8.68Hz, 1H), 6.03(d, J=8.44Hz, 1H), 4.21(d, J=5.5Hz,2H), 3.63(s, 3H)</td>
<td>6-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxypyridine-3-carbonitrile</td>
</tr>
<tr>
<td>103</td>
<td>m/z: 393.10 (M+H)+ Rt (min): 1.15</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 12.07(s, 1 H), 7.81 (d, J=2.35 Hz, 1 H), 7.74 (s, 1 H), 7.50 (dd, J=8.79, 2.35 Hz, 1 H), 7.43 (d, J=8.79 Hz, 1 H), 7.31 (d, J=8.79 Hz, 1 H), 7.12 (dd, J=6.00, 6.00 Hz, 1 H), 6.37 (d, J=1.47 Hz, 1 H), 6.24 (dd, J=8.94, 1.91 Hz, 1 H), 4.24 (d, J=5.90 Hz, 2 H), 3.83 (s, 3 H), 3.06 (s, 3 H).</td>
<td>6-chloro-3-(((4-methanesulfonyl-3-methoxyphenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
</tr>
</tbody>
</table>

Example 56 – 4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile (Cmpd 110)
6-Chloro-2-oxo-1,2-dihydroquinoline-3-carbaldehyde V-1 (4.15 mg, 20 µmol) was added as a solid to a 0.2 M solution of 4-aminobenzonitrile in DMA (165 µL, 33 µmol). An additional volume of 1,2-dichoroethane (150 mL) was added, and the mixture was agitated at room temperature for 5 minutes. The resultant mixture was charged with a 0.2M suspension of sodium triacetoxyborohydride in DCE (200 µL, 40 µmol) and was agitated overnight at room temperature. After LC-MS analysis confirmed the presence of reductive amination product, the mixture was partitioned between ethyl acetate (500 µL) and saturated aqueous sodium bicarbonate solution (500 µL). The organic layer was transferred, and the aqueous layer was extracted once more with fresh ethyl acetate (500 µL). The organic layers were combined and concentrated under reduced pressure with heat (50 °C). The crude residue was dissolved in DMSO (500 µL) and purified by mass-triggered preparatory HPLC to yield the title compound (1.0 mg, 16% yield). LCMS (Method 4): Rt 1.30 min, m/z 310.11 [M+H]^+.

Table 14: The compounds listed in Table 14 were prepared using methods similar to the one described for the preparation of Compound 56.
<table>
<thead>
<tr>
<th>Cmpd 131</th>
<th>Cmpd 132</th>
<th>Cmpd 133</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 134</td>
<td>Cmpd 135</td>
<td>Cmpd 136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 137</td>
<td>Cmpd 138</td>
<td>Cmpd 139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 140</td>
<td>Cmpd 141</td>
<td>Cmpd 142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd 143</td>
<td>Cmpd 144</td>
<td>Cmpd 145</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 146</th>
<th>Cmpd 147</th>
<th>Cmpd 148</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 149</th>
<th>Cmpd 150</th>
<th>Cmpd 151</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cmpd 152</th>
<th>Cmpd 153</th>
<th>Cmpd 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15. LCMS signal and NMR chemical shifts of each compound listed in Table 14.
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>m/z: 383.15 (M+H)+ Rt (min): 1.22</td>
<td>6-chloro-3-(((3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>m/z: 369.90 (M+H)+ Rt (min): 1.2</td>
<td>6-chloro-3-(((2-oxo-6-(trifluoromethyl)1,2-dihydropyridin-3-yl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>m/z: 340.06 (M+H)+ Rt (min): 1.37</td>
<td>4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-3-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>m/z: 378.07 (M+H)+ Rt (min): 1.49</td>
<td>4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-(trifluoromethyl)benzonitrile</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>m/z: 311.00 (M+H)+ Rt (min): 1.2</td>
<td>6-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>m/z: 324.09 (M+H)+ Rt (min): 1.36</td>
<td>4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methylbenzonitrile</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>m/z: 310.11 (M+H)+ Rt (min): 1.3</td>
<td>4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>m/z: 328.08 (M+H)+ Rt (min): 1.0</td>
<td>6-chloro-3-(((3-(propan-2-yl)pyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>m/z: 350.07 (M+H)+ Rt (min): 1.35</td>
<td>4-(((6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-fluorobenzonitrile</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>m/z: 367.17 (M+H)+ Rt (min): 1.17</td>
<td>6-chloro-3-(((4-(5-methyl-1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>m/z: 351.12</td>
<td>6-chloro-3-(((4-(1H-</td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>115</td>
<td>m/z: 313.96 (M+H)+
Rt (min): 0.9</td>
<td>6-chloro-3-{{(4,6-dimethylpyridin-2-yl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>m/z: 327.97 (M+H)+
Rt (min): 1.15</td>
<td>2-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}benzamide</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>m/z: 315.94 (M+H)+
Rt (min): 0.83</td>
<td>6-chloro-3-{{(4-methoxypyridin-2-yl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>m/z: 303.93 (M+H)+
Rt (min): 1.18</td>
<td>6-chloro-3-{{(5-fluoropyridin-2-yl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>m/z: 310.96 (M+H)+
Rt (min): 1.24</td>
<td>2-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}pyridine-4-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>m/z: 343.93 (M+H)+
Rt (min): 1.18</td>
<td>methyl 6-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}pyridine-2-carboxylate</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>m/z: 300.11 (M+H)+
Rt (min): 0.85</td>
<td>6-chloro-3-{{(4-methylpyridin-2-yl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>m/z: 332.97 (M+H)+
Rt (min): 1.39</td>
<td>6-chloro-3-{{(4-fluoro-3-methoxyphenyl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>m/z: 319.92 (M+H)+
Rt (min): 1.36</td>
<td>6-chloro-3-{{(5-chloropyridin-2-yl)amino}[methyl]}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>m/z: 341.98 (M+H)+
Rt (min): 1.0</td>
<td>4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}N-methylbenzamide</td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>125</td>
<td>m/z: 357.97 (M+H)+ Rt (min): 0.95</td>
<td>2-(4-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}phenoxy)acetamide</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>m/z: 302.04 (M+H)+ Rt (min): 0.94</td>
<td>6-chloro-3-{{(2-hydroxypyridin-3-yl)amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>m/z: 348.92 (M+H)+ Rt (min): 1.5</td>
<td>6-chloro-3-{{(4-chloro-3-methoxyphenyl)amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>m/z: 324.00 (M+H)+ Rt (min): 1.32</td>
<td>2-(3-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}phenyl)acetonitrile</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>m/z: 354.12 (M+H)+ Rt (min): 1.47</td>
<td>6-chloro-3-{{(5-(trifluoromethyl)pyridin-2-yl)amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>m/z: 310.96 (M+H)+ Rt (min): 1.14</td>
<td>5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}pyridine-2-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>m/z: 353.94 (M+H)+ Rt (min): 1.45</td>
<td>6-chloro-3-{{4-(trifluoromethyl)pyridin-2-yl)amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>m/z: 303.11 (M+H)+ Rt (min): 1.48</td>
<td>6-chloro-3-{{(2-fluorophenyl)amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>m/z: 383.93 (M+H)+ Rt (min): 1.43</td>
<td>6-chloro-3-{{1-methyl-2-oxo-6-(trifluoromethyl)-1,2-dihydropyridin-3-yl}amino}methyl}-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>m/z: 359.99 (M+H)+ Rt (min): 1.01</td>
<td>methyl 5-{{(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)methyl}amino}-6-oxo-1,6-dihydropyridine-3-carboxylate</td>
<td></td>
</tr>
</tbody>
</table>
| 135 | m/z: 363.12 | 3-{{(3-methoxy-4-(1H-
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(M+H)+ 1.2</td>
<td>1,2,3,4-tetrazol-1-ylphenylamino[methyl]-6-methyl-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>136</td>
<td>m/z: 306.12 (M+H)+ 1.16</td>
<td>2-methoxy-4-(((2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>m/z: 349.18 (M+H)+ 1.07</td>
<td>3-(((3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>m/z: 319.14 (M+H)+ 1.02</td>
<td>3-(((4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>m/z: 320.14 (M+H)+ 1.26</td>
<td>2-methoxy-4-(((6-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>m/z: 334.14 (M+H)+ 1.35</td>
<td>4-(((6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>m/z: 375.16 (M+H)+ 0.97</td>
<td>1H NMR (300 MHz, CHLOROFORM-d) δ ppm 10.30 (br s, 1 H), 7.64 (s, 1 H), 7.57 (s, 1 H), 7.20 - 7.30 (m, 2 H), 7.06 - 7.14 (m, 1 H), 6.93 (d, J=8.21 Hz, 1 H), 6.71 (s, 1 H), 6.16 - 6.25 (m, 2 H), 4.33 (s, 2 H), 3.66 (s, 3 H), 2.32 (s, 3 H), 2.22 (s, 3 H). 3-(((3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl)amino)methyl)-6-methyl-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>m/z: 305.19 (M+H)+ 1.21</td>
<td>6-(((6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>m/z: 347.14 (M+H)+ 1.2</td>
<td>6,7-dimethyl-3-(((4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
</tbody>
</table>
| 144 | m/z: 425.13 (M+H)+ 1.08 | N-(3,4-dihydro-2H-pyrrol-5-yl)-3-(((6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzene-1-
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>m/z: 377.13 (M+H)+</td>
<td>3-((3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-6,7-dimethyl-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.26</td>
<td></td>
<td>sulfonamide</td>
</tr>
<tr>
<td>146</td>
<td>m/z: 336.13 (M+H)+</td>
<td>2-methoxy-4-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>m/z: 307.13 (M+H)+</td>
<td>6-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)pyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>m/z: 347.22 (M+H)+</td>
<td>3-((4-(1H-imidazol-1-yl)phenyl)amino)methyl)-6-methoxy-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>m/z: 296.17 (M+H)+</td>
<td>6-methoxy-3-(((4-methylpyridin-2-yl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>m/z: 346.04 (M+H)+</td>
<td>6-chloro-7-methoxy-3-(((1-methyl-2-oxo-1,2-dihydropyridin-3-yl)amino)methyl)-1,2-dihydroquinolin-2-one</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>m/z: 354.98 (M+H)+</td>
<td>6-(((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methylpyridine-3-carbonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>m/z: 370.09 (M+H)+</td>
<td>4-(((6-chloro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>m/z: 320.12 (M+H)+</td>
<td>2-methoxy-4-(((7-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) (\delta) ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>154</td>
<td>m/z: 363.12 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.25 (br d, J=5.86 Hz, 2 H), 3.81 (s, 3 H), 1.30 (s, 9 H).</td>
<td>3-((3-methoxy-4-(1H-1,2,3,4-tetrazol-1-yl)phenyl)amino)methyl)-7-methyl-1,2-dihydroquinolin-2-one</td>
</tr>
<tr>
<td>155</td>
<td>m/z: 384.00 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.25 (br d, J=5.86 Hz, 2 H), 3.81 (s, 3 H), 1.30 (s, 9 H).</td>
<td>4-((6-bromo-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>156</td>
<td>m/z: 362.16 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.25 (br d, J=5.86 Hz, 2 H), 3.81 (s, 3 H), 1.30 (s, 9 H).</td>
<td>4-((6-tert-butyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>157</td>
<td>m/z: 374.04 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.25 (br d, J=5.86 Hz, 2 H), 3.81 (s, 3 H), 1.30 (s, 9 H).</td>
<td>2-methoxy-4-((2-oxo-6-(trifluoromethyl)-1,2-dihydroquinolin-3-yl)methyl)amino)benzonitrile</td>
</tr>
<tr>
<td>158</td>
<td>m/z: 354.17 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.25 (br d, J=5.86 Hz, 2 H), 3.81 (s, 3 H), 1.30 (s, 9 H).</td>
<td>4-((6-fluoro-7-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>159</td>
<td>m/z: 324.11 (M+H)+</td>
<td>(\delta) ppm: 11.88 (s, 1 H), 7.77 (s, 1 H), 7.56 - 7.63 (m, 2 H), 7.26 - 7.37 (m, 2 H), 7.17 - 7.25 (m, 1 H), 6.36 (s, 1 H), 6.18 - 6.28 (m, 1 H), 4.25 (d, J=5.00 Hz, 2 H), 3.79 (s, 3 H).</td>
<td>4-((6-fluoro-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>160</td>
<td>m/z: 431.97 (M+H)+</td>
<td>(\delta) ppm: 12.03 (s, 1 H), 8.06 (m, 1 H), 7.74 (dd, J=8.65, 1.91 Hz, 1 H), 7.70 (s, 1 H), 7.29 (m, 1 H), 7.15 - 7.22 (m, 1 H), 7.12 (m, 1 H), 6.32 (s, 1 H), 6.22 (d, J=8.50 Hz, 1 H), 4.23 (d, J=5.90 Hz, 2 H), 3.78 (s, 3 H).</td>
<td>4-((6-iodo-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile</td>
</tr>
</tbody>
</table>
Example 57 – 4-[(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylamino]-2-methoxybenzonitrile (Compd 166)

