Attorney Docket No. 0057-065PCT - PGT/MSR000080781319909992Us

Method and Apparatus for Reducing Latency Associated with
Executing Multiple Instruction Groups

Inventor; Charles H. Moore

BACKGROUND OF THE INVENTION
1. Field of Invention:

The invention is related to data processing- particularly to methods and apparatus for

reducing the latency associated with executing multiple instruction groups.

2. Description of the Background Art:

Data processing includes the sending of a series of instructions to a central processing
unit (CPU). The series of instructions are in turn collected into instruction groups. The
instruction group(s) may include either instructions such as +, -, * /, and/or fetch, etc., or data
such as a sting of numbers. In machine language there is typically an instruction set of all the
instructions a processor will accept. These instructions are loaded into registers which are a
form of short term memory. As would be expected, there is a time delay between asking for
an instruction and the execution of the instruction. A measure of this time delay is called
“latency”.

The term latency can have many different meanings, depending on the application.
Latency is the time delay between the moment something is initiated and the moment one of
its effects begins or becomes detectable. For example, assume an event a, at a time ta and
event b, at some time later at time tb. This relationship implies tb > ta > 0 and for this
example assume that event b is a direct result of event a. In this particular example, the
latency would be defined as time tb — ta. Understanding latency from this example means the
effects of event a are potential, not immediate, or are not yet observable until time tb.

Latency is an important concept when many actions are associated with a certain
event. Suppose that a person who owns a ten-room home has hired a maid to clean the house.
This maid will only be able to complete one room at a time. In this particular example,

assume it takes the maid time ti to clean the ith room of the home. Therefore if the person
1



Attorney Docket No. 0057-065PCT - PGTNSRO0UA0KIZR1319909992Us

who owns a ten-room home has only hired one maid then the latency, L, for the house

cleaning is as follows:
L=X1t, M

the sum of the time it takes the maid to clean all ten rooms. Suppose instead that two maids
have been hired. Maid one is responsible for cleaning rooms 1-5 and maid two is responsible
for cleaning rooms 6-10. In this case it is possible for each maid to be cleaning a room at a
time. However, because the time for cleaning each room has not been well defined, it cannot
be stated which maid will finish the task of cleaning first. Unfortunately, the winner of this
so-called cleaning contest does not account for the latency; instead it is the slower of the two
which contributes to the latency.
5 10
L= max(Zt,.,ZI,-), @
i=1 i=6
If three maids were hired to clean the same home, the latency would simply be the
time that it takes the slowest maid to clean her portion of the house. These examples (when
more than one maid is utilized to clean the home) assume that once a maid has finished with
their portion of the work, they do not help the other maid(s) complete their work. This means
that only one maid can clean one room at a time. In the more general case when an event is
associated with j actions, the latency associated with the event is the time it takes for the j
actions to be completed. Latency is improved when those j actions can be completed in
parallel (at the same time as another action(s)). Additionally, the j actions are bound below in
the sense that the smallest latency is the time it takes to complete the slowest j action. Thus

latency is formally defined next:
max(/')s LSZj, (€))
where the latency is at most the time which is required to execute all of the j events (this is

the worst or slowest case) and the latency is at best the time which is required to execute the

most time consuming jth event (this is the best or fastest case).



Attorney Docket No. 0057-065PCT - PGH/MSRO00/0080731319909992Us

SUMMARY OF THE INVENTION

The invention provides a method and apparatus for expedited execution of
instructions to provide é dramatic reduction of latency. This in turn can result in a speed of
execution of instruction which is far greater than would be expected by the clock speed of a
given processor.

The invention allows the processor to “look ahead” at incoming data to determine if it
is an instruction applicable to the process. If the instruction is such an instruction, it is loaded
virtually simultaneously with the preceding instruction. This is accomplished without

supplementary caching as conventionally used in so-called prefetch operations and processes.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 depicts a flow diagram describing the instruction group execution;

Fig. 2 illustrates the instruction group register;

Fig. 3 is a flow diagram detailing an element from Fig. 1;

Fig. 4 shows a timing diagram representing two blocks from the flow diagram
illustrated in Fig. 1;

Fig. 5 depicts a flow diagram showing the method in which fetching of the next
instruction group is accomplished;

Fig. 6 is a logic circuit depicting a specific instruction groups sent from Fig. 5; and

Fig. 7 is a timing diagram representing the fetching of the next instruction group

during the execution of the slot 3 instruction of the instruction group.

