WIPO logo
Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 |
PATENTSCOPE

Search International and National Patent Collections
World Intellectual Property Organization
Search
 
Browse
 
Translate
 
Options
 
News
 
Login
 
Help
 
maximize
18. (WO2013173838) DEVICE, METHOD, AND GRAPHICAL USER INTERFACE FOR MANIPULATING USER INTERFACES BASED ON FINGERPRINT SENSOR INPUTS
Note: Text based on automatic Optical Character Recognition processes. Please use the PDF version for legal matters Machine translation

Device, Method, and Graphical User Interface for Manipulating User Interfaces Based on Fingerprint Sensor Inputs

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Serial

No. 61/794,710, filed on March 15, 2013, entitled "Device, Method, and Graphical User Interface for Manipulating User Interfaces Based on Fingerprint Sensor Inputs;" U.S.

Provisional Patent Application No. 61/667,926, filed July 3, 2012, entitled "Device, Method, and Graphical User Interface for Manipulating User Interfaces Based on Fingerprint Sensor Inputs;" and U.S. Provisional Patent Application No. 61/649,207, filed May 18, 2012, entitled "Device, Method, and Graphical User Interface for Manipulating User Interfaces Based on Fingerprint Sensor Inputs," which applications are incorporated by reference herein in their entirety.

TECHNICAL FIELD

[0002] This relates generally to electronic devices with fingerprint sensors, including but not limited to electronic devices with fingerprint sensors that detect inputs for manipulating user interfaces.

BACKGROUND

[0003] The use of touch-sensitive surfaces as input devices for computers and other electronic computing devices has increased significantly in recent years. Exemplary touch-sensitive surfaces include touch pads and touch screen displays. Such surfaces are widely used to manipulate user interface objects on a display. Additionally, some electronic devices include fingerprint sensors for authenticating users.

[0004] Exemplary manipulations include adjusting the position and/or size of one or more user interface objects or activating buttons or opening files/applications represented by user interface objects, as well as associating metadata with one or more user interface objects or otherwise manipulating user interfaces. Exemplary user interface objects include digital images, video, text, icons, control elements such as buttons and other graphics. A user will, in some circumstances, need to perform such manipulations on user interface objects in a file management program (e.g., Finder from Apple Inc. of Cupertino, California), an image

management application (e.g., Aperture or iPhoto from Apple Inc. of Cupertino, California), a digital content (e.g., videos and music) management application (e.g., iTunes from Apple Inc. of Cupertino, California), a drawing application, a presentation application (e.g., Keynote from Apple Inc. of Cupertino, California), a word processing application (e.g., Pages from Apple Inc. of Cupertino, California), a website creation application (e.g., iWeb from Apple Inc. of Cupertino, California), a disk authoring application (e.g., iDVD from Apple Inc. of Cupertino, California), or a spreadsheet application (e.g., Numbers from Apple Inc. of Cupertino, California).

[0005] But methods for performing these manipulations are cumbersome and inefficient. In addition, these methods take longer than necessary, thereby wasting energy. This latter consideration is particularly important in battery-operated devices.

SUMMARY

[0006] Accordingly, there is a need for electronic devices with faster, more efficient methods and interfaces for manipulating user interfaces. Such methods and interfaces optionally complement or replace conventional methods for manipulating user interfaces. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0007] The above deficiencies and other problems associated with user interfaces for electronic devices with touch-sensitive surfaces are reduced or eliminated by the disclosed devices. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a "touch screen" or "touch screen display"). In some embodiments, the device has a fingerprint sensor. In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive surface and/or the fingerprint sensor. In some embodiments, the functions optionally include image editing, drawing, presenting, word processing, website creating, disk authoring, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Executable instructions for performing these functions are, optionally, included in a non-transitory computer readable storage medium or other computer program product configured for execution by one or more processors.

[0008] In accordance with some embodiments, an electronic device includes a fingerprint sensor, a display, and/or a touch-sensitive surface, one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing the operations of any of the methods described above. In accordance with some embodiments, a graphical user interface on an electronic device with a fingerprint sensor, a display, optionally a touch-sensitive surface, a memory, and one or more processors to execute one or more programs stored in the memory includes one or more of the elements displayed in any of the methods described above, which are updated in response to inputs, as described in any of the methods described above. In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by an electronic device with a fingerprint sensor and optionally a display and/or, a touch-sensitive surface, cause the device to perform the operations of any of the methods described above. In accordance with some embodiments, an electronic device includes: a fingerprint sensor and optionally, a display and/ one or a touch-sensitive surface; and means for performing the operations of any of the methods described above. In accordance with some embodiments, an information processing apparatus, for use in an electronic device with a fingerprint sensor and optionally a display and/or a touch-sensitive surface, includes means for performing the operations of any of the methods described above.

[0009] There is a need for electronic devices with faster, more efficient methods and interfaces for conveniently interacting with user interfaces (e.g., for navigating through an application, for switching from one application interface to another or for displaying a multitasking user interface) on a portable multi-function device. Such methods and interfaces may complement or replace conventional methods for interacting with user interfaces (e.g., for navigating through an application user interface, switching between application user interfaces or for displaying a multi-tasking user interface). Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0010] In accordance with some embodiments, a method is performed at an electronic device with a display and a fingerprint sensor. The method includes: displaying, on the display, a first user interface. The method further includes, while displaying the first user interface on the display, detecting movement of a fingerprint on the fingerprint sensor. The method also includes in response to detecting movement of the fingerprint on the fingerprint sensor: in accordance with a determination that the movement of the fingerprint is in a first direction, navigating through the first user interface; and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, displaying a second user interface different from the first user interface on the display.

[0011] In accordance with some embodiments, an electronic device includes a display unit configured to display a first user interface, a fingerprint sensor unit; and a processing unit coupled to the display unit and the fingerprint sensor unit. In some embodiments, the processing unit includes a detecting unit, a navigating unit, a display enabling unit, and a replacing unit. The processing unit is configured to: while displaying the first user interface on the display, detect movement of a fingerprint on the fingerprint sensor; and in response to detecting movement of the fingerprint on the fingerprint sensor: in accordance with a determination that the movement of the fingerprint is in a first direction, navigate through the first user interface; and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, enable display of a second user interface different from the first user interface on the display unit.