![Chemical Structure](image)

A solution of 4-[(6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino]-2-methoxybenzonitrile VII-1 (40 mg, 0.112 mmol), pyridin-2-ylmethanol (11.6 μL, 0.120 mmol), and triphenylphosphine (39.8 mg, 0.152 mmol) in THF (2.6 ml) was treated with DEAD (24 μL, 0.152 mmol) and stirred at room temperature overnight, during which time a material precipitated. LCMS indicated the reaction had gone to completion. MeOH, DCM, and silica gel were added and the mixture was evaporated under reduced pressure. The residue was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 2.7% MeOH in EtOAc). The material thus obtained was combined with material at the same stage from a previous run (from 0.143 mmol phenol starting material). The sample was sonicated a few minutes in 5 mL MeOH in a 40 mL vial, then allowed to settle. The supernatant was removed by pipet and discarded.
The sample was mixed with more MeOH (5 mL) and again allowed to settle, and the supernatant was removed and discarded. The sample was dried under reduced pressure to provide the title compound (Cmpd 166) (32.1 mg, 0.072 mmol, 28% yield for the two combined runs, HPLC purity 100% at 220 nm) as a slightly yellow solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.91 (s, 1 H), 8.54 - 8.67 (m, 1 H), 7.80 - 7.95 (m, 2 H), 7.68 (s, 1 H), 7.56 (d, J=7.30 Hz, 1 H), 7.34 - 7.44 (m, 1 H), 7.29 (d, J=9.10 Hz, 1 H), 7.13 - 7.22 (m, 1 H), 7.03 (s, 1 H), 6.31 (br s, 1 H), 6.22 (d, J=7.90 Hz, 1 H), 5.30 (s, 2 H), 4.10 - 4.26 (m, 2 H), 3.78 (s, 3 H). LCMS (Method 4): Rt 1.37 min., m/z 447.1 [M+H]$^+$.

Example 58 -- 6-((1-(6-chloro-7-((3,3-difluorocyclobutyl)methoxy)-2-oxo-1,2-dihydroquinolin-3-yl)ethyl)amino)-2-methylnicotinonitrile (Cmpd 168)

A mixture of 6-fluoro-2-methylnicotinonitrile III-2 (23.6 mg, 0.173 mmol) and 3-(1-aminoethyl)-6-chloro-7-((3,3-difluorocyclobutyl)methoxy)quinolin-2(1H)-one hydrochloride II-10 (59.5 mg, 0.157 mmol) was treated with DMSO (1 ml) and DIEA (84 μL, 0.481 mmol). The solution was stirred at 110 °C for three hours. LCMS indicated the reaction had gone to completion. The sample was mixed with water (15 mL) and extracted with DCM (3x10 mL). The extracts were dried (Na$_2$SO$_4$), filtered, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage M PLC (10 g silica gel snap column) with 0 to 70% in EtOAc in hexanes to provide the title compound (Cmpd 168) (49.1 mg, 0.107 mmol, 68.2 % yield, HPLC purity 100% at 220 nm) as an off-white brittle foam. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.84 (s, 1 H), 7.88 (d, J=7.30 Hz, 1 H), 7.79 (s, 1 H), 7.68 (s, 1 H), 7.62 (d, J=9.09 Hz, 1 H), 6.93 (s, 1 H), 6.44 (br s, 1 H), 5.20 (br s, 1 H), 4.12 (d, J=4.10 Hz, 2 H), 2.52 - 2.80 (m, 5 H), 2.36 (s, 3 H), 1.41 (d, J=6.74 Hz, 3 H). LCMS (Method 4): Rt 1.6 min., m/z 459.1 [M+H]$^+$.

Example 59 -- 4-((6-chloro-7-(2-hydroxy-3-morpholinopropoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (Cmpd 170)

[0248] A solution of 4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile VII-1 (99.8 mg, 0.281 mmol) and triphenylphosphine (81.8 mg, 0.312 mmol) in THF (Volume: 6.5 ml) was treated with DEAD (50.0 µl, 0.316 mmol) and stirred 10 minutes. Glycidol (20.7 µl, 0.310 mmol) was added and the solution was stirred overnight. Morpholine (28.0 µl, 0.321 mmol) was added and the solution was stirred at room temperature three hours, then shaken at 50 °C overnight. LCMS showed slow progress. More morpholine (20.0 µL) was added and the solution was shaken at 50 °C for 4.5 days. The solution was treated with silica gel and concentrated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column) with 0 to 10% MeOH in DCM, with isocratic elution when peaks came off. The material thus obtained was readsorbed onto silica gel and rechromatographed with 0 to 32% B in DCM, where B = 20% (7M ammonia in MeOH) in DCM, to provide the title compound (Cmpd 170) (54.1 mg, 0.099 mmol, 35.2 % yield, HPLC purity 89.8% at 220 nm). 1H NMR (300 MHz, DMSO-d_6) δ ppm 11.88 (s, 1 H), 7.80 (s, 1 H), 7.67 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.16 (dd, J=5.70, 5.70 Hz, 1 H), 6.95 (s, 1 H), 6.01 (s, 1 H), 6.22 (d, J=8.80 Hz, 1 H), 4.99 (d, J=4.40 Hz, 1 H), 4.19 (br d, J=5.60 Hz, 2 H), 3.89 - 4.11 (m, 4 H), 3.78 (s, 3 H), 3.55 (m, 4 H), 2.53 - 2.60 (m, 2 H), 2.35 - 2.47 (m, 3 H). LCMS (Method 4): Rt 0.91 min., m/z 499.2 [M+H]$^+$.