DETAILED DESCRIPTION OF THE DRAWINGS

The invention is illustrated with a processor using an 18-bit bus and 18-bit instruction
groups. Each instruction group can be divided into slots. Each slot corresponds to an
instruction. Executing instructions in a sequential manner is the case with conventional
processors when no new instruction can begin until the old instruction has finished. In the
case of executing the four slots of the 18-bit instruction group, the execution of the fetching
of the next instruction group will always occur after, and never before or during the four
instruction slot executions. Therefore, the latency of the time needed to execute all of the
slots of the current instruction and fetching of the next instruction group is the addition of the
time needed to complete each of the two tasks separately. In the case where these two tasks

could be accomplished in parallel, then it is possible to reduce the latency of this process up

3



Attorney Docket No. 0057-065PCT - PGT/MSR000/0080E81319909992Us

to the time it takes to complete the slowest task. The invention is illustrated using an 18-bit
multicore processor.

The conventional method of instruction execution in a sequential manner can be
found in the flow chart of Fig. 1. A method 100 is shown which describes the actions
associated with executing an instruction group and acquiring the next instruction group for
execution. While this method begins with step 102, it could just as easily begin at either step
104 or step 106. It is assumed that by beginning with any element in the method 100 there is
an instruction group available for loading, executing or fetching. However, for simplicity the
method is shown to begin at step 102. Step 102 defines the action of loading the current
instruction group which will be executed as defined by step 104. Step 106, which completes
the method 100, defines the action of fetching the next instruction group. Following the
actions associated with step 106 is a return to step 102, the beginning of method 100. The
method continues until there are no instructions left to execute.

Fig. 2 illustrates a single layer of an instruction group register as used in SEAforth®
24 and 40 multicore processors designed by IntellaSys® of Cupertino, CA. SEAforth® is a
registered trademark of fntellaSys®. These processors use 18-bit data lines, also called single
drop buses between the cores. Instruction group register 200 is designed to contain
instruction groups for execution as described in Fig. 1. In this embodiment, instruction group
register 200 is shown containing 18 bits labeled 202a — 202r. Since register 200 is a part of a
binary computer, each of the bits 202 will be a ‘1’ or a ‘0’. Additionally, the 18-bit
instruction group register is grouped into four slots. Slot 0, labeled as 204, is made up of five
bits, bits shown as 202a — 202¢e. Slot 1, labeled as 206, is made up of five bits, bits shown as
202f — 202j. Slot 2, labeled as 208, is made up of five bits, bits shown as 202k — 2020. Slot
3, labeled as 210, is made up of three bits, bits shown as 202p — 202r. The bit lengths of the
four slots are not equal as the division of 18 by 4 results in a remainder and for this reason the
designers of the SEAforth® 24 and 40 consider an instruction group to contain 3 and 3s
instructions, as each instruction is five bits wide. The VentureForth® instruction set is the
instructions which control execution of the SEAforth® 24 and 40. The instruction set is
made up of 32 operational codes (“op-codes™), each of which are 5 bits wide, thus making
what would appear to be a slot in which no op-code can fit. However, the designers of the
VentureForth® instruction set only utilize slot 3 for certain op-codes. It should be noted that
the instruction group register 200 can actually contain instructions, data, or some combination

thereof. The 18-bit instruction group register 200 is always read as a whole and therefore,
4



Attorney Docket No. 0057-065PCT - PGHUSRO0Q0R0ER1319909992Us

since there is always a potential of having up to four instructions in the instruction group
register 200, a no operation (“no-op”) instruction is included in the VentureForth®
instruction set to provide for instances when using all of the available slots contained in
instruction group register 200 might be unnecessary or even undesirable. In the event of their
being an instruction in slot 3, a virtual slot 4 is used to allow loading of the next instruction.
Virtual slot 4 is hardwired to have a no-op instruction.