[0012] Thus, electronic devices with displays, and fingerprint sensors are provided with faster, more efficient methods and interfaces for switching between user interfaces, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for switching between user interfaces.

[0013] There is a need for electronic devices with faster, more efficient methods and interfaces having buttons that serve multiple purposes (e.g., allowing the button, upon activation, to cause the device to perform a first operation or, alternatively, a second operation different from the first, depending on certain criteria). Such methods and interfaces may complement or replace conventional methods for allowing buttons to serve multiple purposes. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges. For portable

multifunction devices, such methods and interfaces also conserve valuable physical space on housing of the device, allowing for a larger screen and better user experience.

[0014] In accordance with some embodiments, a method is performed at an electronic device with a button including an integrated fingerprint sensor. The method includes:

detecting a fingerprint on the integrated fingerprint sensor. The method further includes, while continuing to detect the fingerprint on the integrated fingerprint sensor, detecting activation of the button. The method further includes, in response to detecting activation of the button and in accordance with a determination that the fingerprint was not continuously detected on the integrated fingerprint sensor for more than a predetermined period of time prior to detecting activation of the button, performing a first operation, where the first operation is a predefined operation associated with activation of the button. The method further includes, in response to detecting activation of the button and in accordance with a determination that the fingerprint was continuously detected on the integrated fingerprint sensor for more than the predetermined period of time prior to detecting activation of the button, performing a second operation different from the first operation, where the second operation is an operation associated with a user interface displayed on the display

immediately prior to detecting activation of the button.

[0015] In accordance with some embodiments, an electronic device includes a button unit with an integrated fingerprint sensor unit; and a processing unit coupled to the button unit. The processing unit is configured to: detect a fingerprint on the integrated fingerprint sensor unit. The processing unit is further configured to: while continuing to detect the fingerprint on the integrated fingerprint sensor unit, detect activation of the button unit. The processing unit is further configured to: in response to detecting activation of the button unit and in accordance with a determination that the fingerprint was not continuously detected on the integrated fingerprint sensor unit for more than a predetermined period of time prior to detecting activation of the button unit, perform a first operation, wherein the first operation is a predefined operation associated with activation of the button unit. The processing unit is further configured to: in response to detecting activation of the button unit and in accordance with a determination that the fingerprint was continuously detected on the integrated fingerprint sensor unit for more than the predetermined period of time prior to detecting activation of the button unit, perform a second operation different from the first operation, wherein the second operation is an operation associated with a user interface displayed on the display unit immediately prior to detecting activation of the button unit.

[0016] Thus, electronic devices with buttons with integrated fingerprint sensors are provided with faster, more efficient methods and interfaces for allowing said buttons to serve multiple purposes, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for allowing buttons to serve multiple purposes.

[0017] There is a need for electronic devices with faster, more efficient methods and interfaces for locking an orientation of a user interface. Such methods and interfaces may complement or replace conventional methods for locking an orientation of a user interface. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0018] In accordance with some embodiments, a method is performed at an electronic device with a display and a fingerprint sensor. The method includes: displaying a user interface on the display, where the user interface has a first orientation-specific mode of operation associated with a first orientation of the device and a second orientation-specific mode of operation that is associated with a second orientation of the device that is different from the first orientation of the device; while the orientation of the user interface is not locked, displaying the user interface in the first orientation-specific mode of operation when the device is in the first orientation, and displaying the user interface in the second orientation-specific mode of operation when the device is in the second orientation; detecting a fingerprint on the fingerprint sensor; while the user interface is in the first orientation-specific mode of operation, detecting rotation of the fingerprint on the fingerprint sensor in a first direction; in response to detecting rotation of the fingerprint on the fingerprint sensor in the first direction, locking the user interface in the first orientation-specific mode of operation; and while the user interface is locked in the first orientation-specific mode of operation, detecting that the device is in the second orientation and maintaining the user interface in the first orientation-specific mode of operation.

[0019] In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface, where the user interface has a first orientation-specific mode of operation associated with a first orientation of the device and a second orientation-specific mode of operation that is associated with a second orientation of the device that is different from the first orientation of the device, a fingerprint sensor unit; and a processing unit coupled to the display unit and the fingerprint sensor unit. The processing

unit is configured to: while the orientation of the user interface is not locked: enable display of the user interface in the first orientation-specific mode of operation when the device is in the first orientation, and enable display of the user interface in the second orientation-specific mode of operation when the device is in the second orientation; detect a fingerprint on the fingerprint sensor unit; while the user interface is in the first orientation-specific mode of operation, detect rotation of the fingerprint on the fingerprint sensor unit in a first direction; in response to detecting rotation of the fingerprint on the fingerprint sensor unit in the first direction, lock the user interface in the first orientation-specific mode of operation; and while the user interface is locked in the first orientation-specific mode of operation, detect that the device is in the second orientation and maintain the user interface in the first orientation-specific mode of operation.

[0020] Thus, electronic devices with displays and fingerprint sensors are provided with faster, more efficient methods and interfaces for locking an orientation of user interface, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for locking an orientation of user interface.

[0021] There is a need for electronic devices with faster, more efficient methods and interfaces for controlling noise reduction in recorded audio with a fingerprint sensor. Such methods and interfaces may complement or replace conventional methods for controlling noise reduction in recorded audio with a fingerprint sensor. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0022] In accordance with some embodiments, a method is performed at an electronic device with a fingerprint sensor. The method includes recording media with the device, where recording the media includes recording audio. The method further includes, while recording the media, reducing, in the recorded audio, noise occurring on a first side of the device, detecting a fingerprint on the fingerprint sensor and, in response to detecting the fingerprint on the fingerprint sensor, ceasing to reduce noise occurring on the first side of the device.

[0023] In accordance with some embodiments, an electronic device includes a fingerprint sensor unit configured to detect fingerprints and a processing unit coupled to the fingerprint sensor unit. The processing unit is configured to record media with the device, where recording the media includes recording audio. The processing unit is further configured to, while recording the media, reduce, in the recorded audio, noise occurring on a first side of the device, detect a fingerprint on the fingerprint sensor unit, and, in response to detecting the fingerprint on the fingerprint sensor unit, cease to reduce noise occurring on the first side of the device.