Example 60 -- 4-((6-chloro-7-(2-morpholinoethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (Cmpd 171)
[0249] A solution of 4-((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile VII-1 (70.6 mg, 0.198 mmol), triphenylphosphine (78.5 mg, 0.299 mmol), and 2-morpholinoethanol (26.2 µl, 0.216 mmol) in THF (4.5 ml) was treated with DEAD (46.8 µl, 0.296 mmol) and stirred at room temperature overnight. Silica gel was added and the mixture was evaporated under reduced pressure. The residue was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 10% MeOH in DCM, with isocratic elution at 6% MeOH). The material thus obtained was redsorbed onto silica gel and rechromatographed with 0 to 100% B in DCM, where B = 20%(7M ammonia in methanol) in DCM, with isocratic elution when peaks came off to provide the title compound (Cmpd 171) (48.5 mg, 0.103 mmol, 52.1 % yield, HPLC purity 91.4% at 220 nm) as an off-white solid. 1H NMR (300 MHz, DMSO-d$_6$): δ ppm 11.91 (s, 1 H), 7.81 (s, 1 H), 7.68 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.16 (dd, J=6.00, 6.00 Hz, 1 H), 6.95 (s, 1 H), 6.32 (s, 1 H), 6.22 (m, 1 H), 4.20 (m, J=5.00 Hz, 4 H), 3.78 (s, 3 H), 3.51 - 3.65 (m, 4 H), 2.77 (br s, 2 H). LCMS (Method 4): Rt 0.94 min., m/z 469.1 [M+H]$^+$.

Table 16: The compounds listed in Table 16 were prepared using methods similar to those described for the preparation of Compounds 57-60.
Table 17. LCMS signal and NMR chemical shifts of each compound listed in Table 16

<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>m/z: 356.09 (M+H)+
Rt (min): 1.17</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.82 (s, 1 H), 10.89 (s, 1 H), 7.70 (s, 1 H), 7.63 (s, 1 H), 7.28 (d, J=8.50 Hz, 1 H), 7.12 (dd, J=6.00, 6.00 Hz, 1 H), 6.91 (s, 1 H), 6.32 (d, J=1.76 Hz, 1 H), 6.22 (dd, J=8.60, 1.60 Hz, 1 H), 4.17 (d, J=5.60 Hz, 2 H), 3.78 (s, 3 H).</td>
<td>4-{{(6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>166</td>
<td>m/z: 447.07 (M+H)+
Rt (min): 1.37</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.91 (s, 1 H), 8.54 - 8.67 (m, 1 H), 7.80 - 7.95 (m, 2 H), 7.68 (s, 1 H), 7.56 (d, J=7.30 Hz, 1 H), 7.34 - 7.44 (m, 1 H), 7.29 (d, J=9.10 Hz, 1 H), 7.13 - 7.22 (m, 1 H), 7.03 (s, 1 H), 6.31 (br s, 1 H), 6.22 (d, J=7.90 Hz, 1 H), 5.30 (s, 2 H), 4.10 - 4.26 (m, 2 H), 3.78 (s, 3 H).</td>
<td>4-{{(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methylamino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td>6-chloro-3-{{(1-methyl-2-oxo-1,2-dihydropyridin-3-</td>
</tr>
<tr>
<td>Cmpd no</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>168</td>
<td>m/z: 459.05 (M+H)+ Rt (min): 1.6</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.84 (s, 1 H), 7.88 (d, J=7.30 Hz, 1 H), 7.79 (s, 1 H), 7.68 (s, 1 H), 7.62 (d, J=9.09 Hz, 1 H), 6.93 (s, 1 H), 6.44 (br s, 1 H), 5.20 (br s, 1 H), 4.12 (d, J=4.10 Hz, 2 H), 2.52 - 2.80 (m, 5 H), 2.36 (s, 3 H), 1.41 (d, J=6.74 Hz, 3 H).</td>
<td>6-[(1-{6-chloro-7-[[3,3-difluorocyclobutyl]methoxy]-2-oxo-1,2-dihydroquinolin-3-yl}ethyl)amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>169</td>
<td>m/z: 453.13 (M+H)+ Rt (min): 0.96</td>
<td>1H NMR (300 MHz, DMSO-d6) δ ppm 11.88 (s, 1 H), 7.80 (s, 1 H), 7.67 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.16 (dd, J=5.70, 5.70 Hz, 1 H), 6.95 (s, 1 H), 6.31 (s, 1 H), 6.22 (d, J=8.80 Hz, 1 H), 4.99 (d, J=4.40 Hz, 1 H), 4.19 (br d, J=5.60 Hz, 2 H), 3.89 - 4.11 (m, 4 H), 3.78 (s, 3 H), 3.55 (m, 4 H), 2.53 - 2.60 (m, 2 H), 2.35 - 2.47 (m, 3 H). A very ugly spectrum - you may want to omit the data, or double-check.</td>
<td>4-[[{(6-chloro-7-{[(2S)-1-methylpyrrolidin-2-yl]methoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>170</td>
<td>m/z: 499.16 (M+H)+ Rt (min): 0.91</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.91 (s, 1 H), 7.81 (s, 1 H), 7.68 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.16 (dd, J=6.00, 6.00 Hz, 1 H), 6.95 (s, 1 H), 6.32 (s, 1 H), 6.22 (m, 1 H), 4.20 (m, J=5.00 Hz, 4 H), 3.78 (s, 3 H), 3.51 - 3.65 (m, 4 H), 2.77 (br s, 2 H). Four protons are buried under water and/or solvent.</td>
<td>4-[[{(6-chloro-7-{2-(morpholin-4-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>171</td>
<td>m/z: 469.12 (M+H)+ Rt (min): 0.94</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.91 (s, 1 H), 7.81 (s, 1 H), 7.68 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.16 (dd, J=6.00, 6.00 Hz, 1 H), 6.95 (s, 1 H), 6.32 (s, 1 H), 6.22 (m, 1 H), 4.20 (m, J=5.00 Hz, 4 H), 3.78 (s, 3 H), 3.51 - 3.65 (m, 4 H), 2.77 (br s, 2 H). Four protons are buried under water and/or solvent.</td>
<td>4-[[{(6-chloro-7-{2-(morpholin-4-yl)ethoxy}-2-oxo-1,2-dihydroquinolin-3-yl}methyl]amino]-2-methoxybenzonitrile</td>
</tr>
</tbody>
</table>

Example 61 – 4-(((6-chloro-2-oxo-7-(pyridin-3-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile (Cmpd 172)
In a 1.5 mL vial are combined 4-(((6-chloro-7-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile VII-1 (150 μL, 0.030 mmol), pyridin-3-ylmethanol (165 μL, 0.033 mmol), and triphenylphosphine (180 μL, 0.036 mmol) in fresh, dry THF to give a light yellow solution. The vial was flushed with N₂. (E)-diisopropyl diazene-1,2-dicarboxylate (180 μL, 0.036 mmol) in fresh THF was added. The vial was quickly capped and heated for 2 hours at 50°C. LCMS shows that the triphenylphosphine has been consumed but there is still unreacted VII-1 present. More triphenylphosphine (180 μL, 0.036 mmol) and (E)-diisopropyl diazene-1,2-dicarboxylate (180 μL, 0.036 mmol) in fresh THF were added. The vial was flushed with N₂ and capped. The reaction was heated overnight at 50°C. LCMS showed that the VII-1 has been consumed. The reaction was dried down under N₂. The residue was partitioned between 0.5 mL of 1N NaOH and 0.5 mL of EtOAc. The EtOAc was separated and combined with a second extract. The extracts were dried under N₂. The residue was dissolved in 500 μL of DMSO and submitted for mass-triggered prep HPLC purification. This yielded the desired product (Cmpd 172) (3.7 mg, 27.6% yield). LCMS (Method 4): Rt 1.24 min, m/z 447.05 [M+H]⁺.