The method 300 shown in Fig. 3 is a detailed description of step 104, the execution of
the instruction group in Fig. 1. This method has four steps and must strictly begin at step
302, the execution of the instruction in slot 0. This is followed by step 304, the execution of
the instruction in slot 1. The third step of this method, step 306, is the execution of the
instruction in slot 2. The last action associated with this method is step 308, the execution of
the instruction in slot 3. Note that when this method 300 is combined with method 100 of
Fig. 1 in the sense that the four steps of method 300 replace step 104 from Fig. 1, this
indicates the sequential execution of the four instructions contained in the instruction group
followed by the execution of the fetching of the next instruction. In the event of their being
an instruction in slot 3, a virtual slot 4 is used to allow loading of the next instruction. Virtual
slot 4 is hardwired to have a no-op instruction.

Fig. 4 shows a timing diagram representing element 104 and element 106 from the
flow diagram illustrated in Fig. 1. Plot 400 shows two curves denoted as curve 402 and curve
404. Both curves begin at time #p and end at time f;. However, only one curve is non-zero
for a particular geometric region. Specifically, curve 402 is non-zero from time # to time #
and this curve is representative of element 104 of Fig. 1. More specifically, this curve
encompasses all the actions associated with method 300 of Fig. 3, the execution of all four
slots of the instruction group. Curve 404 is non-zero from time #; to time ¢, and this curve
represents the action associated with element 106 of Fig. 1, the fetching of the next
instruction group from memory. This timing diagram is representative of the sequential
action of executing the entire instruction group followed by fetching the next instruction
group for execution.

Fig. 5 illustrates a flow diagram depicting the inventive method for performing the
fetching of the next instruction group such that the latency L, for the process of executing the
instruction group and the fetching of the next instruction group is reduced. The method 500
described herein begins with step 502, the loading of the instruction group. The method 500

could also begin with step 508 in another embodiment of the method for performing the
5



Attorney Docket No. 0057-065PCT | - PGT/AMS2009/008078319909992Us

fetching of the next instruction group. Regardless of whether the method is shown to begin at
element 502 or 508, there must be an instruction group available for loading or fetching to
begin at either step in the flow diagram. The fact that this method could begin at step 508
instead of step 502 does not add to the explanation of the inventive method, and for this
reason it will not be discussed in any great detail as an alternative embodiment.

Method 500 begins with element 502, the loading of the instruction group which is a
similar beginning to that of method 100 of Fig. 1. The next executable block in the flow
diagram is step 504, the decoding of the instruction group. This decode is described in more
detail in Fig. 6. The result of decoding the instruction group is a 2 bit value which is utilized
as the first of two inputs to the next block of the flow diagram step 506, the comparison
block.

A slot sequencer 510 is in charge of incrementing the slot counter defined by step
512. Slot counter 512 provides the second input to compare step 506. A shift register is one
easy component to use for slot counter 512, as it need not be 3 bits wide as a conventional
counter, which must identify all 5 potential slots. The second input is a 2 bit binary value
ranging from binary ‘00’ to ‘11° to which the decimal equivalent is 0 to 3. Compare step 506
is thus a comparison for equality between slot counter 512 and the value produced from
decoding step 504 of the instruction group. Once equality has been reached, the fetching 508
of the next instruction group begins. Thus, prior to the execution of slot 0 of the current
instruction group, slot sequencer 510 has made slot counter 512 contain a value of 0. After
execution of slot 0 and before the execution of slot 0 of the instruction group, slot sequencer
510 will increment slot counter 512 to the value of 1. Thus, the value contained by slot
counter 512 can be thought of as incrementing at the end of the slot. After execution of the
second slot of the instruction group (slot 1) slot sequencer 510 will increment slot counter
512 to a value of 2. The execution of slot 2 of the instruction group will result in an
increment of slot counter 512 to a value of 3. Finally, the execution of the instruction
contained in the last slot of the instruction group (slot 3) results in slot sequencer 510
reducing slot counter 512 to the value of 0, not an increment to the value of 5. This is done
so that the execution of the next instruction group can be accomplished utilizing the same
decimal 0 to 3 to represent the appropriate slot. Slot sequencer 510 can be thought of as
providing the value to élot counter 512 as some counter value which begins at zero, is
indefinitely incremented, and modulus 4. Method 500 does not depict instruction group

execution in the same manner that method 100 does. In fact, method 500 does not make any
6