[0024] Thus, electronic devices with fingerprint sensors are provided with faster, more efficient methods and interfaces for controlling noise reduction in recorded audio with a fingerprint sensor, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for controlling noise reduction in recorded audio with a fingerprint sensor.

[0025] There is a need for electronic devices with faster, more efficient methods and interfaces for performing operations that are adapted for a current user of the device. Such methods and interfaces may complement or replace conventional methods that are adapted for a current user of the device. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0026] In accordance with some embodiments, a method is performed at an electronic device with a display, a respective input element, and a fingerprint sensor. The method includes: obtaining a plurality of profiles, where the plurality of profiles includes one or more user-specific profiles and one or more class-based profiles, distinct from the user-specific profiles, that each correspond to a respective class of users; detecting a first fingerprint on the fingerprint sensor; selecting one or more class-based profiles associated with the device as active profiles that correspond to the first fingerprint without regard to authentication of the first fingerprint as a previously registered fingerprint, including, in accordance with a determination that the first fingerprint corresponds to a fingerprint of a user in a first class of users that are associated with a first class-based profile, selecting the first class-based profile as an active profile; receiving an input with the respective input element, wherein the input corresponds to a request to perform one or more operations at the device; and in response to receiving the input with the respective input element while the first class-based profile is selected as an active profile, performing a respective operation based on the request and the first class-based profile.

[0027] In accordance with some embodiments, an electronic device includes a display unit, a respective input element unit, a fingerprint sensor unit, and a processing unit coupled to the display unit, the respective input element unit, and the fingerprint sensor unit. In some embodiments, the processing unit includes an obtaining unit, a detecting unit, a selecting unit, a performing unit, a determining unit, and an identifying unit. The processing unit is configured to: obtain a plurality of profiles, where the plurality of profiles includes one or more user-specific profiles and one or more class-based profiles, distinct from the user-specific profiles, that each correspond to a respective class of users; detect a first fingerprint on the fingerprint sensor unit; select one or more class-based profiles associated with the device as active profiles that correspond to the first fingerprint without regard to

authentication of the first fingerprint as a previously registered fingerprint, including, in accordance with a determination that the first fingerprint corresponds to a fingerprint of a user in a first class of users that are associated with a first class-based profile, select the first class-based profile as an active profile; receive an input with the respective input element unit, where the input corresponds to a request to perform one or more operations at the device; and in response to receiving the input with the respective input element unit while the first class-based profile is selected as an active profile, perform a respective operation based on the request and the first class-based profile.

[0028] Thus, electronic devices with displays, respective input elements, and fingerprint sensors are provided with faster, more efficient methods and interfaces for performing operations that are adapted for a current user of the device, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for performing operations based on a class-based profile.

[0029] There is a need for electronic devices with faster, more efficient methods and interfaces for changing logging preferences based on fingerprints. Such methods and interfaces may complement or replace conventional methods for changing logging

preferences. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges. For portable multifunction devices, such methods and interfaces allow lost or stolen devices to be more easily recovered.

[0030] In accordance with some embodiments, a method is performed at an electronic device with a display, a respective input element and a fingerprint sensor. The method includes: detecting a first fingerprint on the fingerprint sensor and determining whether the first fingerprint is associated with a user profile associated with the device. The method further includes, after determining whether the first fingerprint is associated with a user profile associated with the device and in accordance with a determination that the first fingerprint is associated with a respective user profile associated with the device, setting the respective user profile as an active profile. The method further includes, after determining whether the first fingerprint is associated with a user profile associated with the device and in accordance with a determination that the first fingerprint is not associated with any user profile associated with the device, setting a default profile as an active profile. The method further includes, receiving an input with the respective input element, where the input corresponds to a request to perform a requested operation. The method further includes, in response to receiving the input with the respective input element and in accordance with a determination that the respective user profile is the active profile, performing a first set of one or more operations associated with the requested operation in accordance with logging preferences of the respective user profile. The method further includes, in response to receiving the input with the respective input element and in accordance with a determination that the respective user profile is the active profile, in accordance with a determination that the default profile is the active profile, performing a second set of operations associated with the requested operation in accordance with logging preferences of the default profile.

[0031] In accordance with some embodiments, an electronic device includes a respective input unit configured to receive an input, wherein the input corresponds to a request to perform a requested operation; a fingerprint sensor unit; and a processing unit coupled to the fingerprint sensor unit and the respective input unit, the processing unit configured to: detect a first fingerprint on the fingerprint sensor unit and determine whether the first fingerprint is associated with a user profile associated with the device. The processing unit is further configured to, after determining whether the first fingerprint is associated with a user profile associated with the device: in accordance with a determination that the first fingerprint is associated with a respective user profile associated with the device, set the respective user profile as an active profile; and in accordance with a determination that the first fingerprint is not associated with any user profile associated with the device, set a default profile as an active profile. The processing unit is further configured to, in response to receiving the input with the respective input unit: in accordance with a determination that the respective user profile is the active profile, perform a first set of one or more operations associated with the requested operation in accordance with logging preferences of the respective user profile; and in accordance with a determination that the default profile is the active profile, perform a second set of operations associated with the requested operation in accordance with logging preferences of the default profile.

[0032] Thus, electronic devices with input elements and fingerprint sensors are provided with faster, more efficient methods and interfaces for changing logging preferences based on fingerprints, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for changing logging preferences.

[0033] There is a need for electronic devices with faster, more efficient methods and interfaces for performing a respective restricted operation based on fingerprint- verification information (e.g., when the fingerprint-verification information meets respective

authorization criteria for the respective restricted operation). Such methods and interfaces may complement or replace conventional methods for performing a respective restricted operation based. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0034] In accordance with some embodiments, a method includes obtaining fingerprint- verification criteria for controlling verification of fingerprints. For each of a plurality of respective inputs that correspond to respective restricted operations, the method further includes identifying fingerprint features of the respective input and determining fingerprint-verification information for the respective input based at least in part on: a comparison between the fingerprint features of the respective input and fingerprint features of one or more previously registered fingerprints; and the fingerprint-verification criteria.

