DOCUMENT MADE AVAILABLE UNDER THE PATENT COOPERATION TREATY (PCT)

International application number: PCT/DK2015/050285
International filing date: 21 September 2015 (21.09.2015)
Document type: Certified copy of priority document
Document details: Country/Office: DK
Number: PA 2014 00536
Filing date: 19 September 2014 (19.09.2014)
Date of receipt at the International Bureau: 29 September 2015 (29.09.2015)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a),(b) or (b-bis)
CERTIFICATE OF AVAILABILITY OF A CERTIFIED PATENT DOCUMENT IN A DIGITAL LIBRARY

The International Bureau certifies that a copy of the patent application indicated below has been available to the WIPO Digital Access Service since the date of availability indicated, and that the patent application has been available to the indicated Office(s) as of the date specified following the relevant Office code:

Document details: Country/Office: DK
Filing date: 19 Sep 2014 (19.09.2014)
Application number: PA 2014 00536

Date of availability of document: 29 Sep 2015 (29.09.2015)

The following Offices can retrieve this document by using the access code:
JP, US, SE, KR, ES, GB, AU, IB, CN, FI

Date of issue of this certificate: 04 Nov 2015 (04.11.2015)
Kingdom of Denmark

Patent application No.: PA 2014 00536
Date of filing: 19 September 2014

Applicant: Coloplast A/S
(Name and address) Holtedam 1
DK-3050 Humlebæk
Denmark

Title: An Anal Irrigation System
IPC: --

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

29 September 2015

Danish Patent and Trademark Office
Ministry of Economic and Business Affairs
General Director Jesper Kongstad
An Anal Irrigation System

The invention relates to an anal irrigation system including a control unit attached to the system through an extension cord.

Background

5 Anal irrigation is one of a number of treatments used to aid people with bowel problems. People suffering from bowel problems are often paralysed, typically due to spinal cord injuries, and confined to a wheelchair or hospitalized. In these situations, often the peristaltic functions, i.e. the reflexes and muscles of the bowel, cannot be stimulated correctly. This results in constipation or random discharge of bowel contents. By using anal irrigation, a stimulation of the peristaltic movements of the colon can be provided. To perform such anal irrigation, a device comprising an anal probe, also called anal catheter, rectal catheter or speculum, is provided. The anal probe is inserted into the rectum through the anus. The anal probe is typically retained in the rectum by retention means, most commonly a balloon, which is inflated against the wall of the rectum. A liquid, such as water or a saline solution, is then introduced into the rectum through the anal probe. The amount of liquid is generally up to 1.5 liters, depending on the person.

Description of related art

International publication no. WO2014/001313 describes a portable irrigation system. The system comprises a reservoir for an irrigating liquid; a probe for arrangement in a user; and an electrical system. The electrical system includes an electrical pump for directly or indirectly pumping irrigation liquid from the reservoir to the probe. The irrigation system further comprises a control unit for controlling the electrical pump, and thereby also the transfer of said irrigation liquid; and tubing providing fluid communication between said reservoir, control unit and probe. The control unit comprises at least one manually operable control element, such as a control button, for controlling said electrical pump, said control element being switchable between an activated state, in which the electrical pump is controlled to pump irrigation liquid, and a deactivated state, in which the electrical pump is controlled not to pump irrigation liquid. Further the control element is brought into the activated state by continuous application of a predetermined condition thereto, and is immediately brought to the deactivated state when the predetermined condition ceases to be applied, thereby aborting pumping of the irrigation liquid, thereby implementing a dead man's handle functionality.
Summary of the Invention

The invention provides an anal irrigation system with a control unit for controlling an electrical pump and valves in the system. The control unit is attached to an external tube through an extension cord that allows pivoting of the control unit with respect to the external tube. Other systems having the control unit attached directly to the tube will lead to a bulky control unit and the user might further have to twist the entire system – or at least a major part of the tube – to be able to handle and see the control unit properly.

Brief Description of the Drawing

Figure 1 illustrates an anal irrigation system including a control unit.