Attoney Docket No. 0057-065PCT - PGTSRODUIORIERi319909992US

reference to instruction group execution. Instead, method 500 only makes reference to when
the fetching of the next instruction group will take place with respect to the slot in which the
instruction group register is about to execute. That is once slot counter 512 and the decode
values are equal the fetching 508 of the next instruction will take place. Due to the fact that
the incrementing of slot counter 510 is directly associated with the execution of each slot
within the instruction group, there is no need to directly reference instruction slot execution
in the flow diagram describing method 500. This is contrasted to the prior art where the
fetching of the next instruction group will only occur after all slots of the instruction group
are executed. Method 500 is a method for performing the fetching of the next instruction
group before all slots of the current instruction group are executed.

Fig. 6 illustrates a logic circuit which accomplishes the decoding of the instruction,
step 504, as shown in Fig. 5. The purpose of this decode is to produce a 2 bit value which is
utilized in the compare block 506 along with the value from the slot counter block 512 to
determine the fetching of the next instruction group with respect to instruction slot execution.
In actual use equivalent firmware or software may be used as a substitute for this circuit.
There are three inputs to the decode logic circuit 600 shown in Fig. 6; labeled B, C, and D.
Input B produces a single logic value along wire 602, while inputs C and D produce two logic
values each along wires 604 and 606, respectively. The logic value produced along wire 602
is the first of two inputs to the NAND logic gate 634. The second input to gate 634 is
produced via one of the logic values along wire 604 from input C. Before one of the logic
values of wire 604 reaches gate 634, the value must first pass through logic gate 628, which
inverts the value producing a new value along wire 610 (two total values along wire 610).
Due to the fact that input C produces two logic values, wire 610 can logically split these two
values along wires 614 and 616. Wire 614 provides the second input to the logic NAND 634,
whose output is a single logic bit along wire 622. Wire 616 is the first of two inputs to logic
NAND gate 632 where the second input is provided via input D to the decode logic circuit
600. Input D produces two logic values, similarly to input C, along wire 606. These two
logic values are inverted via logic gate 630, producing two equivalent new values along wire
608. These two equivalent logic values are then split such that wire 612 contains one of the
logic values which is the second input to the logic NAND gate 632, whose output is a single
logic bit along wire 620. The split of wire 608 results in the second value along wire 618,
which is one of two inputs to logic NAND gate 636. The second input to logic gate 636 is

provided from wire 622, which is the output from the logic gate 634. Logic NAND gate 636
7



Attorney Docket No. 0057-065PCT - PGT/SR00200807%%319909992Us

produces a single logic valued output along wire 624. The output from logic NAND gate 632
along wire 620 is joined with wire 624, producing a two valued logic value along wire 626.
Therefore, the logic value along wire 626 can be any of the four possible binary
configurations ‘00°, ‘01°, 10°, and ‘11” (0 to 3 decimal) where the first value of the two logic
values comes from wire ‘620 and the second comes from wire 624.