Table 18: The compounds listed in Table 18 were prepared using methods similar to the one described for the preparation of Compound 62.
Table 17. LCMS signal and chemical names of each compound listed in Table 16
<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>m/z: 447.05 (M+H)+ Rt (min): 1.23</td>
<td>4-([(6-chloro-2-oxo-7-(pyridin-3-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>173</td>
<td>m/z: 454.09 (M+H)+ Rt (min): 1.42</td>
<td>4-([(6-chloro-7-(oxan-4-ylmethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino)-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>174</td>
<td>m/z: 427.15 (M+H)+ Rt (min): 0.91</td>
<td>4-([(6-chloro-7-[2-(dimethylamino)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>175</td>
<td>----</td>
<td>6-([(6-chloro-2-oxo-7-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl)methyl]amino)-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>176</td>
<td>m/z: 531.03 (M+H)+ Rt (min): 1.0</td>
<td>6-([(6-chloro-7-[2-(4-methanesulfonylpiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>177</td>
<td>m/z: 546.07 (M+H)+ Rt (min): 1.05</td>
<td>4-([(6-chloro-7-[2-(4-methanesulfonylpiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>178</td>
<td>m/z: 440.11 (M+H)+ Rt (min): 1.36</td>
<td>4-([(6-chloro-2-oxo-7-[(3S)-oxolan-3-ylmethoxy]-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>179</td>
<td>m/z: 453.14 (M+H)+ Rt (min): 0.97</td>
<td>4-([(6-chloro-7-[[1-methylpiperidin-4-yl]oxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>180</td>
<td>m/z: 441.12 (M+H)+ Rt (min): 1.16</td>
<td>2-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl]-2-oxo-1,2-dihydroquinolin-7-yl]oxy]-N,N-dimethylacetamide</td>
</tr>
<tr>
<td>181</td>
<td>m/z: 413.09 (M+H)+ Rt (min): 1.09</td>
<td>2-[(6-chloro-3-[(4-cyano-3-methoxyphenyl)amino]methyl]-2-oxo-1,2-dihydroquinolin-7-yl]oxy]acetamide</td>
</tr>
<tr>
<td>182</td>
<td>m/z: 483.13 (M+H)+ Rt (min): 1.17</td>
<td>4-([(6-chloro-7-[2-(morpholin-4-yl)-2-oxoethoxy]-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>183</td>
<td>m/z: 464.03 (M+H)+</td>
<td>4-([(6-chloro-7-[1,5-dimethyl-1H-</td>
</tr>
<tr>
<td>Cmpd no</td>
<td>LCMS</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>184</td>
<td>(M+H)+</td>
<td>(M+H)+</td>
</tr>
</tbody>
</table>
| | Rt (min): 1.32 | pyrazol-3-yl)methoxy]-2-oxo-1,2-
| | m/z: 446.02 | dihydroquinolin-3-yl{methyl}amino]-2-
| | (M+H)+ | methoxybenzonitrile |
| | Rt (min): 1.6 | 4-([7-(benzylxy)-6-chloro-2-oxo-1,2-
| | m/z: 467.10 | dihydroquinolin-3-yl{methyl}amino]-2-
| | (M+H)+ | methoxybenzonitrile |
| | Rt (min): 0.98 | 4-[([6-chloro-7-[(1-methyl)piperidin-2-
| | m/z: 461.12 | yl]methoxy]-2-oxo-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.04 | 4-[([6-chloro-7-[(2-methyl)pyridin-4-
| | m/z: 447.08 | yl]methoxy]-2-oxo-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.13 | 4-[([6-chloro-2-oxo-7-(pyridin-4-
| 187 | m/z: 502.03 | yl)methoxy]-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.25 | 4-[([6-chloro-7-[(1,1-dioxo-1λ6-thian-4-
| | m/z: 447.97 | yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.22 | 4-[([6-chloro-2-oxo-7-(pyrazin-2-
| | m/z: 450.08 | yl)methoxy]-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 0.98 | 4-[([6-chloro-7-[(1-methyl-1H-imidazol-5-
| | m/z: 450.08 | yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.03 | 4-[([6-chloro-7-[(1-methyl-1H-imidazol-2-
| | m/z: 480.99 | yl)methoxy]-2-oxo-1,2-dihydroquinolin-3-
| | (M+H)+ | yl{methyl}amino]-2-methoxybenzonitrile |
| | Rt (min): 1.14 | 5-[[4-chloro-3-[[4-cyano-3-
| | m/z: 461.03 | methoxyphenyl]amino[methyl]-2-oxo-1,2-
| | (M+H)+ | dihydroquinolin-7-yl]oxy][methyl]-1,2,4-
| | Rt (min): 1.21 | oxadiazone-3-carboxamide |
| | m/z: 461.13 | 4-[([6-chloro-2-oxo-7-[2-(pyridin-2-
| | (M+H)+ | yl)ethoxy]-1,2-dihydroquinolin-3-
| | Rt (min): 1.18 | yl{methyl}amino]-2-methoxybenzonitrile |
| | m/z: 441.10 | 4-[([6-chloro-7-[3-(dimethylamino)propoxy]-2-oxo-1,2-
| | (M+H)+ | dihydroquinolin-3-yl{methyl}amino]-2-
| | Rt (min): 0.96 | methoxybenzonitrile |

199
<table>
<thead>
<tr>
<th>Cmpd no</th>
<th>LCMS</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>m/z: 467.17</td>
<td>4-[(6-chloro-2-oxo-7-[3-(pyrrolidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.01</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>m/z: 481.16</td>
<td>4-[(6-chloro-2-oxo-7-[3-(piperidin-1-yl)propoxy]-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.95</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>m/z: 453.13</td>
<td>4-[(6-chloro-2-oxo-7-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.98</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>m/z: 467.04</td>
<td>4-[(6-chloro-2-oxo-7-[2-(2-oxypyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.24</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>m/z: 467.14</td>
<td>4-[(6-chloro-2-oxo-7-[2-(piperidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.03</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>m/z: 482.16</td>
<td>4-[(6-chloro-7-[2-(4-methylpiperazin-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.95</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>m/z: 450.11</td>
<td>4-[(6-chloro-7-[2-(1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.94</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>m/z: 464.13</td>
<td>4-[(6-chloro-7-[2-(2-methyl-1H-imidazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 0.96</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>m/z: 517.04</td>
<td>4-[(6-chloro-7-[2-(1,1-dioxo-1λ6,4-thiomorpholin-4-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.2</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>m/z: 478.12</td>
<td>4-[(6-chloro-7-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.42</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>m/z: 428.11</td>
<td>4-[(6-chloro-7-[2-ethoxyethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methylamino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rt (min): 1.42</td>
<td></td>
</tr>
</tbody>
</table>

Example 62 — 4-[(6-chloro-8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methylamino]-2-methoxybenzonitrile (Cmpd 207)
Step-1: 6-chloro-8-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde

[0251] A suspension of 2,6-dichloro-8-methylquinoline-3-carbaldehyde (0.25 g, 1.041 mmol) in AcOH (10.41 ml) was heated to 110 °C for 3h then at 100 °C for 16h. The reaction mixture was cooled down to 0 °C. The yellow precipitate was filtered off and washed with water to give 6-chloro-8-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (0.152 g, 0.686 mmol, 65.9 % yield). The crude material was used in the next step without further purification.

Step-2: 4-(((6-chloro-8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)amino)-2-methoxybenzonitrile

[0252] To a mixture of 6-chloro-8-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (0.152 g, 0.686 mmol), 4-amino-2-methoxybenzonitrile (0.122 g, 0.823 mmol) and acetic acid (0.196 ml, 3.43 mmol) in DCM (12.25 ml) was added sodium triacetoxyborohydride (0.189 g, 0.892 mmol). The reaction mixture was stirred at room temperature for 16h. Water (20 mL) was added to the reaction mixture and the product was extracted into EtOAc (3x25 mL). The combined organic extracts were dried over MgSO₄. The crude material was purified by reverse phase preparative HPLC (20 mL/min, 10 min gradient 15% - 85% AcCN, 0.01% HCO2H on an XTerra Prep MS C18 OBD 5 µm, 19x100 mm column) to yield 4-(((6-chloro-8-methyl-2-oxo-1,2-dihydro quinolin-3-yl)methylamino)-2-methoxybenzonitrile (Compd 207) (0.0073 g, 0.021 mmol, 3.01 % yield). ¹H NMR (300 MHz, DMSO-d₆) δ ppm 11.24 (s, 1 H), 7.71 (s, 1 H), 7.62 (d, J=2.05 Hz, 1 H), 7.37 (d, J=2.05 Hz, 1 H), 7.27 (d, J=8.50 Hz, 1 H), 7.14 - 7.23 (m, 1 H), 6.30 (br d, J=1.47 Hz, 1 H), 6.15 - 6.26 (m, 1 H), 4.20 - 4.26 (m, 2 H), 3.76 (s, 2 H), 2.40 (s, 3 H).
Example 63 -- 4-((6-chloro-8-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (Cmpd 209)

\[
\begin{align*}
\text{II-14} & \xrightarrow{\text{conc. HBr}} \text{Br} \\
\text{K}_2\text{CO}_3 & \text{THF, DMF} \\
\text{VI-1} & \xrightarrow{50 ^\circ\text{C}} \text{Cmpd 209}
\end{align*}
\]

Step 1: 3-(bromomethyl)-6-chloro-8-methoxyquinolin-2(1H)-one.

[0253] 6-Chloro-3-(hydroxymethyl)-8-methoxyquinolin-2(1H)-one **II-14** (239.3 mg, 0.999 mmol) was treated with 48% hydrobromic acid (10.0 mL, 87 mmol) and stirred at 100 °C, resulting in precipitation. LCMS at 40 minutes showed an 85:15 ratio of product to starting material. At 1.5 hours, the reaction was allowed to cool. The mixture was poured into water (150 mL), and combined with material at the same stage from another run (from 0.102 mmol quinolinone starting material). The tan precipitate was collected on a Buchner funnel and washed with water (250 mL). The filter cake was suspended in a few ml heptane, then the heptane was removed by evaporation under reduced pressure to provide 3-(bromomethyl)-6-chloro-8-methoxyquinolin-2(1H)-one, contaminated with ~10% alcohol starting material. The material was dried further by addition of EtOAc and heptane and evaporation under reduced pressure to provide a cream-colored solid (285.6 mg, 0.944 mmol, 86% yield for the two combined runs). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) ppm 11.39 (s, 1 H), 8.10 (s, 1 H), 7.38 (d, \(J=2.05\) Hz, 1 H), 7.22 (d, \(J=2.05\) Hz, 1 H), 4.56 (s, 2 H), 3.92 (s, 3 H). LCMS (Method 1): Rt 2.40 min., m/z 303.8 [M+H].

Step 2: 4-((6-chloro-8-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (Cmpd 209).