Finally, in response to detecting the respective input, the method includes: in accordance with a determination that the fingerprint- verification information meets respective authorization criteria for the respective restricted operation, performing the respective restricted operation; and in accordance with a determination that the fingerprint- verification information does not meet the respective authorization criteria for the restricted operation, forgoing performing the respective restricted operation.

[0035] In accordance with some embodiments, an electronic device includes a display unit configured to display information; a fingerprint sensor unit; and a processing unit coupled to the display unit and the fingerprint sensor unit. The processing unit is configured to obtain fingerprint- verification criteria for controlling verification of fingerprints. For each of a plurality of respective inputs that correspond to respective restricted operations, the processing unit is further configured to identify fingerprint features of the respective input and determine fingerprint- verification information for the respective input based at least in part on: a comparison between the fingerprint features of the respective input and fingerprint features of one or more previously registered fingerprints; and the fingerprint-verification criteria. Finally, in response to detecting the respective input, the processing unit is configured to: in accordance with a determination that the fingerprint- verification information meets respective authorization criteria for the respective restricted operation, perform the respective restricted operation; and in accordance with a determination that the fingerprint-verification information does not meet the respective authorization criteria for the restricted operation, forgo performance of the respective restricted operation.

[0036] Thus, electronic devices with displays and fingerprint sensors are provided with faster, more efficient methods and interfaces for performing a respective restricted operation based on fingerprint-verification information, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for performing a respective restricted operation.

[0037] There is a need for electronic devices with faster, more efficient methods and interfaces for associating identity and location information. Such methods and interfaces may complement or replace conventional methods for associating identity and location

information. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0038] In accordance with some embodiments, a method is performed at an electronic device with a display and a fingerprint sensor. The method includes displaying a map on the display and detecting an activation input. The activation input is associated with a displayed location on the map that corresponds to a respective geographic location, and a fingerprint detected on the fingerprint sensor. The method further includes, in response to detecting the activation input, identifying a user that corresponds to the fingerprint, and performing an operation associated with the respective geographic location and the user.

[0039] In accordance with some embodiments, an electronic device includes a display unit configured display a map; a fingerprint sensor unit configured to detect a fingerprint and a processing unit coupled to the display unit and the fingerprint sensor unit. In some embodiments, the display unit is a touch-sensitive display unit and the fingerprint sensor unit detects fingerprints on the touch-sensitive display unit. The processing unit is configured to: detect an activation input, the activation input being associated with: a displayed location on the map that corresponds to a respective geographic location and a fingerprint detected on the fingerprint sensor unit; and, in response to detecting the activation input: identify a user that corresponds to the fingerprint, and perform an operation associated with the respective geographic location and the user.

[0040] Thus, electronic devices with displays and fingerprint sensors are provided with faster, more efficient methods and interfaces for associating identity and location information, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for associating identity and location information.

[0041] There is a need for electronic devices with faster, more efficient methods and interfaces for enabling one or more users to create and define their own personal workspace or work area. Accordingly, the disclosed embodiments provide methods for assigning respective workspaces to one or more users based on a detection of the users' fingerprints in the contacts that the user places on the touch-sensitive surface to define the bounds of a respective workspace within a bigger shared workspace on a multifunction device, and to associate their respective workspace with their respective custom user-settings based on their individual preferences. Such methods and interfaces may complement or replace

conventional methods for assigning workspaces to one or more users. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0042] In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface, and a fingerprint sensor. The method includes: detecting a first set of one or more inputs on the touch-sensitive surface that define a first area of the touch-sensitive surface. The method further includes, after detecting the first set of one or more inputs: determining that the first set of one or more inputs includes a first contact that includes a first fingerprint associated with a first user; and associating the first area of the touch-sensitive surface with the first user based at least in part on the determination that the first set of one or more inputs includes the first contact that includes the first fingerprint associated with the first user.

[0043] In accordance with some embodiments, an electronic device includes a display unit configured to display one or more user interface objects, a touch-sensitive surface unit configured to receive a contact on the touch-sensitive surface unit, a fingerprint sensor unit; and a processing unit coupled to the display unit, the touch-sensitive surface unit, and the fingerprint sensor unit. The processing unit is configured to: detect a first set of one or more inputs on the touch-sensitive surface unit that define a first area of the touch-sensitive surface unit; and after detecting the first set of one or more inputs: determine that the first set of one or more inputs includes a first contact that includes a first fingerprint associated with a first user; and associate the first area of the touch-sensitive surface unit with the first user based at least in part on the determination that the first set of one or more inputs includes the first contact that includes the first fingerprint associated with the first user.

[0044] Thus, electronic devices with displays, touch-sensitive surfaces, and fingerprint sensors are provided with faster, more efficient methods and interfaces for associating areas of a touch-sensitive surface with one or more users, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for assigning workspaces to one or more users.

[0045] There is a need for electronic devices with faster, more efficient methods and interfaces for training a user on proper fingering techniques used, for example, when typing on a computer keyboard or depressing a key on a musical keyboard (e.g., playing a piano). Such methods and interfaces may complement or replace conventional methods for training a user on proper fingering techniques. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0046] In accordance with some embodiments, a method is performed at an electronic device with a display and a touch-sensitive surface. The method includes: displaying a user interface including a respective activatable user interface object and detecting a fingerprint pattern of a contact on the touch-sensitive surface that corresponds to a focus selector that is over the respective activatable user interface object on the display. The method also includes, in response to detecting the fingerprint pattern of the contact on the touch-sensitive surface that corresponds to the focus selector that is over the respective activatable user interface object on the display: analyzing the fingerprint pattern of the contact on the touch-sensitive surface to determine one or more fingering characteristics of the contact and determining whether the contact meets predefined preferred fingering criteria based on the one or more fingering characteristics. The method further includes, in accordance with a determination that the contact does not meet the preferred fingering criteria, providing feedback indicating that the preferred fingering criteria have not been met and, in accordance with a

determination that the contact meets the preferred fingering criteria, performing an operation associated with the activatable user interface object.