The description of Fig. 6 above does not specifically state where the inputs for B, C,
and D stem from. Figs. 2 and 3 show the division of the instruction group into four unequal
slot lengths in terms of the number of bits needed to represent those slot lengths. Inputs B, C,
and D are produced by using the high order bit or most left bit in slot 1, 2, and 3 respectively
of the current instruction group. The ability to only utilize three bits out of 18 of the current
instruction group to determine the fetching of the next instruction group is a consequence of
the design of the 32 op-codes. In SEAforth® 24 and 40 processors, the high order or most
left bit in the instructions differentiates the instruction from being either an arithmetic logic
unit (“ALU”) instruction or a memory instruction. Since the high order or most left bit of
three of the four slots of the instruction group is sufficient for determining the fetching of the
next instruction, this has greatly reduced the complexity of the logic circuit associated with
the decoding of the instruction group block, element 504 of Fig. 5. Recall that the fetching of
the next instruction group, element 508 of Fig. 5 is only referenced with respect to the
instruction slot that is being executed within the instruction group. The high order or most
left bit of slots 1, 2, and 3 are utilized as inputs B, C, and D in logic circuit 600. Noticeably
missing in logic circuit 600 is the use of the high order or most left bit of slot 0. The use of
this bit would significantly complicate the logic circuit used to represent the decoding of the
instruction block element 504 of Fig. 5. For this reason, the logic circuit has been left out, as
it does not add to the explanation of using one bit per instruction within the instruction group
for determining the fetching of the next instruction group. In other implementations of this
method, logic circuit 600 is replaced with a circuit that includes the use of the highest order
or most left bit of the slot 0 instruction contained in the instruction group to allow the
fetching of the next instruction group to begin as early as slot 0.

Fig. 7 is a timing diagram representing the fetching of the next instruction group
during the execution of the slot 3 instruction of the instruction group. Shown in plot 700 are
three curves 702, 704, and 706 in which they all begin at time #; and end at time #,. Unlike
the background art plot 400, there is more than one curve which is non-zero at a time;

however this is the novelty, as will be explained. Curve 702 represents the execution of slots
8



Attorney Docket No. 0057-065PCT PG S200940050%319909992Us

0, 1, and 2 of the instruction group which references the execution of the instruction slots
referenced in Fig. 3 of the background art and this curve is shown as non-zero from time # to
time #;. Curve 704 represents the execution of the instruction contained in slot 3 of the
instruction group which begins at time ¢; and does not end until time 3. During this time, the
fetching of the next instruction group takes place beginning with time ¢, and ending with time
t;. Notice that instead of fetching the next instruction after the four instructions contained by
the instruction group are executed, as is the case in the background art of plot 400, the
fetching of the next instruction is completed concurrently with the execution of the
instruction slot 3 of the instruction group. In other terms, the curves are non-zero in the same
geometric region. The fetching of the next instruction group and execution of the instruction
in slot 3 are completed in such a way that the completion of the execution of the instruction in
slot 3 coincides with the completion of the fetching of the next instruction. Thus, the latency
associated with executing four instructions contained by an instruction group and the fetching
of the next instruction has been reduced. This is due to the fact that the latency associated
with executing the instructions contained in slots 0, 1, and 2 are exactly the same as in the
background art. The difference is that now instead of the latency associated with executing
the instruction in slot four and the fetching of the next instruction being the sum of the time
required to complete those two actions separately, the latency is the time it takes to complete
the slower of the two actions which is shown to be the execution of the instruction in slot 3.
It is important to note that while plot 700 shows each curve being non-zero, for some
geometric regions this geometric region is arbitrary in that the time in which each curve is
non-zero is not the important feature of this plot. Instead, the most important fact is the
relationship between the two curves which are non-zero in the same geometric region.
Finally, it is important to point out that two additional timing diagrams could be shown at this
point. The first of the two timing diagrams would refer to the concurrent action of the
fetching of the next instruction and the execution of two instructions, the instructions found
in slots 2 and 3. The fetching of the next instruction group would begin very close to the
beginning of the execution of the slot 2 instruction. The fetching would end with the end of
the execution of the slot 3 instruction. The second of the two timing diagrams would display
the fetching of the next instruction group and the execution of three instructions, the
instructions found in slots 1, 2, and 3. The fetching would begin close to the start of the
execution of the instruction in slot 1 and end with the end of the instruction execution of slot

3. These two timing diagrams have not been shown as figures, as they would not add to the
9



Attoney Docket No. 0057-065PCT PG LUSZO09/00807F8319909992Us

novelty of the invention and have therefore been omitted; however an important consequence
of beginning the fetching of the next instruction as early as slot 2 or slot 1 reduces the latency
time associated with execution of all the instructions contained within an instruction group
and the fetching of the next instruction group.

