In Bearbeitung

Bitte warten ...

Einstellungen

Einstellungen

Gehe zu Anmeldung

1. WO2010025995 - AUSHÄRTBARE GIESSMASSE ZUR HERSTELLUNG VON KUNSTSTOFFFORMTEILEN

Anmerkung: Text basiert auf automatischer optischer Zeichenerkennung (OCR). Verwenden Sie bitte aus rechtlichen Gründen die PDF-Version.

[ DE ]

Aushärtbare Gießmasse zur Herstellung von Kunststoffformteilen

Die Erfindung betrifft eine aushärtbare Gießmasse zur Herstellung von Kunststoffformteilen, umfassend ein Bindemittelmaterial und ein Füllstoffmaterial, wobei das Füllstoffmaterial an der Gießmasse einen Anteil von ca. 40 bis ca. 85 Gew.-% aufweist und massive granuläre mineralische Partikel umfasst.

Aushärtbare Gießmassen werden in großem Umfang zur Herstellung von Kunststoffformteilen für den Sanitär- oder Küchenbereich, wie beispielsweise Küchenspülen, Arbeitsplatten, Badewannen, Waschbecken etc., verwendet.

Die eingesetzten Gießmassen beinhalten dabei üblicherweise ein Bindemittelmaterial und zur Verbesserung der mechanischen Eigenschaften der Kunststoffformteile ein Füllstoffmaterial.

Weit verbreitet sind Kunststoffformteile, deren Sichtseiten strukturiert sind. Eine Strukturierung erhöht die optische Attraktivität der Sichtseiten und führt dazu, dass Beschädigungen, wie z.B. Kratzer, auf ihnen in geringerem Ausmaß sichtbar sind als auf glatten Oberflächen. Besonders beliebt sind Kunststoffformteile mit strukturierten Granitdekoroberflächen, die in ihrem Aussehen dem natürlichen Granit so weit wie möglich angeglichen sind.

In der DE 38 32 351 Al wird vorgeschlagen, für die Herstellung von Kunststoffformteilen mit einer strukturierten Sichtseite eine Gießmasse zu verwenden, welche grobe mineralische Füllstoffpartikel mit einer Größe von ca. 0,1 mm bis ca. 0,2 mm umfasst.

In der WO 00/28872 ist eine aushärtbare Gießmasse beschrieben, mit der Armaturenteile mit einer strukturierten Granitdekoroberfläche hergestellt werden können.

Die strukturierten Sichtseiten der unter Verwendung herkömmlicher Gießmassen erhaltenen Kunststoffformteile sind allerdings unter dem Gesichtspunkt der Reinigbarkeit nicht völlig gleichwertig zu vollständig glatten Oberflächen.

Aufgabe der vorliegenden Erfindung ist es, eine aushärtbare Gießmasse vorzuschlagen, mit der Kunststoffformteile, welche eine strukturierte Oberfläche aufweisen, mit einer verbesserten Reinigbarkeit hergestellt werden können.

Diese Aufgabe wird bei einer aushärtbaren Gießmasse der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, dass das Füllstoffmaterial zwei oder mehr Füllstofffraktionen umfasst, wobei eine erste Füllstofffraktion aus massiven granulären mineralischen Partikeln besteht und eine zweite Füllstofffraktion aus formstabilen Mikrohohlkugeln besteht, und wobei der Anteil der zweiten Füllstofffraktion an der Gießmasse ca. 1 Vol.-% oder mehr beträgt.

Durch den Gehalt der Gießmasse an massiven granulären mineralischen Partikeln der ersten Füllstofffraktion ist sichergestellt, dass mit ihr Kunststoffformteile mit einer strukturierten Oberfläche, beispielswiese einer Granitdekoroberfläche, erhalten werden können.

Überraschenderweise wurde festgestellt, dass bei einem Zusatz einer zweiten Füllstofffraktion aus formstabilen Mikrohohlkugeln zu der Gießmasse eine deutliche Verbesserung der Reinigbarkeit der Sichtseite erzielt wird. Insbesondere sind die im Küchenbereich üblicherweise auftretenden Verunreinigungen durch Eiweiße, Stärke, Fette etc., leichter entfernbar. Trotzdem bleibt die Strukturierung der Sichtseite erhalten.