[0047] In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface, a touch-sensitive surface unit configured to receive user contacts, and a processing unit coupled to the display unit and the touch-sensitive surface unit. The processing unit configured to enable display of a user interface including a respective activatable user interface object and to detect a fingerprint pattern of a contact on the touch-sensitive surface unit that corresponds to a focus selector that is over the respective activatable user interface object on the display unit. The processing unit is also configured to, in response to detecting the fingerprint pattern of the contact on the touch-sensitive surface unit that corresponds to the focus selector that is over the respective activatable user interface object on the display unit, analyze the fingerprint pattern of the contact on the touch-sensitive surface unit to determine one or more fingering characteristics of the contact and determine whether the contact meets predefined preferred fingering criteria based on the one or more fingering characteristics. The processing unit is further configured to, in accordance with a determination that the contact does not meet the preferred fingering criteria, provide feedback indicating that the preferred fingering criteria have not been met and, in accordance with a determination that the contact meets the preferred fingering criteria, perform an operation associated with the activatable user interface object.

[0048] There is a need for electronic devices with faster, more efficient methods and interfaces for operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation. Such methods and interfaces may complement or replace conventional methods for operating a touch-sensitive surface. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0049] In accordance with some embodiments, a method is performed at an electronic device with a display and a touch-sensitive surface. The method includes: detecting a contact in a first region of the touch-sensitive surface, where the first region of the touch-sensitive surface is in a reduced-sensitivity mode of operation; in response to detecting the contact: determining whether the contact meets one or more fingerprint-sensor activation criteria; in accordance with a determination that the contact meets the fingerprint-sensor activation criteria, operating the first region of the touch-sensitive surface in an enhanced-sensitivity mode of operation; and in accordance with a determination that the contact does not meet the fingerprint-sensor activation criteria, continuing to operate the first region of the touch-sensitive surface in the reduced-sensitivity mode of operation.

[0050] In accordance with some embodiments, an electronic device includes a display unit, a touch-sensitive surface unit configured to receive contacts, and a processing unit coupled to the display unit and the touch-sensitive surface unit. The processing unit is configured to: detect a contact in a first region of the touch-sensitive surface unit, where the first region of the touch-sensitive surface unit is in a reduced-sensitivity mode of operation; in response to detecting the contact: determine whether the contact meets fingerprint-sensor activation criteria; in accordance with a determination that the contact meets the fingerprint-sensor activation criteria, operate the first region of the touch-sensitive surface unit in an enhanced-sensitivity mode of operation; and in accordance with a determination that the contact does not meet the fingerprint-sensor activation criteria, continue to operate the first region of the touch-sensitive surface unit in the reduced-sensitivity mode of operation

[0051] Thus, electronic devices with displays and touch-sensitive surfaces are provided with faster, more efficient methods and interfaces for operating a touch-sensitive surface by operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for operating a touch-sensitive surface.

[0052] There is a need for electronic devices with faster, more efficient methods and interfaces for performing specific operations on devices. Such methods and interfaces may complement or replace conventional methods for performing specific operations on devices. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0053] In accordance with some embodiments, a method is performed at an electronic device with a display and a touch-sensitive surface. The method includes: associating a first fingerprint with a first operation; displaying, on the display, a respective user interface that includes affordances for performing a plurality of operations other than the first operation; while displaying the respective user interface that includes affordances for performing the plurality of operations other than the first operation, detecting a first gesture that includes detecting the first fingerprint on the touch-sensitive surface; and in response to detecting the first gesture, performing the first operation.

[0054] In accordance with some embodiments, an electronic device includes a display unit configured to display a respective user interface that includes affordances for performing a plurality of operations other than a first operation, a touch-sensitive surface unit configured to receive gestures, and a processing unit coupled to the display unit and the touch-sensitive surface unit. The processing unit is configured to: associate a first fingerprint with the first operation; while enabling display of the respective user interface that includes affordances for performing the plurality of operations other than the first operation, detect a first gesture that includes detecting the first fingerprint on the touch-sensitive surface unit; and in response to detecting the first gesture, perform the first operation

[0055] Thus, electronic devices with displays touch-sensitive surfaces and fingerprint sensors are provided with faster, more efficient methods and interfaces for performing operations associated with fingerprint gestures, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for performing operations associated with fingerprint gestures.

[0056] There is a need for electronic devices with faster, more efficient methods and interfaces for displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control. Such methods and interfaces may complement or replace conventional methods for displaying a respective control for a user interface. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0057] In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface and a fingerprint sensor. The method includes displaying a user interface on the display. The method further includes detecting a first fingerprint associated with moving a respective control for the user interface on the touch-sensitive surface, where the first fingerprint corresponds to a focus selector at a first location on the display that does not include the respective control. In response to detecting the first fingerprint, the method includes displaying the respective control at the first location on the display.

[0058] In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface; a touch-sensitive surface unit configured to receive one or more contacts; a fingerprint sensor unit; and a processing unit coupled to the display unit, the touch-sensitive surface unit and the fingerprint sensor unit. The processing unit is configured to: detect a first fingerprint associated with moving a respective control for the user interface on the touch-sensitive surface unit, where the first fingerprint corresponds to a focus selector at a first location on the display unit that does not include the respective control; and in response to detecting the first fingerprint, enable display of the respective control at the first location on the display unit.

[0059] Thus, electronic devices with displays, touch-sensitive surfaces and fingerprint sensors are provided with faster, more efficient methods and interfaces for displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for displaying a respective control for a user interface.

[0060] There is a need for electronic devices with faster, more efficient methods and interfaces for configuring a second electronic device as an auxiliary display of a first

electronic device. Such methods and interfaces may complement or replace conventional methods for configuring a second electronic device as an auxiliary display. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0061] In accordance with some embodiments, a method is performed at an electronic device with a display and a fingerprint sensor. The method includes: detecting a first fingerprint on the fingerprint sensor of the first electronic device at a first time, where the first fingerprint is registered to a respective user. The method also includes receiving a communication from a second electronic device, distinct from the first electronic device, that includes information indicating that a second fingerprint was detected on a fingerprint sensor of the second device at a second time. The method further includes, in response to detecting the first fingerprint and receiving the communication from the second electronic device: determining whether predefined auxiliary-display criteria have been met, where the auxiliary-display criteria include a criterion that is met when the second fingerprint is registered to the respective user. The method further includes, in accordance with a determination that the auxiliary-display criteria are met, sending a response to the second electronic device that enables the second electronic device to be configured as an auxiliary display for the first electronic device; and in accordance with a determination that the auxiliary display criteria are not met, foregoing sending the response to the second electronic device that enables the second electronic device to be configured as the auxiliary display for the first electronic device.