While various embodiments have been described above, it should be understood that
they have been presented by way of example only, and the breadth and scope of the invention
should not be limited by any of the above described exemplary embodiments, but should

instead be defined only in accordance with the following claims and their equivalents.

INDUSTRIAL APPLICABILITY

The inventive computer registers 200 logic array 600, instruction set and method are
intended to be widely used in a great variety of computer applications. It is expected that
they will be particularly useful in applications where significant computing power and speed
is required.

As discussed previously herein, the applicability of the present invention is such that
the inputting information and instructions are greatly enhanced, both in speed and versatility.
Also, communications between a computer array and other devices are enhanced according to
the described method and means. Since the inventive computer registers 200 logic array 600,
and the method of the present invention may be readily produced and integrated with existing
tasks, input/output devices and the like, and since the advantages as described herein are
provided, it is expected that they will be readily accepted in the industry. For these and other
reasons, it is expected that the utility and industrial applicability of the invention will be both

significant in scope and long-lasting in duration.

10



[
LS VS B S SHWN O WO 00 NN N AW N

£ =

Attorney Docket No. 0057-065PCT PGS 200940080 7%81319909992Us

CLAIMS
I Claim:

1. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed comprising: an instruction set including a plurality of memory
instructions and a plurality of arithmetic logic unit instructions wherein the arithmetic logic
unit instructions are distinguishable from the memory instructions; and a comparator in said
computer processor for distinguishing arithmetic logic unit instructions from memory
instructions; and wherein said comparator fetches arithmetic logic unit instructions
substantially coincident with the execution of a prior arithmetic logic unit instruction to
reduce latency associated with waiting for fetching of instructions until a prior instruction is

executed.

2. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed, as in Claim 1, wherein one bit of each instruction indicates

whether the instruction is an arithmetic logic unit instruction.

3. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 2, wherein one bit is the highest order bit of the

arithmetic logic unit instruction.

4. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 1, wherein said comparator detects the highest order

bit of an instruction to determine if said instruction is an arithmetic logic unit instruction.

11



(Y Y 0N s W N =

- S

LN p—t

N N v B WN

Attorney Docket No. 0057-065PCT ~ PGTIMSRA000807%R319909992Us

5. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 1, wherein said comparator is comprised of a logic
array selected from the group of hard wired logic arrays, firmware equivalents of logic arrays

and software equivalents of logic arrays.

6. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 1, wherein said comparator detects the highest order
data bit in an instruction and fetches the instruction if it is an arithmetic logic unit instruction

substantially coincident with execution of the prior arithmetic logic unit instruction.

7. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 1, further comprising a slot counter connected to said

comparator for providing an input to compare with an incoming instruction.

8. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a

prior instruction is executed as in Claim 7, wherein said slot counter is a shift register.

9. A system for reducing latency in a computer processor executing a stream of
instruction by reducing latency associated with waiting for fetching of instructions until a
prior instruction is executed as in Claim 8, further comprising a decoder connected to said

comparator for decoding incoming instructions.

10. A method for reducing latency in computer processing of a stream of incoming
information groups having a plurality of instructions comprising the steps of loading an
incoming information group and determining if the loaded instruction group contains any
arithmetic logic instructions, and fetching the next incoming information group substantially
coincident with the execution of the arithmetic logic instruction, and determining if the next
loaded instruction group contains and continuing the process until all instructions are loaded

and executed.
12



LAV R S

[0 T - U R N R

Attorney Docket No. 0057-065PCT PGS ROOUAOR0 E31319909992Us

11. A method for reducing latency in computer processing of a stream of incoming
information groups having a plurality of instructions as in Claim 10, further comprising the

step of decoding the loaded information group.