Das Aussehen der Sichtseite bleibt deshalb durch den Zusatz der Mikrohohlkugeln in der Regel im Wesentlichen unverändert, so dass die mit der Strukturierung verbundene optische Attraktivität, beispielsweise die Ähnlichkeit einer Granitdekoroberfläche mit natürlichem Granit, erhalten bleibt.

Die Verwendung massiver Mikrokugeln in aushärtbaren Gießmassen ist bereits aus der EP 1 672 012 Al bekannt. Dort wird vorgeschlagen, einer Gießmasse mit Bindemittelkomponenten und einer ersten Füllstoffkomponente Mikroglas-kugeln, deren Partikelgröße kleiner ist als die der ersten Füllstoffkomponente, als zweite Füllstoffkomponente zuzusetzen, um eine optimierte Packungsdichte des Füllstoffgemisches zu erhalten, so dass der Anteil der Bindemittelkomponenten an der Gießmasse minimiert werden kann.

Bezüglich einer Verbesserung der Reinigbarkeit der Sichtseiten von Kunststoffformteilen werden bei einer Verwendung massiver Mikrokugeln allerdings deutlich schlechtere Ergebnisse erzielt als bei dem erfindungsgemäßen Einsatz von Mikrohohlkugeln.

Aus der WO 99/47594 ist die Verwendung deformierbarer, treibmittelgefüllter Mikrohohlkügelchen in aushärtbaren Gießmassen bekannt. Durch eine Expansion der deformierbaren Mikrohohlkügelchen kann ein beim Abbinden des Bindemittels der Gießmasse auftretender Schrumpf an der Rückseite, d.h. der der Sichtseite abgewandten Seite, kompensiert werden.

Eine Beeinflussung der Eigenschaften der Sichtseite eines Kunststoffformteils ist mit diesen deformierbaren Mikrohohlkugeln allerdings kaum erreichbar, da sie sich innerhalb einer in eine Gießform gegebenen Gießmasse in oberen Bereichen ansammeln. In einer zur Herstellung eines Kunststoffformteils dienenden Gießform sind in der Regel die Abschnitte, in denen eine Sichtseite des Formteils ausgebildet werden soll, unten und die Abschnitte, in denen eine Rückseite hergestellt werden soll, oben angeordnet. Dadurch ist sichergestellt, dass die zur Erzeugung der Sichtseite vorgesehenen Abschnitte auch bei einem möglichen Schrumpfen des Bindemittels beim Härten stets mit Gießmasse gefüllt bleiben, so dass eine mängelfreie Sichtseite erhalten wird. Die Ansammlung der deformierbaren Mikrohohlkügelchen in oberen Bereichen der Gießform führt daher dazu, dass sie an der Sichtseite in so niedriger Konzentration vorliegen, dass sie deren Eigenschaften nicht beeinflussen können.

Erfindungsgemäß wird eine merklich verbesserte Reinigbarkeit der Sichtseite eines Kunststoffformteils bereits bei einem Anteil der aus den Mikrohohlkugeln bestehenden zweiten Füllstofffraktion an der Gießmasse von nur ca. 1 Vol.-% erzielt.

Signifikante Verbesserungen der Reinigbarkeit sind insbesondere festzustellen, wenn der Anteil der zweiten Füllstofffraktion an der Gießmasse 5 Vol.-% oder mehr beträgt.

Um eine gute Verarbeitbarkeit der Gießmasse sicherzustellen, beträgt der Anteil der zweiten Füllstofffraktion an der Gießmasse weiterhin bevorzugt 30 Vol.-% oder weniger.

Günstig ist es insbesondere, wenn der mittlere Durchmesser der Mikrohohlkugeln ca. 5 bis ca. 30 % der mittleren Partikelgröße der Partikel der ersten Füllstofffraktion beträgt.