202
A suspension of 3-(bromomethyl)-6-chloro-8-methoxyquinolin-2(1H)-one (38.9 mg, 0.129 mmol), 4-amino-2-methoxybenzonitrile (21 mg, 0.142 mmol), and K$_2$CO$_3$ (35 mg, 0.253 mmol) in THF (1.5 ml) was stirred at 50 °C for 2.5 hours, during which most of the material went into solution. LCMS at 45 minutes showed no reaction. The solvent was evaporated under reduced pressure, then replaced with DMF (1.5 ml). The reaction was stirred at 50 °C overnight. LCMS showed product formation, and complete consumption of the bromide starting material. The solvent was evaporated under reduced pressure at 60 °C. The residue was readily dissolved in a few mL DCM/MeOH, except for some residual material that appeared to be inorganic salts. The solution was removed from the solid by pipet, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel snap column, 0 to 100% EtOAc in hexanes, with isocratic elution at 93% EtOAc) to provide the title compound (Cmpd 209) (19.3 mg, 0.051 mmol, 39.8 % yield, HPLC purity 100% at 220 nm) as a slightly yellow solid. 1H NMR (300 MHz, DMSO-d_6): δ ppm 11.30 (s, 1 H), 7.69 (s, 1 H), 7.37 (d, J=2.05 Hz, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.15 - 7.23 (m, 2 H), 6.32 (m, 1 H), 6.19 - 6.27 (m, 1 H), 4.24 (d, J = 5.90 Hz, 2 H), 3.91 (s, 3 H), 3.78 (s, 3 H). LCMS (Method 4): Rt 1.37 min., m/z 370.0 [M+H]$^+$.

Example 64 -- 4-((6-chloro-8-(2-morpholinoethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl amino)-2-methoxybenzonitrile (Cmpd 211)

203
Step 1: 6-chloro-8-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde.

A suspension of 6-chloro-3-(hydroxymethyl)-8-methoxyquinolin-2(1H)-one “II-14” (479.2 mg, 2.000 mmol) and manganese dioxide (526.4 mg) in chloroform (20 ml) was stirred at 45 °C one day. More MnO₂ (438.2 mg) was added and the mixture was stirred further at 45 °C for 1.5 more days, then at room temperature for 1 day. The mixture was diluted with 1:1 DCM-MeOH (100 mL), then filtered through Celite 545 on a Buchner funnel, and the filter cake was washed with more 1:1 DCM-MeOH. The filtrate was evaporated to provide impure 6-chloro-8-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (0.48 g, 2.020 mmol, 101 % yield) as a yellow solid. The crude material was used without further purification. ¹H NMR (300 MHz, DMSO-d₆): δ ppm 11.69 (brs, 1 H), 10.23 (s, 1 H), 8.44 (s, 1 H), 7.62 (d, J=2.05 Hz, 1 H), 7.32 (d, J=1.76 Hz, 1 H), 3.93 (s, 3 H). LCMS (Method 1): Rt 2.00 min., m/z 237.9 [M+H]⁺.

Step 2: 4-((6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile.
A suspension of 6-chloro-8-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (158.3 mg, 0.666 mmol) and sodium ethanethiolate (72.0 mg, 0.856 mmol) in DMF (1.6 mL) was heated at 130 °C with stirring. At 2 hours a spatula-tip more sodium ethanethiolate was added. LCMS at 3.25 hours indicated the reaction had gone to completion. The mixture was allowed to cool, then diluted with 3.6% HCl (aq, 3.2 mL). The solids were collected on a Hirsch funnel, washed with water (~25 mL) and air-dried on the funnel. The filter cake was treated with heptane (10 mL), evaporated under reduced pressure, then evaporated further under high vacuum at 60 °C to provide very impure 6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (109.1 mg, m/z +224 [M+H]^+) as a yellow solid. The sample was suspended with 4-amino-2-methoxybenzonitrile (100 mg, 0.675 mmol) in MeOH (7.5 mL) and DCM (2.0 mL). The mixture was treated with AcOH (27.2 µL) and stirred at room temperature 1.5 hours, then at 50 °C for 4 hours. Toluene (4 mL) was added, and the solvents were evaporated under reduced pressure. A second aliquot of toluene (4 mL) was added and then evaporated under reduced pressure. The residue was suspended in chloroform (7.5 mL) and treated with acetic acid (130.6 µL, 2.281 mmol). The mixture was stirred 5 minutes, then sodium triacetoxyborohydride (156.6 mg, 0.739 mmol) was added and the reaction was stirred at room temperature in the dark overnight. LCMS showed consumption of the aldehyde starting material. The mixture was diluted with EtOAc and MeOH, treated with silica gel, and evaporated under reduced pressure. The material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 5% MeOH in DCM, with isocratic elution when peaks came off) to provide 4-((6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (28.9 mg, 0.081 mmol, 12 % yield) as a yellow solid. NMR chemical shifts are shown in the procedure for intermediate VII-2. LCMS (Method 1): Rt 2.26 min., m/z 355.9 [M+H]^+.

Step 3: 4-((6-chloro-8-(2-morpholinoethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile (Cmpd 211).
A solution of 4-(((6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methylamino)-2-methoxybenzonitrile VII-2 (27.6 mg, 0.078 mmol) and triphenylphosphine (30.5 mg, 0.116 mmol) in THF (1.8 mL) was treated with 103.0 μL of a solution of 10% (v/v) 2-morpholinoethanol in THF. The solution was treated with DEAD (18.6 μL, 0.117 mmol), placed under nitrogen, and stirred at room temperature overnight. LCMS showed the reaction had gone to completion. Silica gel was added and the mixture was evaporated under reduced pressure. The residue was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 5% MeOH in DCM, with isocratic elution at 3% MeOH) to give impure product. The material was purified further by reverse phase preparative HPLC on Gilson to provide the title compound (Cmpd 211) (1.9 mg, 4.05 μmol, 5.22 % yield, HPLC purity 69.56%) as a white solid. 1H NMR (300 MHz, METHANOL-d4): δ ppm 7.72 (s, 1 H), 7.25 (d, J=8.50 Hz, 1 H), 7.19 - 7.22 (m, 1 H), 7.11 - 7.14 (m, 1 H), 6.28 - 6.31 (m, 1 H), 6.21 - 6.27 (m, 1 H), 4.33 - 4.38 (m, 2 H), 4.28 (dd, J=5.00, 5.00 Hz, 2 H), 3.76 - 3.85 (m, 7 H), 2.92 (dd, J=5.00, 5.00 Hz, 2 H), 2.55 - 2.68 (m, 4 H). LCMS (Method 4): Rt 1.05 min, m/z 469.1 [M+H]+.

Table 18: The compounds listed in Table 18 were prepared using methods similar to those described for the preparation of Examples 62-64.
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>m/z: 354.10 (M+H) + Rt (min): 1.42</td>
<td>1H NMR (300 MHz, DMSO-d6) δ ppm 11.24 (s, 1 H), 7.71 (s, 1 H), 7.62 (d, J=2.05 Hz, 1 H), 7.37 (d, J=2.05 Hz, 1 H), 7.27 (d, J=8.50 Hz, 1 H), 7.14 - 7.23 (m, 1 H), 6.30 (br d, J=1.47 Hz, 1 H), 6.15 - 6.26 (m, 1 H), 4.26 - 4.26 (m, 2 H), 3.76 (s, 2 H), 2.40 (s, 3 H)</td>
<td>4-[{(6-chloro-8-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>208</td>
<td>m/z: 356.02 (M+H) + Rt (min): 1.22</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 10.96 (br s, 2 H), 7.66 (s, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.14 - 7.24 (m, 2 H), 6.87 (d, J=2.05 Hz, 1 H), 6.32 (s, 1 H), 6.18 - 6.27 (m, 1 H), 4.23 (d, J=5.90 Hz, 2 H), 3.78 (s, 3 H)</td>
<td>4-[{(6-chloro-8-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-2-methoxybenzonitrile</td>
</tr>
<tr>
<td>209</td>
<td>m/z: 370.03 (M+H) + Rt (min): 1.37</td>
<td>1H NMR (300 MHz, DMSO-d6): δ ppm 11.30 (s, 1 H), 7.69 (s, 1 H), 7.37 (d, J=2.05 Hz, 1 H), 7.29 (d, J=8.50 Hz, 1 H), 7.15 - 7.23 (m, 2 H), 6.32 (m, 1 H), 6.19 -</td>
<td>4-[{(6-chloro-8-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methyl]amino}-2-</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>LCMS</td>
<td>1H NMR (300 MHz) δ ppm</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>210</td>
<td>m/z: 447.03</td>
<td>6.27 (m, 1 H), 4.24 (d, J=5.90 Hz, 2 H), 3.91 (s, 3 H), 3.78 (s, 3 H).</td>
<td>methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 1.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m/z: 469.09</td>
<td>1H NMR (300 MHz, METHANOL-d4): δ ppm 7.72 (s, 1 H), 7.25 (d, J=8.50 Hz, 1 H), 7.19 - 7.22 (m, 1 H), 7.11 - 7.14 (m, 1 H), 6.28 - 6.31 (m, 1 H), 6.21 - 6.27 (m, 1 H), 4.33 - 4.38 (m, 2 H), 4.28 (dd, J=5.00, 5.00 Hz, 2 H), 3.76 - 3.85 (m, 7 H), 2.92 (dd, J=5.00, 5.00 Hz, 2 H), 2.55 - 2.68 (m, 4 H).</td>
<td>4-[[6-chloro-2-oxo-8-(pyridin-2-ylmethoxy)-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile</td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 1.05</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>m/z: 453.06</td>
<td>4-[[6-chloro-8-[2-(morpholin-4-yl)ethoxy]-2-oxo-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 1.03</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>m/z: 307.14</td>
<td>4-[[6-chloro-2-oxo-8-[2-(pyrrolidin-1-yl)ethoxy]-1,2-dihydroquinolin-3-yl]methyl]amino]-2-methoxybenzonitrile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(M+H)+</td>
<td>Rt (min): 0.99</td>
<td></td>
</tr>
</tbody>
</table>
Example 65 -- 6-(1-(6-Chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropylamino)-2-methyl nicotinonitrile (Cmpd 214)

Step 1: 6-Chloro-2-oxo-1,2-dihydroquinoline-3-carbonitrile

[0258] The mixture of piperidine (0.022 g, 0.257 mmol), 2-amino-5-chlorobenzaldehyde (2 g, 12.85 mmol), and ethyl 2-cyanoacetate (1.454 g, 12.85 mmol) in EtOH (30 ml) was stirred at room temperature for 30 minutes, then refluxed for 2 hours, cooled to room temperature again. The precipitate was filtered, washed with EtOH and dried to afford 1.84 g of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbonitrile (70%). 1H NMR (300 MHz, DMSO-d_6) δ ppm 12.43-12.68 (s br, 1 H), 8.50-8.78 (s, 1 H), 7.54-7.96 (m, 1 H), 7.33 (d, J=9.09 Hz, 1 H). LCMS (Method 3): Rt 1.87 min, m/z 205.95[M+H]$^+$.