12. A method for reducing latency in computer processing of a stream of incoming
information groups having a plurality of instructions as in Claim 10, wherein said
determining step is accomplished by comparing the instructions in said loaded information

group to a count of slots in said information group.

13. A method for reducing latency in computer processing of a stream of incoming
information groups having a plurality of instructions as in Claim 12 wherein said counting is

aided by a step of sequencing the slots.

14. A method for reducing latency in computer processing of a stream of incoming
information groups having a plurality of instructions as in Claim 10, wherein said
determining step is performed by examining the highest order bit of each incoming

instruction.

15. A computer processor for loading and executing a stream of incoming information
groups comprising a loader for loading incoming information groups into a register; and a
comparator for determining if an incoming instruction is an arithmetic logic instruction and
immediately fetching the next instruction if the previous instruction was an arithmetic logic

instruction.

16. A computer processor as in Claim 15, further comprising a decoder for decoding

loaded instruction groups.

17. A computer processor as in Claim 15, further comprising a slot counter connected to

said comparator for providing an input to compare with an incoming instruction.

18. A computer processor as in Claim 17, further comprising a slot sequencer connected

to said slot counter for incrementing said slot counter.

13



£W N

Attorney Docket No. 0057-065PCT - PGTUSRO0UA0ROZR1319909992Us

19. A computer processor as in Claim 17, wherein said slot counter is a shift register.

20. A computer processor as in Claim 15, wherein said comparator detects the highest
order data bit in an instruction and fetches the instruction if it is an arithmetic logic unit
instruction substantially coincident with execution of the prior arithmetic logic unit

instruction.

21. A computer processor as in Claim 15, wherein said comparator is comprised of a
logic array selected from the group of hard wired logic arrays, firmware equivalents of logic

arrays and software equivalents of logic arrays.
22. A computer processor as in Claim 20, wherein said group receives information

regarding the highest order bit in each slot of each information group to determine if each slot

is filled with an arithmetic logic unit instruction.

14



Attorney Docket No. 0057-065PCT | - PGTALS2009/0080%R3 199099925

ABSTRACT

A method and apparatus for reducing latency in computer processors. The method
incorporates a special instruction set that provides an indication of whether a particular
instruction is capable of being executed nearly simultaneously with a preceding instruction in
the same group. In such a situation, multiple instructions may be executed at a rate faster

than expected. A simple apparatus for accomplishing this method is illustrated.

15



Attorney Docket No.: 0057-065PCT " PCT/US2009/005073

1/5
100
Y
Load IW 102
Y
Execute IW 104
!
Fetch 106

FiG. 1



PCT/US2009/005073

Attorney Docket No.: 0057-065PCT

2/5

£ Ol

¢ 10/S 9}noex3

1

Z 10/S 83}Nnoax7

© 00"
- (=
18] 1S

1

1{Y3

| J0/S 2)}n38x7

1

0 10/S 8}noaxy

80C

¢ Ol

00¢

voc

20c

bzoz

azoz

0coc

ucoc

Wecoe

1c0c

Ac0¢

lz0z

lcoc

Yecoc

bzoz

AVA

9c0c

pcoc

ZAVA

acoc

bcoc

olc

90¢

00c




Attorney Docket No.: 0057-065PCT " PCT/US2009/005073

3/5
400
402 404
1.8 Volts +- \
to t1 t2 t3
FIG. 4
500
Load IW 502
Y
Decode IW 504 Fetch 9508
* J
Compare 506
t
Slot Counter 512 - Slot Sequencer 510

FlG. 6



PCT/US2009/005073

Attorney Docket No.: 0057-065PCT

4/5

vc9

9¢'9

9 94

819 809 0£9
) 2 )
// \ q
909
14%) vi9 019 8¢3 v09
cc9—~__| J N/ J J
Y AN J
N Ve \ é
c09
0c9 ¢ct9 919 ~__|
/ I



Attorney Docket No.: 0057-065FCT ~~ PCT/US2009/005073

5/5
X
2
V‘f
S >\
N
(o) ~
E_/
_ N
Q
W
N
5l

700

1.8 Volts ——/
to