In der ersten Füllstofffraktion werden vorzugsweise granuläre Partikel mit einer mittleren Partikelgröße von ca. 50 μm bis ca. 1.000 μm verwendet, da diese besonders gut dazu geeignet sind, eine im Aussehen attraktive Strukturierung der Sichtflächen eines Kunststoffformteils, wie beispielsweise eine Granitdekor-Optik, zu erzielen.

Die formstabilen Mikrohohlkugeln weisen bevorzugt einen mittleren Durchmesser von ca. 5 bis ca. 300 μm, weiter bevorzugt von ca. 25 bis ca. 150 μm, besonders bevorzugt von ca. 50 bis ca. 100 μm auf.

Unter Mikrohohlkugeln im Sinne der vorliegenden Erfindung sind typischerweise Mikrokugeln mit einem eingeschlossenen Hohlraumvolumen von ca. 20 Vol.-% des Kugelvolumens oder mehr zu verstehen. Die Mikrohohlkugeln können dabei verschiedene Strukturen aufweisen. Beispielsweise können sie jeweils einen zusammenhängenden, von einer Wand umschlossenen Hohlraum aufweisen. Sie können aber auch aus einem porösen Material bestehen, das eine Vielzahl von Hohlräumen aufweist.

Vorteilhaft ist es, wenn die spezifische Dichte der Mikrohohlkugeln von ca. 0,5 bis ca. 1 g/cm3 beträgt. Mikrohohlkugeln einer derartigen Dichte bleiben in der Gießmasse, deren Bindemittelmaterial üblicherweise eine Dichte von ca. 0,9 bis ca. 1,2 g/cm3 aufweist, nach einem Überführen der Gießmasse in eine Gießform zur Herstellung eines Formteils im Wesentlichen gleichmäßig verteilt.

Eine spezifische Dichte der formstabilen Mikrohohlkugeln in diesem Bereich ist hoch genug, dass ein Aufsteigen der Mikrohohlkugeln in oben angeordnete Bereiche der Gießmasse, also zu der Rückseite des Formteils hin, vermieden wird. Daher ist eine ausreichende Konzentration an einer unten angeordneten Sichtseite sichergestellt.

Andererseits ist eine in diesem Bereich liegende spezifische Dichte der formstabilen Mikrohohlkugeln nicht so hoch, dass ein Absinken der Mikrohohlkugeln in innerhalb der Gießform unten angeordnete Bereiche der Gießmasse auftreten würde. Bei der Herstellung von Kunststoffformteilen, die mehrere in unterschiedliche Richtungen wiesende Sichtflächen aufweisen, ist daher gewährleistet, dass nicht nur an einer innerhalb der Gießform nach unten weisenden, sondern auch an in andere Richtungen weisenden Sichtflächen eine im Wesentlichen vergleichbare Konzentration von Mikrohohlkugeln erzielt wird, so dass für jede dieser Oberflächen eine verbesserte Reinigbarkeit erhalten wird.

Als besonders geeignet zur Verbesserung der Reinigbarkeit eines Kunststoffformteils haben sich Mikrohohlkugeln erwiesen, welche aus einem Silikatmaterial hergestellt sind.

Insbesondere wurde gefunden, dass bei den erfindungsgemäß verwendeten formstabilen Mikrohohlkugeln eine Silanisierung, wie sie bei Füllstoffen häufig vorgenommen wird, um einen stabilen Verbund der Füllstoffe mit einem Bindemittel zu ermöglichen, überraschenderweise nicht notwendig ist.

Die Wahl des Bindemittelmaterials der Gießmasse unterliegt keinen besonderen Beschränkungen. Beispielsweise kann das Bindemittelmaterial eine flüssige monomere Acrylatkomponente umfassen, welche bei der Herstellung eines Kunststoffformteils unter Härtung zu einem Polyacrylat polymerisierbar ist. Zur Erhöhung der Viskosität der Gießmasse kann der monomeren Acrylatkomponente ein Anteil einer präpolymerisierten Acrylatkomponente zugesetzt werden, beispielsweise kann zu dem Monomer Methylmethacrylat (MMA) präpoly-merisiertes Polymethylmethacrylat (PMMA) zugegeben werden.