Step 2: 3-(1-aminocyclopropyl)-6-chloroquinolin-2(1H)-one.
To a solution of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbonitrile (800 mg, 3.91 mmol) in THF (15 ml) at -78°C was added Ti(O’Pr)₄ (1.333g, 1.375 ml, 4.69 mmol). After 10 minutes of stirring, EtMgBr (1824 mg, 3N, 5 ml, 13.68 mmol) in ether was added. The solution was stirred at -78°C for 30 minutes, then warmed up to room temperature, follow by addition of BF₃.OEt₂ (1.942g, 1.734 ml, 13.68 mmol). After stirred at room temperature for additional two hours, the mixture was treated with NH₄Cl to quench the reaction, follow by 1 N NaOH to adjust pH to 11-12. The resulting mixture was extracted with EtOAc, dried and concentrated under reduced pressure. The Biotage purification to afford 140 mg of 3-(1-aminocyclopropyl)-6-chloroquinolin-2(1H)-one (15.26%). ¹H NMR (300 MHz, CDCl₃) δ ppm 12.53 (br s, 1 H),8.20 (s, 1 H), 7.65 - 7.82 (m, 1 H), 7.50 - 7.59 (m, 1 H), 7.35 - 7.49 (m, 1 H), 3.04 - 3.22 (m, 1 H), 1.21 - 1.45 (m, 1 H), 0.76 - 1.01 (m, 1 H). LCMS (Method 1): Rt 2.11 min, m/z 235.99 [M+H]+.

Step-3: 6-(1-(6-Chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropylamino)-2-methyl nicotinonitrile (Cmpd 214)

The mixture 3-(1-aminocyclopropyl)-6-chloroquinolin-2(1H)-one (60mg, 0.256 mmol), 6-fluoro-2-methylnicotinonitrile (34.8 mg, 0.256 mmol) and of DIEA (0.134 ml, 0.767 mmol) in DMSO (2 ml) was heated to 130°C for overnight. The reaction mixture was extracted with EtOAc, washed with water and brine, then dried and concentrated under reduced pressure. The biotage purification afforded 6-(1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropylamino)-2-methylnicotinonitrile (10 mg, 11.1%). LCMS (Method 1): Rt 2.71 min, m/z 351.99[M+H]+.

Example 66 -- 4-((6-chloro-8-(2-morpholinoethoxy)-2-oxo-1,2-dihydroquinolin-3-yl)methyl amino)-2-methoxybenzonitrile (Cmpd 215)

210
Step-1: 3-(2-Mminopropan-2-yl)-6-chloroquinolin-2(1H)-one.

[0261] To a solution of 6-chloro-2-oxo-1,2-dihydroquinoline-3-carbonitrile (500 mg, 2.444 mmol) in THF (15 ml) at -78°C was added Ti(O^iPr)_4 (2.148 ml, 7.33 mmol). After stirring for 10 minutes at -78°C, methylmagnesium bromide (6.52 ml, 19.55 mmol, 3M) was added dropwise. The resulting solution was stirred at -78°C for 30 minutes, then warmed up to room temperature. The solution was continuously stirred at room temperature for two hours, followed by addition of a saturated NH₄Cl solution (10 ml) to quench the reaction, then a 1 N NaOH solution to adjust pH =11-12. The mixture was extracted with EtOAc, dried over sodium sulfate, and concentrated under reduced pressure. The biotage purification on a 25 g column with 0-10% MeOH/DCM afforded 140 mg of 3-(2-aminopropan-2-yl)-6-chloroquinolin-2(1H)-one (22.40%). ^1H NMR (300 MHz, CDCl₃): δ 7.67(s, 1H), 7.52(d, J=2.19Hz, 1H), 7.38(d, J=2.23Hz, 1H), 7.30(s, 1H), 1.60(s, 6H). LCMS (Method 1): Rt 1.37 min, m/z 237.03[M+H]^+.

Step-2: 6-(2-(6-Chloro-2-oxo-1,2-dihydroquinolin-3-yl)propan-2-ylamino)-2-methyl nicotinonitrile (Cmpd 214)

[0262] The mixture of N,N-diisopropylethylamine (0.155 ml, 0.887 mmol), 3-(2-aminopropan-2-yl)-6-chloroquinolin-2(1H)-one (70 mg, 0.296 mmol), and 6-fluoro-2-methyl nicotinonitrile III-2 (40.3 mg, 0.296 mmol) in DMSO (2 ml) was heated to 130°C for overnight. The mixture was treated with EtOAc, washed with water, then brine, dried, and
concentrated under reduced pressure. The biotage purification afforded 6-(2-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)propan-2-ylamino)-2-methylnicotinonitrile (61 mg, 58.5%). 1H NMR (300 MHz, DMSO-d_6) δ ppm 11.69 (s, 1 H), 7.73 - 7.88 (m, 2 H), 7.57 - 7.68 (m, 1 H), 7.39 - 7.57 (m, 2 H), 7.22 (d, J=8.79 Hz, 1 H), 6.41 (d, J=8.79 Hz, 1 H), 2.15 (s, 3 H), 1.75 (s, 6 H). LCMS (Method 1): Rt 2.51 min, m/z 353.98 [M+H]$^+$.

Example 67 -- (R)-5-((1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 216)

![Chemical structure]

[0263] To compound II-7a (100 mg, 0.3 mmol) in DMSO (10 mL) in a sealed tube was added 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (54 mg, 0.36 mmol) and DIEA (1 mL). The reaction mixture was heated up to 110 °C and stirred for 3 h. The reaction mixture was then cooled to rt, diluted with water (50 mL) and extracted with EtOAc (50 mL X 4). The combined organic layers was dried (Na$_2$SO$_4$), concentrated and purified by reverse C-18 lISCO with water (0.1% TFA) to CH$_3$CN (0.1% TFA) to give the TFA salt of Cmpd 216 (21 mg, 20%) as a white solid. 1H NMR (300 MHz, DMSO-d_6): δ 12.71 (s, 1H), 7.82 (d, J= 6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J= 2.19 Hz, 1H), 7.59 (dd, J= 9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J= 8.79 Hz, 1H), 7.05 (d, J= 7.71 Hz, 1H), 6.93 (d, J= 7.98 Hz, 1H), 6.31 (d, J= 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J= 6.60 Hz, 3H). LCMS (Method 3): Rt 5.30 min, m/z 357.1 [M+H]$^+$.

Example 68 -- (S)-5-((1-(7-chloro-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)amino)-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile (Cmpd 217)
To compound II-7b (59 mg, 0.175 mmol) in DMSO (5 mL) in a sealed tube was added 5-fluoro-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile III-5 (35 mg, 0.23 mmol) and NEt2Pr2 (0.5 mL). The reaction mixture was heated up to 110 °C and stirred for 3 h. The reaction mixture was then cooled to rt, diluted with water (30 mL) and extracted with EtOAc (50 mL X 4). The combined organic layers were dried (Na2SO4), concentrated and purified by reverse C-18 ISCO with water (0.1% TFA) to CH3CN (0.1% TFA) to give the title compound (Cmpd 217) (22 mg, 34%) as a white solid. 1H NMR (300 MHz, DMSO-d6): δ 12.71 (s, 1H), 7.82 (d, J = 6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J = 2.19 Hz, 1H), 7.59 (dd, J = 9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J = 8.79 Hz, 1H), 7.05 (d, J = 7.71 Hz, 1H), 6.93 (d, J = 7.98 Hz, 1H), 6.31 (d, J = 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J = 6.60 Hz, 3H). LCMS (Method 3): RT = 5.30 min, m/z = 357.1 [M+H]+.

Table 20: The compounds listed in Table 20 were prepared using methods similar to those described for the preparation of Examples 66-69.
Table 21. LCMS signal and NMR chemical shifts of each compound listed in Table 20.