[0062] In accordance with some embodiments, an electronic device includes a display unit configured a display unit configured to display a user interface, a fingerprint sensor unit, and a processing unit coupled to the display unit and the fingerprint sensor unit. The processing unit is configured to detect a first fingerprint on the fingerprint sensor unit of the first electronic device at a first time, where the first fingerprint is registered to a respective user. The processing unit is also configured to receive a communication from a second electronic device, distinct from the first electronic device, that includes information indicating that a second fingerprint was detected on a fingerprint sensor unit of the second device at a second time. The processing unit is further configured, in response to detecting the first fingerprint and receiving the communication from the second electronic device, to determine whether predefined auxiliary-display criteria have been met, where the auxiliary-

display criteria include a criterion that is met when the second fingerprint is registered to the respective user. The processing unit is further configured to, in accordance with a

determination that the auxiliary-display criteria are met, send a response to the second electronic device that enables the second electronic device to be configured as an auxiliary display for the first electronic device; and in accordance with a determination that the auxiliary-display criteria are not met, forego sending the response to the second electronic device that enables the second electronic device to be configured as the auxiliary display for the first electronic device.

[0063] Thus, electronic devices with displays, and fingerprint sensors are provided with faster, more efficient methods and interfaces for configuring a second electronic device as an auxiliary display of a first electronic device, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for configuring a second electronic device as an auxiliary display.

[0064] There is a need for electronic devices with faster, more efficient methods and interfaces for changing beamforming parameters based on fingerprint orientation. Such methods and interfaces may complement or replace conventional methods for changing beamforming parameters. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.

[0065] In accordance with some embodiments, a method is performed at an electronic device with a display and a fingerprint sensor. While a first fingerprint is detected in a first orientation on the fingerprint sensor, the method includes operating a set of one or more audio elements in accordance with a first set of beamforming parameters. The method further includes: detecting a subsequent fingerprint having a second orientation different from the first orientation on the fingerprint sensor, where the subsequent fingerprint is selected from a set consisting of the first fingerprint with a changed orientation and a second fingerprint distinct from the first fingerprint; and in response to detecting the subsequent fingerprint having the second orientation on the fingerprint sensor, operating the set of one or more audio elements in accordance with a second set of beamforming parameters different from the first set of beamforming parameters.

[0066] In accordance with some embodiments, an electronic device includes a display unit configured to display information; a fingerprint sensor; a set of one or more audio units configured to generate and/or capture audio signals; and a processing unit coupled to the display unit, the fingerprint sensor unit and the set of one or more audio units. While a first fingerprint is detected in a first orientation on the fingerprint sensor unit, the processing unit is configured to operate the set of one or more audio units in accordance with a first set of beamforming parameters. The processing unit is further configured to: detect a subsequent fingerprint having a second orientation different from the first orientation on the fingerprint sensor unit, where the subsequent fingerprint is selected from a set consisting of the first fingerprint with a changed orientation and a second fingerprint distinct from the first fingerprint; and in response to detecting the subsequent fingerprint having the second orientation on the fingerprint sensor unit, operate the set of one or more audio units in accordance with a second set of beamforming parameters different from the first set of beamforming parameters.

[0067] Thus, electronic devices with displays and fingerprint sensors are provided with faster, more efficient methods and interfaces for changing beamforming parameters based on fingerprint orientation, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for changing beamforming parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

[0068] For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.

[0069] Figure 1 A is a block diagram illustrating a portable multifunction device with a touch-sensitive display and a fingerprint sensor in accordance with some embodiments.

[0070] Figure IB is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.

[0071] Figure 2 illustrates a portable multifunction device having a touch screen and a fingerprint sensor in accordance with some embodiments.

[0072] Figure 3 is a block diagram of an exemplary multifunction device with a display and a plurality of sensors including a fingerprint sensor and, optionally a touch-sensitive surface in accordance with some embodiments.

[0073] Figure 4A illustrates an exemplary user interface for a menu of applications on a portable multifunction device in accordance with some embodiments.

[0074] Figure 4B illustrates an exemplary user interface for a multifunction device with a fingerprint sensor and a touch-sensitive surface that is separate from the display in accordance with some embodiments.

[0075] Figure 4C illustrates a schematic representation of a two hands with associated fingerprints in accordance with some embodiments.

[0076] Figure 4D illustrates different types of rotation of a fingerprint on a fingerprint sensor in accordance with some embodiments.

[0077] Figures 5A-5N illustrate exemplary user interfaces for interacting with user interfaces in accordance with movement of a finger on a fingerprint sensor in accordance with some embodiments.

[0078] Figures 6A-6C are flow diagrams illustrating a method of interacting with user interfaces in accordance with movement of a finger on a fingerprint sensor in accordance with some embodiments.

[0079] Figure 7 is a functional block diagram of an electronic device in accordance with some embodiments.

[0080] Figures 8A-80 illustrate exemplary user interfaces to be used in conjunction with multi-purpose buttons in accordance with some embodiments.

[0081] Figures 9A-9C are flow diagrams illustrating a method of allowing a button to serve multiple purposes in accordance with some embodiments.

[0082] Figure 10 is a functional block diagram of an electronic device in accordance with some embodiments.

[0083] Figures 1 lA-1 IF illustrate exemplary user interfaces for locking an orientation of user interface in accordance with some embodiments.

[0084] Figures 12A-12B are flow diagrams illustrating a method of locking an orientation of user interface in accordance with some embodiments.

[0085] Figure 13 is a functional block diagram of an electronic device in accordance with some embodiments.

[0086] Figures 14A-14D illustrate exemplary user interfaces for controlling noise reduction in recorded audio with a fingerprint sensor in accordance with some embodiments.