Die Auswahl des Materials der Partikel der ersten Füllstofffraktion ist im Allgemeinen unkritisch. Beispielsweise können silikatische Füllstoffmaterialien, etwa Glas, Quarz, Cristobalit oder Tridymit, oder Aluminiumhydroxid-basierende Füllstoffmaterialien wie Aluminiumtrihydroxid (ATH) verwendet werden.

Als Bindemittelmaterialien sowie als Materialien der Partikel der ersten Füllstofffraktion können insbesondere auch die Materialien eingesetzt werden, die in der WO 95/26368, der EP 0 716 097 Al, der WO 01/27175 Al, der WO 03/080716 Al, der EP 1 207 180 Al und der WO 2005/071000 Al jeweils als Bindemittel bzw. Füllstoffe für aushärtbare Gießmassen empfohlen werden.

Der gemeinsame Anteil der ersten und der zweiten Füllstofffraktion an dem gesamten Füllstoffmaterial beträgt oft ca. 80 Gew.-% oder mehr, insbesondere auch ca. 90 Gew.-% oder mehr. Das Füllstoffmaterial kann auch im Wesentlichen vollständig aus der ersten und der zweiten Füllstofffraktion bestehen.

Wenn neben der ersten und der zweiten Füllstofffraktion weitere Fü I Istofffraktionen vorgesehen sind, können diese verschiedene Füllstoffmaterialien enthalten, mit denen spezielle Effekte erzielbar sind, beispielsweise Füllstoffmaterialien in Form von Fasern, Whiskern oder Nadeln.

Weiterhin betrifft die Erfindung eine Verwendung der erfindungsgemäßen Gießmasse zur Herstellung von Kunststoffformteilen für den Küchen- oder Sa-nitärbereich.

Besonders geeignet ist die erfindungsgemäße Gießmasse für die Herstellung von Küchenspülen und Arbeitsplatten für Küchen, da an diesen Bauteilen besonders häufig Verunreinigungen entstehen und ihre Reinigbarkeit daher von großer Bedeutung ist.

Schließlich betrifft die Erfindung auch Kunststoffformteile, welche unter Verwendung der erfindungsgemäßen Gießmasse hergestellt sind.

Diese und weitere Vorteile der vorliegenden Erfindung werden im Folgenden anhand der Beispiele noch näher erläutert.

Es wurde gefunden, dass bei der erfindungsgemäßen Verwendung formstabiler Mikrohohlkugeln die Verbesserung der Reinigbarkeit der Sichtseite mit einer Verringerung ihres Rauheitsprofils Rt von Spitze bis Tal korreliert. Daher ist im Folgenden das Rauheitsprofil Rt als Maß für die Reinigbarkeit angegeben.

Verqleichsbeispiel 1

Es wird eine Gießmasse hergestellt, indem ein Bindemittelmaterial mit einem Füllstoffmaterial versetzt wird.

Das Bindemittelmaterial wird erhalten, indem in 8,0 kg Methylmethacrylat (MMA) zur Erhöhung der Viskosität 2,0 kg Polymethylmethacrylat (PMMA) im Molekulargewichtsbereich Mw von 50.000 bis 250.000 gelöst werden und dann 35 g Stearinsäure als Entformungshilfsmittel und 200 g Trimethylolpropantri-methacrylat (TRIM) als Vernetzer zugesetzt werden.

Das Füllstoffmaterial besteht aus verschiedenen Typen des granulären Quarzmaterials Granucol® (Firma Gebrüder Dorfner GmbH & Co., Hirschau) sowie Wollastonit (Firma Quarzwerke GmbH, Frechen). Es wurden die folgenden Typen von Granucol® und Wollastonit eingesetzt:

Granucol® braun 10/8 (mittlere Partikelgröße = 570 μm) Granucol® erdbraun 4/8 (mittlere Partikelgröße = 570 μm) Granucol® weiß 1/8 (mittlere Partikelgröße = 570 μm) Granucol® weiß 2/9 (mittlere Partikelgröße = 330 μm) Wollastonit (mittlere Nadellänge = 1 bis 25 μm)

Durch die Verwendung der verschiedenen Granucol®-Typen, die insbesondere unterschiedlich gefärbt sind, kann eine ansprechende Granitdekor-Optik erzielt werden. Der Zusatz von Wollastonit verbessert die mechanischen Eigenschaften der mit der Gießmasse herstellbaren Formteile und verringert insbesondere das Auftreten sogenannter Auskocher auf den Formteilen, wie sie durch lokale Überhitzungen während des Härtungsprozesses auftreten können. Die Vorteile des Einsatzes von Wollastonit sind detailliert in der EP 1 207 180 Al beschrieben.