Figure 2 illustrates how the lid can provide a cavity for storing the control unit.

Figure 3 illustrates an exploded view of the parts of the extension cord for the control unit.

Figure 4 illustrates a side view of the extension cord.

Figure 5 illustrates a cross-sectional view of the extension cord.

Figure 6 illustrates an anal irrigation system including a control unit and an electrical pump and valves.

Detailed Description of the Invention

In a first aspect, the invention relates to an irrigation system comprising a container, tubes, an anal probe, an electrical pump and a control unit, one of the tubes being an external tube connecting the container with the control unit and the anal probe, the control unit being connected to the external tube through an extension cord so that the control unit extends transversely to the external tube, the extension cord including only the electrical wiring, the extension cord allowing for pivoting of the extension cord with respect to the external tube.

Positioning of the control unit transverse to the external tube allows the user to see the text and numbers correctly on the display, when the external tube extends across the thigh of the user during use of the system.
The extension cord allows the control unit to be separated from the lumens in the external tube that includes the liquid, only the electrical wires go through the extension cord. This will lead to a less bulky control unit.

Pivoting of the extension cord with respect to the external tube is advantageous, because it allows pivoting of the control unit with respect to the external tube – thereby enabling the user to see the display without having to twist the external tube.

In the following, whenever referring to a proximal end of an element of the invention, the referral is to the end adapted for insertion. Whenever referring to the distal end of an element, the referral is to the end opposite the insertion end. In other words, the proximal end is the end closest to the user, when the anal probe is to be inserted and the distal end is the opposite end – the end furthest away from the user when the anal probe is to be inserted.

The longitudinal direction is the direction from the distal to the proximal end. The transverse direction is the direction perpendicular to the longitudinal direction, which corresponds to the direction across the shaft of the anal probe.

An irrigation system typically comprises a reservoir or container for irrigation liquid, an anal probe and tubing connecting those two. The system also includes a pump for pumping the irrigation liquid into the intestines. If the anal probe is provided with inflatatable retention means, a pump for inflating these retention means may also be provided. Alternatively, a system for switching the pumping between pumping irrigation liquid into the intestines and inflating the retention means may be included in the system.

The anal probe comprises a main tubular part, typically called a shaft, extending from the distal end to the proximal end. The tip is positioned in the proximal end of the anal probe and is provided as a rounded closed end of the shaft. The anal probe may comprise a connector in the distal end and may in an embodiment comprise a flared end of the catheter so that the diameter of the connector increases with respect to the tubular part.

Usually anal probes used for anal irrigation are approximately 10-20 mm in diameter. The anal probe will typically be provided with eyelets in the proximal end, the eyelets communicating with an irrigation channel inside the anal probe, so that irrigation liquid pumped into the anal probe in the distal end can exit the catheter through the eyelets at
the proximal end. The anal probe will also typically be provided with a retention element, e.g. in form of an inflatable balloon, for retaining the anal probe inside the rectum during the irrigation procedure. For the purpose of inflating the balloon, the anal probe is provided with an inflation channel inside the anal probe, the inflation channel extending from the distal end of the anal probe and terminating under the balloon.

The external tube may be only one tube including several lumens – or it may be in the form of two separate tubes, in which case both tubes may extend from the container to the anal probe, one communicating with the inflation channel in the anal probe and one communicating with the irrigation channel in the anal probe. In that case, either of these two tubes may include the electric wire for connecting the control unit with the pump and valves inside the container – and the extension cord will be attached to this tube.

The extension tube at the control unit provides for a pivoting effect of the control unit with respect to the tube connecting the container with the probe. In an example, this pivoting or hinging effect is obtained by providing the extension tube in a material that is flexible, e.g. silicone.

Furthermore, the extension cord may be made as a tube element connected with a strip of silicone material. The tube element may then enclose the external tube and allow for pivoting or hinging the extension cord with respect to the external tube.

In an embodiment of the invention, the tube extending from the control unit to the container has three lumens, two for liquid and one for an electrical wire and the tube extending from the control unit to the anal probe has two liquid lumens.