[0087] Figure 15 is a flow diagram illustrating a method of controlling noise reduction in recorded audio with a fingerprint sensor in accordance with some embodiments.

[0088] Figure 16 is a functional block diagram of an electronic device in accordance with some embodiments.

[0089] Figures 17A-17K illustrate exemplary user interfaces for performing operations based on a class-based profile in accordance with some embodiments.

[0090] Figures 18A-18B are flow diagrams illustrating a method of performing operations based on a class-based profile in accordance with some embodiments.

[0091] Figure 19 is a functional block diagram of an electronic device in accordance with some embodiments.

[0092] Figures 20A-20F illustrate exemplary user interfaces implemented on devices that change logging preferences based on fingerprints.

[0093] Figures 21A-21B are flow diagrams illustrating a method of changing logging preferences based on fingerprints, in accordance with some embodiments.

[0094] Figure 22 is a functional block diagram of an electronic device in accordance with some embodiments.

[0095] Figures 23A-23G illustrate exemplary user interfaces for performing a respective restricted operation based on fingerprint- verification information in accordance with some embodiments.

[0096] Figures 24A-24D are flow diagrams illustrating a method of performing a respective restricted operation based on fingerprint- verification information in accordance with some embodiments.

[0097] Figure 25 is a functional block diagram of an electronic device in accordance with some embodiments.

[0098] Figures 26A-26G illustrate exemplary user interfaces for associating identity and location information in accordance with some embodiments.

[0099] Figure 27 is a flow diagram illustrating a method of associating identity and location information in accordance with some embodiments.

[00100] Figure 28 is a functional block diagram of an electronic device in accordance with some embodiments.

[00101] Figures 29A-29S illustrate exemplary user interfaces for assigning workspaces to one or more users in accordance with some embodiments.

[00102] Figures 30A-30B are flow diagrams illustrating a method of assigning workspaces to one or more users in accordance with some embodiments.

[00103] Figure 31 is a functional block diagram of an electronic device in accordance with some embodiments.

[00104] Figures 32A-32S illustrate exemplary user interfaces for training a user on proper fingering techniques in accordance with some embodiments.

[00105] Figures 33A-33C are flow diagrams illustrating a method of training a user on proper fingering techniques in accordance with some embodiments.

[00106] Figure 34 is a functional block diagram of an electronic device in accordance with some embodiments.

[00107] Figures 35A-35J illustrate exemplary user interfaces for operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation in accordance with some embodiments.

[00108] Figures 36A-36B are flow diagrams illustrating a method of operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation in accordance with some embodiments.

[00109] Figure 37 is a functional block diagram of an electronic device in accordance with some embodiments.

[00110] Figures 38A-38P illustrate exemplary user interfaces for performing operations associated with fingerprint gestures in accordance with some embodiments.

[00111] Figures 39A-39E are flow diagrams illustrating a method of performing operations associated with fingerprint gestures in accordance with some embodiments.

[00112] Figure 40 is a functional block diagram of an electronic device in accordance with some embodiments.

[00113] Figures 41A- 41K illustrate exemplary user interfaces for displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control in accordance with some embodiments.

[00114] Figures 42A-42C are flow diagrams illustrating a method of displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control in accordance with some embodiments.

[00115] Figure 43 is a functional block diagram of an electronic device in accordance with some embodiments.

[00116] Figures 44A-44EE illustrate exemplary user interfaces for configuring a second electronic device as an auxiliary display in accordance with some embodiments.

[00117] Figures 45A-45D are flow diagrams illustrating a method of configuring a second electronic device as an auxiliary display in accordance with some embodiments.

[00118] Figure 46 is a functional block diagram of an electronic device in accordance with some embodiments.

[00119] Figures 47A-47L illustrate exemplary user interfaces for changing beamforming parameters based on fingerprint orientation in accordance with some embodiments.

[00120] Figures 48A-48B are flow diagrams illustrating a method of changing beamforming parameters based on fingerprint orientation in accordance with some embodiments.

[00121] Figure 49 is a functional block diagram of an electronic device in accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

[00122] The methods, devices and GUIs described herein respond to inputs on a fingerprint sensor instead of, or in addition to, inputs on a touch-sensitive surface or other input device. In some implementations, a touch-sensitive surface with a spatial resolution that is high enough to detect fingerprint features formed by individual fingerprint ridges is used as a fingerprint sensor. When a fingerprint sensor is used without a separate touch-sensitive surface, the fingerprint sensor can serve as a substitute for many of the functions of the touch-sensitive surface with a much smaller form factor, as the fingerprint sensor can

detect movement of a contact over the fingerprint sensor even when the fingerprint has an area that is as large as or larger than the area of the fingerprint sensor. When a fingerprint sensor is used in addition to a separate touch-sensitive surface, the fingerprint sensor can augment the touch-sensitive surface by providing accurate detection of twisting motions of a contact, identifying different fingerprints of fingers that are used to perform gestures on the fingerprint sensor, and identifying a current user of the device. Additionally, when a fingerprint sensor is used in addition to a separate touchscreen display, the fingerprint sensor can detect touch inputs in situations where it is advantageous to avoid having fingers obscuring portions of the display (e.g., while viewing a map, a video or a game). When the touch-sensitive surface is used as a fingerprint sensor, the touch-sensitive surface optionally has spatial resolution settings that can be defined so as to switch the touch-sensitive surface (or regions of the touch-sensitive surface) between a low-resolution mode and a high-resolution mode automatically, without user intervention. In many situations the low-resolution mode consumes less power than the high-resolution mode. An advantage of operating the touch-sensitive surface in a low-resolution mode when fingerprint detection is not needed and switching the touch-sensitive surface, or a region of the touch-sensitive surface, to high-resolution mode on an as-needed basis is that such an approach conserves power while still providing high-resolution fingerprint feature sensing as-needed to improve the user experience of using the device. In implementations where the touch-sensitive surface is used as a fingerprint sensor, the term "fingerprint sensor" is used to refer to the touch-sensitive surface, or a region of the touch-sensitive surface, that is currently in high-resolution mode.