Das Füllstoffmaterial wird dem Bindemittelmaterial zugegeben und mit diesem homogen vermischt.

Die Zusammensetzung der Gießmasse gemäß Vergleichsbeispiel 1 ist in Tabelle 1 wiedergegeben, wobei die Gehalte der einzelnen Komponenten in Gew.-% angegeben sind.

Tabelle 1

Nach dem Zusatz von 80 g Lauroylperoxid und 40 g Di-(4-tert-butylcyclohe- xyl)peroxydicarbonat wird die Gießmasse in eine Gießform für eine Küchenspüle gegeben und unter Aushärtung polymerisiert. An einem aus der erhaltenen Küchenspüle entnommenen Probestück wird die Sichtseite auf ihr Rauheitsprofil von Spitze bis Tal Rt untersucht. Die Untersuchung wird mit einem Hommel-Messgerät T 2000 (Firma Hommel-Werke, Schwenningen) gemäß den Herstellerangaben zur Gerätebedienung durchgeführt.

Das Ergebnis der Untersuchung ist in Tabelle 2 angegeben.

Tabelle 2


Beispiele 1 bis 10

Es werden erfindungsgemäße Gießmassen hergestellt, die in ihrer Zusammensetzung der Gießmasse gemäß Vergleichsbeispiel 1 großenteils entsprechen, wobei jeweils unterschiedliche Mengen an keramischen formstabilen Mikro- hohlkugeln ("E-SPHERES®", erhältlich von der Firma C. A. Erbslöh, Krefeld) verschiedener Partikelgrößen im Austausch gegen entsprechende Mengen an Bindemittelmaterial bzw. Granucol® zugesetzt werden. Der Wollastonit-Gehalt wird in allen Beispielen gleich gehalten. In den erhaltenen Gießmassen bilden die Granucol®-Typen und Wollastonit eine erste Füllstofffraktion und die Mikro- hohlkugeln eine zweite Füllstofffraktion. Es werden die folgenden Typen formstabiler Mikrohohlkugeln eingesetzt:

E-SPHERES® SLG (mittlerer Durchmesser d50 = ca. 94 μm, spezifische

Dichte = 0,6 bis 0,8 g/cm3) E-SPHERES® SL 150 (mittlerer Durchmesser d50 = ca. 68 μm, spezifische

Dichte = 0,6 bis 0,8 g/cm3) E-SPHERES® SL 75 (mittlerer Durchmesser d50 = ca. 27 μm, spezifische

Dichte = 0,6 bis 0,8 g/cm3)

Die Mikrohohlkugeln weisen jeweils eine geschäumte, poröse Strukur auf. Ihr eingeschlossenes Hohlraumvolumen beträgt ca. 67 Vol.-% des Kugelvolumens.

Die Zusammensetzungen der Gießmassen der Beispiele 1 bis 10 sind in Tabelle 3 angegeben, wobei die Gehalte der einzelnen Komponenten in Gew.-% angegeben sind.

Tabelle 3

Für ausgewählte Beispiele ist in Tabelle 4 gezeigt, welchen Anteilen in Vol.-% die in Tabelle 3 angegebenen Anteile der Mikrohohlkugeln in Gew.-% entsprechen.

Tabelle 4


Wie für die Gießmasse gemäß Vergleichsbeispiel 1 beschrieben, wird mit jeder der hergestellten Gießmassen jeweils eine Küchenspüle hergestellt und anschließend ein Probestück der Küchenspüle auf das Rauheitsprofil Rt seiner Sichtseite untersucht. Die Ergebnisse sind in Tabelle 5 angegeben.