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>LCMS</th>
<th>1H NMR (300 MHz) δ ppm</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>m/z: 351.04 (M+H)+ Rt (min): 1.36</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 11.68 (br, 1H), 7.83 (s, 1H), 7.80 (d, J=2.37 Hz, 1H), 7.47 (d, J=8.92 Hz, 1H), 7.42 (d, J=2.4 Hz, 1H) 7.22 (d, J=8.78 Hz, 1H), 6.41 (d, J=, 1H), 2.15 (s, 3H), 1.75 (s, 6H).</td>
<td>6-[[1-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)cyclopropyl]amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>215</td>
<td>m/z: 353.10 (M+H)+ Rt (min): 1.54</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.71 (s, 1H), 7.82 (d, J= 6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J= 2.19 Hz, 1H), 7.59 (dd, J= 9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J= 8.79 Hz, 1H), 7.05 (d, J= 7.71 Hz, 1H), 6.93 (d, J= 7.98 Hz, 1H), 6.31 (d, J= 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J= 6.60 Hz, 1H).</td>
<td>6-[[2-(6-chloro-2-oxo-1,2-dihydroquinolin-3-yl)propan-2-yl]amino]-2-methylpyridine-3-carbonitrile</td>
</tr>
<tr>
<td>216</td>
<td>m/z: 356.15 (M+H)+ Rt (min): 1.28</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.71 (s, 1H), 7.82 (d, J= 6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J= 2.19 Hz, 1H), 7.59 (dd, J= 9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J= 8.79 Hz, 1H), 7.05 (d, J= 7.71 Hz, 1H), 6.93 (d, J= 7.98 Hz, 1H), 6.31 (d, J= 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J= 6.60 Hz, 1H).</td>
<td>5-[[1(R)-1-[(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
<tr>
<td>217</td>
<td>m/z: 356.20 (M+H)+ Rt (min): 1.28</td>
<td>1H NMR (300 MHz, DMSO-d6): δ 12.71 (s, 1H), 7.82 (d, J= 6.57 Hz, 1H), 7.90 (s, 1H), 7.81 (s, 1H), 7.59 (d, J= 2.19 Hz, 1H), 7.59 (dd, J= 9.06 Hz, 2.19 Hz, 1H), 7.32 (d, J= 8.79 Hz, 1H), 7.05 (d, J= 7.71 Hz, 1H), 6.93 (d, J= 7.98 Hz, 1H), 6.31 (d, J= 7.98 Hz, 1H), 5.00 (m, 1H), 3.59 (s, 3H), 1.49 (d, J= 6.60 Hz, 1H).</td>
<td>5-[[1(S)-1-[(7-chloro-3-oxo-3,4-dihydroquinazolin-2-yl)ethyl]amino]-1-methyl-6-oxo-1,6-dihydropyridine-2-carbonitrile</td>
</tr>
</tbody>
</table>
Example 69 -- IDH1-R132H and IDH1-R132C Enzymatic Assay

[0265] Assays were performed in a 384-well black plate. An aliquot of 250 nL of compound was incubated with 10 μL of 30 nM IDH1-R132H or 10 nM IDH1-R132C recombinant protein in assay buffer (50 mM Tris pH = 7.5, 150 mM NaCl, 5 mM MgCl₂, 0.1% (w/v) Bovine Serum Albumin, and 0.01% Triton X-100) in each well at 25 °C for 15 minutes. After the plate was centrifuged briefly, an aliquot of 10 μL of 2 mM α-ketoglutarate and 20 μM NADPH solution prepared in assay buffer was then added to each well and the reaction was maintained at 25 °C for 45 minutes. An aliquot of 10 μL of diaphorase solution (0.15U/mL diaphorase and 30 μM Resazurin in assay buffer) was added to each well. The plate was maintained at 25 °C for 15 minutes and then read on a plate reader with excitation and emission wavelengths at 535 nm and 590 nm, respectively. The IC₅₀ of a given compound was calculated by fitting the dose response curve of inhibition of NADPH consumption at a given concentration with the four parameter logistic equation.

Example 70 -- Cellular 2-HG assay using HCT116 mutant IDH1 cells

[0266] HCT116 isogenic IDH1-R132H and IDH1-R132C mutant cells were cultured in growth media (McCoy’s 5A, 10% fetal bovine serum, 1X antibiotic-antimycotic solution and 0.3 mg/mL G418) in 5% CO₂ in an incubator at 37 °C. To prepare the assay, cells were trypsinized and resuspended in assay media (McCoy’s 5A with no L-glutamine, 10% fetal bovine serum, 1X antibiotic-antimycotic solution and 0.3 mg/mL G418). An aliquot of 10,000 cells/100 μL was transferred to each well of a clear 96-well tissue culture plate. The cells were incubated in 5% CO₂ at 37 °C in an incubator overnight to allow for proper cell attachment. An aliquot of 50 μL of compound containing assay media were then added to each well and the assay plate was kept in 5% CO₂ at 37 °C in an incubator for 24 hours. The media was then removed from each well and 150 μL of a methanol/water mixture (80/20 v/v) was added to each well. The plates were kept at -80 °C freezer overnight to allow for complete cell lysis. An aliquot of 125 μL of extracted supernatant was analyzed by RapidFire high-throughput-mass spectrometry (Agilent) to determine the cellular 2-HG level. The IC₅₀ of a given compound was calculated by fitting the dose response curve of cellular 2-HG inhibition at a given concentration with the four parameter logistic equation.
Table 22 Results of the illustrative compounds of Formula I in IDH1-R132H, IDH1-R132C, IDH1-MS-HTC116-R132H, and IDH1-MS-HTC116-R132C assays.