This will allow for an easy and simple configuration of the tubes.

In an embodiment of the invention, the container further has a lid with a cavity with room for the control unit, the cavity having a rim that cooperates with a cam on the extension cord.

The hinging effect allows the control unit to be “clicked” into position in a cavity in the lid by a cam cooperating with a rim on the lid.
Detailed Description of the Drawing

Figure 1 illustrates an irrigation system according to an embodiment of the invention. The system includes a container 1, a control unit 2 and a probe 3. Furthermore, there is an external tube 4 connecting the container 1 with the probe 3. The container has a bottom 5 and a top 6, the top 6 has a neck part 7 provided with a lid 8. The control unit is connected to external tube 4 through an extension cord 9. This extension cord 9 is flexible and allows the control unit 2 to be pivoted with respect to the external tube 4.

The control unit is provided with a display 10, displaying e.g. the actual step during the irrigation procedure. For example, when the balloon is being inflated, the display might show “inflated balloon”. Likewise, the display 10 may show the temperature of the irrigation liquid, which preferably should be around 37 °C.

The external tube 4 may be coiled up around the neck part 7, when the system is stored. In this position, the control unit 2 may be stored in a cavity 11 in the lid 8 as indicated in figure 2.

When the user wants to use the system, the control unit 2 can be pivoted so that the display 10 can be seen. Then the user can remove the lid 8 and fill the container 1 with irrigation liquid (e.g. water including a saline solution). During the filling process, the user can see the temperature of the irrigation liquid that is tracked through a temperature sensor in the container (not shown) on the display 10.

When the container is filled with irrigation liquid, the user can move the system to the near vicinity of the toilet and prepare for the irrigation procedure to take place. When the user has positioned himself on the toilet, the tube can be un-coiled from the neck part of the container and the tube, including the control unit can be placed across the user’s thigh. Also in this position, and due to the pivoting ability of the extension cord, the control unit may easily be positioned so that the display on the control unit is clearly visible to the user. The user may then be guided by the display to use the control unit to perform the actual irrigation procedure.

Figures 3, 4 and 5 show in detail the connection of the control unit 2 with the external tube 4 through the extension cord 9. In the embodiment shown, the external tube 4 has a first part 12 and a second part 13 connected through a connecting part 14. This allows the tube to be split between a three-lumen tube, the first part 12, from the container to the
control unit 2 and a two-lumen tube, the second part 13, from the control unit to the anal probe. The three lumens provide two liquid lumens, one for inflating the balloon and one for irrigation liquid as well as a lumen for the electrical wiring between the control unit and an electrical pump and valves that may be positioned at the bottom of the container. An embodiment of the irrigation system with the pump 20 and valves 21 positioned at the bottom 5 of the container is shown in figure 6. The two lumens provide for the two liquid lumens. Figure 3 illustrates the extension cord in an open position—prior to assembling it with the connecting part 14 enclosed and the electrical wiring inside the cord. Figures 4 and 5 illustrate a side view (figure 4) and a cross-sectional view of section A-A (figure 5) of the extension cord 9, when the system is assembled. The electrical wiring 15 is visible in figure 5.
Claims

1. An irrigation system comprising a container, tubes, an anal probe, an electrical pump and a control unit, one of the tubes being an external tube connecting the container with the control unit and the anal probe, the control unit being connected to the external tube through an extension cord so that the control unit extends transversely to the external tube, the extension cord including only the electrical wiring, the extension cord allowing for pivoting of the extension cord with respect to the external tube.

2. The irrigation system of claim 1, wherein the tube extending from the control unit to the container has three lumens, two for liquid and one for an electrical wire, and wherein the tube extending from the control unit to the catheter has two liquid lumens.

3. The irrigation system of any of the preceding claims, wherein the container further has a lid with a cavity with room for the control unit.

4. The irrigation system of any of the preceding claims, wherein the cavity has a rim that cooperates with a cam on the extension cord.
Abstract

An anal irrigation system including a control unit is provided. The control unit is connected to an external tube by an extension cord, so that pivoting of the control unit with respect to the external tube is possible.