Tabelle 5

Die Ergebnisse zeigen, dass der Zusatz jeder der verwendeten Sorten formstabiler Mikrohohlkugeln eine deutliche Verminderung des Rauheitsprofils Rt bewirkt. Während beispielsweise mit der Zusammensetzung gemäß Vergleichsbeispiel 1 ein Rauheitsprofil Rt von 82 μm erhalten wird, beträgt das Rauheitsprofil Rt bei einer Verwendung der Zusammensetzung gemäß Beispiel 10 mit einem Gehalt an E-SPHERES® SL 75 von 10,0 Gew.-% nur noch 23 μm.

Mit fortschreitendem Gehalt der Gießmasse an Mikrohohlkugeln verbessert sich die Reinigbarkeit der Sichtseite. Es werden allerdings bereits bei so niedrigen Konzentrationen der formstabilen Mikrohohlkugeln in der Gießmasse wie 0,8 Gew.-% (1,0 Vol.-%, Beispiel 1) merkliche Verbesserungen erzielt.

Sämtliche mit erfindungsgemäßen Gießmassen erhaltenen Küchenspülen weisen im Vergleich zu der im Vergleichsbeispiel erhaltenen Gießmasse keinerlei Beeinträchtigungen in ihrer Granitdekor- Optik auf.

Verqleichsbeispiel 2

Es wird eine Gießmasse hergestellt, die in ihrer Zusammensetzung der Gießmasse gemäß Vergleichsbeispiel 1 großenteils entspricht, wobei 15,0 Gew.-% massiver Mikrokugeln aus Glas ("BALLOTINI® B 70 B", Firma Eisenwerk Würth, Bad Friedrichshall, mittlerer Durchmesser d50 = ca. 92 μm, spezifische Dichte = 2,45 g/cm3) im Austausch gegen 2,5 Gew.-% Bindemittelmaterial und 12,5 Gew.-% Granucol® weiß 2/9 zugesetzt werden.

Die Zusammensetzung der Gießmasse des Vergleichsbeispiels 2 ist in Tabelle 6 angegeben, wobei die Gehalte der einzelnen Komponenten in Gew.-% angegeben sind. Der Volumenanteil der massiven Mikrohohlkugeln beträgt 6,1 Vol.-%.

Tabelle 6

Aus der Gießmasse wurde eine Küchenspüle hergestellt, und anschließend wurde ein Probestück der Küchenspüle auf seine Oberflächeneigenschaften untersucht, wie bei Vergleichsbeispiel 1 beschrieben. Das Ergebnis ist in Tabelle 7 angegeben.

Tabelle 7

Gemäß diesen Ergebnissen wird durch einen Zusatz massiver Mikrokugeln aus Glas eine geringere Reduzierung des Rauheitsprofils an der Sichtseite eines Kunststoffformteils erzielt als bei einer Verwendung eines gleichen Anteils formstabiler Mikrohohlkugeln. Dies zeigt ein Vergleich der Ergebnisse, die mit den massiven Mikrokugeln BALLOTINI® B 70 B erhalten werden, mit den Resultaten, die unter Verwendung der Mikrohohlkugeln E-SPHERES® SLG mit einem nahezu gleichen mittleren Durchmesser erzielt werden. Während mit der Gießmasse gemäß Bsp. 4 mit einem Gehalt an E-SPHERES® SLG von 4,9 Gew.-% (6,1 Vol.-%) ein Rauheitsprofil Rt von 46 μm erhalten wird, beträgt das Rauheitsprofil Rt bei Verwendung der Gießmasse gemäß Vgl. -Bsp. 2, welche den gleichen Volumenanteil von 6,1 Vol.-% an massiven Mikrokugeln aufweist, 50 μm.

Der Effekt der Verbesserung der Reinigbarkeit der Sichtseite tritt somit bei dem erfindungsgemäßen Einsatz formstabiler Mikrohohlkugeln gegenüber der Verwendung massiver Mikrokugeln deutlich verstärkt auf.