<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>Enzyme IDH1 R132H IC50 (µM)</th>
<th>Enzyme IDH1 R132C IC50 (µM)</th>
<th>HCT116 IDH1 R132H IC50 (µM)</th>
<th>HCT116 IDH1 R132C IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.014</td>
<td>0.111</td>
<td>0.007</td>
<td>0.213</td>
</tr>
<tr>
<td>2</td>
<td>24.391</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.014</td>
<td>0.158</td>
<td>0.030</td>
<td>0.503</td>
</tr>
<tr>
<td>4</td>
<td>5.000</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.448</td>
<td>2.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.021</td>
<td>0.185</td>
<td>0.234</td>
<td>0.269</td>
</tr>
<tr>
<td>7</td>
<td>0.012</td>
<td>0.131</td>
<td>0.115</td>
<td>0.706</td>
</tr>
<tr>
<td>8</td>
<td>0.024</td>
<td>0.190</td>
<td>0.152</td>
<td>0.092</td>
</tr>
<tr>
<td>9</td>
<td>0.044</td>
<td>1.015</td>
<td>0.185</td>
<td>0.338</td>
</tr>
<tr>
<td>10</td>
<td>4.199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>19.269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.067</td>
<td>0.090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.147</td>
<td>0.606</td>
<td>0.174</td>
<td>1.918</td>
</tr>
<tr>
<td>14</td>
<td>0.069</td>
<td>2.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.048</td>
<td>0.285</td>
<td>0.043</td>
<td>0.585</td>
</tr>
<tr>
<td>16</td>
<td>0.109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.233</td>
<td>1.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.020</td>
<td>0.142</td>
<td>0.281</td>
<td>0.330</td>
</tr>
<tr>
<td>19</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15.333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.566</td>
<td>5.798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.641</td>
<td>5.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.015</td>
<td>0.098</td>
<td>0.019</td>
<td>0.105</td>
</tr>
<tr>
<td>26</td>
<td>4.474</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.031</td>
<td>0.202</td>
<td>0.022</td>
<td>0.104</td>
</tr>
<tr>
<td>28</td>
<td>0.043</td>
<td>0.597</td>
<td>0.067</td>
<td>0.311</td>
</tr>
<tr>
<td>29</td>
<td>8.057</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compd No</td>
<td>Enzyme IDH1 R132H IC50 (μM)</td>
<td>Enzyme IDH1 R132C IC50 (μM)</td>
<td>HCT116 IDH1 R132H IC50 (μM)</td>
<td>HCT116 IDH1 R132C IC50 (μM)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>30</td>
<td>0.044</td>
<td>0.357</td>
<td>0.041</td>
<td>0.034</td>
</tr>
<tr>
<td>31</td>
<td>0.079</td>
<td>0.747</td>
<td>0.241</td>
<td>0.658</td>
</tr>
<tr>
<td>32</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.009</td>
<td>0.038</td>
<td>0.003</td>
<td>0.011</td>
</tr>
<tr>
<td>34</td>
<td>3.527</td>
<td>21.477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.023</td>
<td>0.088</td>
<td>0.006</td>
<td>0.017</td>
</tr>
<tr>
<td>36</td>
<td>0.008</td>
<td>0.031</td>
<td>0.004</td>
<td>0.016</td>
</tr>
<tr>
<td>37</td>
<td>0.024</td>
<td>0.178</td>
<td>0.032</td>
<td>0.322</td>
</tr>
<tr>
<td>38</td>
<td>0.011</td>
<td>0.142</td>
<td>0.022</td>
<td>0.449</td>
</tr>
<tr>
<td>39</td>
<td>0.013</td>
<td>0.052</td>
<td>0.007</td>
<td>0.020</td>
</tr>
<tr>
<td>40</td>
<td>0.004</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0.011</td>
<td>0.011</td>
<td>0.000</td>
<td>0.006</td>
</tr>
<tr>
<td>42</td>
<td>1.466</td>
<td>21.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0.011</td>
<td></td>
<td>0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>44</td>
<td>0.033</td>
<td>0.025</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>45</td>
<td>0.011</td>
<td></td>
<td>0.023</td>
<td>0.020</td>
</tr>
<tr>
<td>46</td>
<td>0.031</td>
<td>0.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0.008</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>48</td>
<td>0.008</td>
<td>0.024</td>
<td>0.002</td>
<td>0.017</td>
</tr>
<tr>
<td>49</td>
<td>0.015</td>
<td></td>
<td>0.034</td>
<td>0.046</td>
</tr>
<tr>
<td>50</td>
<td>0.039</td>
<td>0.326</td>
<td>0.032</td>
<td>0.253</td>
</tr>
<tr>
<td>51</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3.414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.089</td>
<td>0.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9.492</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1.587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1.899</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1.403</td>
<td>0.434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.243</td>
<td>0.768</td>
<td>0.562</td>
<td>0.208</td>
</tr>
<tr>
<td>61</td>
<td>1.200</td>
<td>3.556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Enzyme IDH1 R132H IC50 (μM)</td>
<td>Enzyme IDH1 R132C IC50 (μM)</td>
<td>HCT116 IDH1 R132H IC50 (μM)</td>
<td>HCT116 IDH1 R132C IC50 (μM)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>62</td>
<td>1.591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>2.113</td>
<td>4.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>2.404</td>
<td>2.431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2.465</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>2.550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>3.630</td>
<td>3.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>3.730</td>
<td>6.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>4.286</td>
<td>6.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>6.775</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>4.782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3.864</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>6.301</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>14.563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>19.699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>25.000</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0.081</td>
<td>2.499</td>
<td>0.230</td>
<td>2.180</td>
</tr>
<tr>
<td>80</td>
<td>0.045</td>
<td>0.820</td>
<td>0.219</td>
<td>3.213</td>
</tr>
<tr>
<td>81</td>
<td>0.358</td>
<td>13.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>0.223</td>
<td>37.336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.065</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>0.694</td>
<td>10.764</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>0.628</td>
<td>33.715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>18.767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>0.314</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0.344</td>
<td>5.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>0.464</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.487</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0.540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.704</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>1.227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Enzyme IDH1 R132H IC50 (µM)</td>
<td>Enzyme IDH1 R132C IC50 (µM)</td>
<td>HCT116 IDH1 R132H IC50 (µM)</td>
<td>HCT116 IDH1 R132C IC50 (µM)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>94</td>
<td>2.124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.094</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>0.188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>10.370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>25.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>9.674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.267</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>5.513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>0.142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>0.231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.365</td>
<td>18.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>0.480</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.668</td>
<td>110.879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0.695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.998</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>1.703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>2.202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>2.508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>2.525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>2.893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>3.884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>4.220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>5.196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>5.704</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>5.770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>6.297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>7.320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Enzyme IDH1 R132H IC50 (μM)</td>
<td>Enzyme IDH1 R132C IC50 (μM)</td>
<td>HCT116 IDH1 R132H IC50 (μM)</td>
<td>HCT116 IDH1 R132C IC50 (μM)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>126</td>
<td>8.788</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>9.964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>11.048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>12.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>16.584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>17.472</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>19.058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>0.160</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>16.777</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>0.238</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>0.913</td>
<td>15.909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>3.617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>24.900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>0.132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>17.323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>11.798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>0.711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>2.999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>15.385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>0.442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>0.140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>2.755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>3.223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>13.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.279</td>
<td>60.789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>0.012</td>
<td>100.000</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>152</td>
<td>0.072</td>
<td>0.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>0.261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>0.303</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>0.060</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>0.053</td>
<td>4.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Enzyme IDH1 R132H IC50 (µM)</td>
<td>Enzyme IDH1 R132C IC50 (µM)</td>
<td>HCT116 IDH1 R132H IC50 (µM)</td>
<td>HCT116 IDH1 R132C IC50 (µM)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>158</td>
<td>0.095</td>
<td>2.828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>0.729</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>0.640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>0.378</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>0.675</td>
<td>11.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>0.570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>0.082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>0.009</td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>0.042</td>
<td>56.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>0.053</td>
<td>0.757</td>
<td>0.016</td>
<td>0.096</td>
</tr>
<tr>
<td>169</td>
<td>0.042</td>
<td>5.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>0.316</td>
<td>4.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>0.022</td>
<td>0.932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>0.011</td>
<td>2.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>0.017</td>
<td>1.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>0.084</td>
<td>6.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>0.320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.026</td>
<td>0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>0.027</td>
<td>0.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>0.035</td>
<td>2.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>0.072</td>
<td>5.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.075</td>
<td>2.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>0.032</td>
<td>0.617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>0.078</td>
<td>5.349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>0.077</td>
<td>0.317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>0.039</td>
<td>8.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>0.013</td>
<td>1.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>0.066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>0.230</td>
<td>8.168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>0.753</td>
<td>7.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>0.038</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>Enzyme IDH1 R132H IC50 (µM)</td>
<td>Enzyme IDH1 R132C IC50 (µM)</td>
<td>HCT116 IDH1 R132H IC50 (µM)</td>
<td>HCT116 IDH1 R132C IC50 (µM)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>190</td>
<td>0.033</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>0.015</td>
<td>0.277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>0.018</td>
<td>0.274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>0.033</td>
<td>82.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>0.011</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>0.460</td>
<td>15.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>0.146</td>
<td>4.714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>0.226</td>
<td>5.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>0.130</td>
<td>9.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>0.024</td>
<td>2.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.082</td>
<td>3.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>0.096</td>
<td>7.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>0.023</td>
<td>5.656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>0.025</td>
<td>0.947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>0.224</td>
<td>4.799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>0.108</td>
<td>21.619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>0.186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>0.130</td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>0.394</td>
<td>88.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>0.022</td>
<td>3.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>0.341</td>
<td>3.712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>0.460</td>
<td>1.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>11.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>0.295</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>0.415</td>
<td>5.000</td>
<td>2.847</td>
<td>5.299</td>
</tr>
<tr>
<td>217</td>
<td>0.137</td>
<td>1.550</td>
<td>0.140</td>
<td>1.165</td>
</tr>
</tbody>
</table>
Equivalents

Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.
Compound 166

Figure 1
α-KG Competition for Cmpd 166

<table>
<thead>
<tr>
<th></th>
<th>1mM a-KG</th>
<th>2mM a-KG</th>
<th>4mM a-KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>4.872</td>
<td>6.942</td>
<td>11.19</td>
</tr>
</tbody>
</table>

Figure 2
NADPH Competition for Cmpd 166

![Graph showing NADPH competition for Cmpd 166]

<table>
<thead>
<tr>
<th>NADPH Concentration</th>
<th>EC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 μM NADPH</td>
<td>12.07</td>
</tr>
<tr>
<td>3.3 μM NADPH</td>
<td>7.641</td>
</tr>
<tr>
<td>10 μM NADPH</td>
<td>4.019</td>
</tr>
<tr>
<td>30 μM NADPH</td>
<td>2.138</td>
</tr>
</tbody>
</table>

Figure 3
Electronic Acknowledgement Receipt

<table>
<thead>
<tr>
<th>EFS ID:</th>
<th>21671303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Number:</td>
<td>62128089</td>
</tr>
<tr>
<td>International Application Number:</td>
<td></td>
</tr>
<tr>
<td>Confirmation Number:</td>
<td>9180</td>
</tr>
<tr>
<td>Title of Invention:</td>
<td>PHENYL AND PYRIDINYL QUINOLINONE DERIVATIVES AS MUTANT-ISOCITRATE DEHYDROGENASE INHIBITORS</td>
</tr>
<tr>
<td>First Named Inventor/Applicant Name:</td>
<td>Kenneth W Bair</td>
</tr>
<tr>
<td>Customer Number:</td>
<td>58249</td>
</tr>
<tr>
<td>Filer:</td>
<td>J. Dean Farmer/peg waters</td>
</tr>
<tr>
<td>Filer Authorized By:</td>
<td>J. Dean Farmer</td>
</tr>
<tr>
<td>Attorney Docket Number:</td>
<td>FOTH-004/01US 314575.2032</td>
</tr>
<tr>
<td>Receipt Date:</td>
<td>04-MAR-2015</td>
</tr>
<tr>
<td>Filing Date:</td>
<td></td>
</tr>
<tr>
<td>Time Stamp:</td>
<td>14:26:56</td>
</tr>
<tr>
<td>Application Type:</td>
<td>Provisional</td>
</tr>
</tbody>
</table>

Payment information:

<table>
<thead>
<tr>
<th>Submitted with Payment</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment Type</td>
<td>Deposit Account</td>
</tr>
<tr>
<td>Payment was successfully received in RAM</td>
<td>$530</td>
</tr>
<tr>
<td>RAM confirmation Number</td>
<td>705</td>
</tr>
<tr>
<td>Deposit Account</td>
<td>501283</td>
</tr>
</tbody>
</table>

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

- Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)
- Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Document Description</th>
<th>File Name</th>
<th>File Size(Bytes)/Message Digest</th>
<th>Multi Part./.zip</th>
<th>Pages (if appl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Provisional Cover Sheet (SB16)</td>
<td>FOTH-00401US-Provisional-CoverSheet.pdf</td>
<td>1477578</td>
<td>no</td>
<td>4</td>
</tr>
</tbody>
</table>

| 2 | FOTH-00401US-Provisional-Application-03042015.pdf | 3112696 | yes | 250 |

<table>
<thead>
<tr>
<th>Document Description</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>1</td>
<td>223</td>
</tr>
<tr>
<td>Claims</td>
<td>224</td>
<td>249</td>
</tr>
<tr>
<td>Abstract</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

| 3 | Drawings-only black and white line drawings | FOTH-00401US-Drawings.pdf | 494951 | no | 3 |

| 4 | Fee Worksheet (SB06) | fee-info.pdf | 32229 | no | 2 |

| Total Files Size (in bytes): | 5117454 |

Warnings:

Information:
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.