[00123] A number of different approaches to providing an intuitive user interface where inputs from one or more fingerprint sensors are used to manipulate a user interface of an electronic device are described below. Using one or more of these approaches (optionally in conjunction with each other) helps to provide a user interface that intuitively provides users with additional information and functionality, thereby reducing the user's cognitive burden and improving the human-machine interface. Such improvements in the human-machine interface enable users to use the device faster and more efficiently. For battery-operated devices, these improvements conserve power and increase the time between battery charges. For ease of explanation, systems, methods and user interfaces for including illustrative examples of some of these approaches are described below, as follows:

• Below, Figures 5A-5N illustrate exemplary user interfaces for interacting with user interfaces in accordance with movement of a finger on a fingerprint sensor. Figures 6A-6C are flow diagrams illustrating a method of interacting with user interfaces in accordance with movement of a finger on a fingerprint sensor. The user interfaces in Figures 5A-5N are used to illustrate the processes in Figures 6A-6C.

• Below, Figures 8A-80 illustrate exemplary user interfaces for allowing

buttons to serve multiple purposes. Figures 9A-9C are flow diagrams illustrating a method of allowing buttons to serve multiple purposes. The user interfaces in Figures 8A-80 are used to illustrate the processes in Figures 9A- 9C.

• Below, Figures 1 lA-1 IF illustrate exemplary user interfaces for locking an orientation of user interface. Figures 12A-12B are flow diagrams illustrating a method of locking an orientation of user interface. The user interfaces in Figures 11 A- 1 IF are used to illustrate the processes in Figures 12A-12B.

• Below, Figures 14A-14D illustrate exemplary user interfaces for controlling noise reduction in recorded audio with a fingerprint sensor. Figure 15 is a flow diagram illustrating a method of controlling noise reduction in recorded audio with a fingerprint sensor. The user interfaces in Figures 14A-14D are used to illustrate the processes in Figure 15.

• Below, Figures 17A-17K illustrate exemplary user interfaces for performing operations based on a class-based profile. Figures 18A-18B are flow diagrams illustrating a method of performing operations based on a class-based profile. The user interfaces in Figures 17A-17K are used to illustrate the processes in Figures 18A-18B.

• Below, Figures 20A-20F illustrate exemplary user interfaces implemented on devices that change logging preferences based on fingerprints. Figures 21A- 2 IB are flow diagrams illustrating a method of changing logging preferences based on fingerprints. The user interfaces in Figures 20A-20F are used to illustrate the processes in Figures 21A-21B.

• Below, Figures 23A-23G illustrate exemplary user interfaces for performing a respective restricted operation based on fingerprint-verification information.

Figures 24A-24D are flow diagrams illustrating a method of performing a respective restricted operation based on fingerprint-verification information. The user interfaces in Figures 23A-23G are used to illustrate the processes in Figures 24A-24D.

• Below, Figures 26A-26G illustrate exemplary user interfaces for associating identity and location information. Figure 27 is a flow diagram illustrating a method of associating identity and location information. The user interfaces in Figures 26A-26G are used to illustrate the processes in Figure 27.

• Below, Figures 29A-29S illustrate exemplary user interfaces for associating areas of a touch-sensitive surface with one or more users. Figures 30A-30B are flow diagrams illustrating a method of associating areas of a touch- sensitive surface with one or more users. The user interfaces in Figures 29A- 29S are used to illustrate the processes in Figures 30A-30B.

• Below, Figures 32A-32S illustrate exemplary user interfaces for training a user on proper fingering techniques. Figures 33A-33C are flow diagrams illustrating a method of training a user on proper fingering techniques. The user interfaces in Figures 32A-32S are used to illustrate the processes in Figures 33A-33C.

• Below, Figures 35A-35J illustrate exemplary user interfaces for operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation. Figures 36A-36B are flow diagrams illustrating a method of operating a portion of a touch-sensitive surface in an enhanced-sensitivity mode of operation. The user interfaces in Figures 35A-35J are used to illustrate the processes in Figures 36A-36B.

• Below, Figures 38A-38P illustrate exemplary user interfaces for performing operations associated with fingerprint gestures. Figures 39A-39E are flow diagrams illustrating a method of performing operations associated with fingerprint gestures. The user interfaces in Figures 38A-38P are used to illustrate the processes in Figures 39A-39E.

• Below, Figures 41 A- 4 IK illustrate exemplary user interfaces for displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control. Figures 42A-42C are flow

diagrams illustrating a method of displaying a respective control for a user interface based on detection of a first fingerprint associated with moving the respective control. The user interfaces in Figures 41A- 41K are used to illustrate the processes in Figures 42A-42C.

• Below, Figures 44A-44EE illustrate exemplary user interfaces for configuring a second electronic device as an auxiliary display of a first electronic device. Figures 45A-45D are flow diagrams illustrating a method of configuring a second electronic device as an auxiliary display of a first electronic device. The user interfaces in Figures 44A-44EE are used to illustrate the processes in Figures 45A-45D.

• Below, Figures 47A-47L illustrate exemplary user interfaces for changing beamforming parameters based on fingerprint orientation. Figures 48A-48B are flow diagrams illustrating a method of changing beamforming parameters based on fingerprint orientation. The user interfaces in Figures 47A-47L are used to illustrate the processes in Figures 48A-48B.

EXEMPLARY DEVICES

[00124] Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.

[00125] It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact.

[00126] The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term "and/or" as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms "includes," "including," "comprises," and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[00127] As used herein, the term "if is, optionally, construed to mean "when" or

"upon" or "in response to determining" or "in response to detecting," depending on the context. Similarly, the phrase "if it is determined" or "if [a stated condition or event] is detected" is, optionally, construed to mean "upon determining" or "in response to

determining" or "upon detecting [the stated condition or event]" or "in response to detecting [the stated condition or event]," depending on the context.

[00128] Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touch pads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad).

[00129] In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse and/or a joystick.

[00130] The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet

application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.

[00131] The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.

[00132] Attention is now directed toward embodiments of portable devices with touch-sensitive displays. Figure 1 A is a block diagram illustrating portable multifunction device 100 with touch-sensitive displays 112 in accordance with some embodiments. Touch-sensitive display 112 is sometimes called a "touch screen" for convenience, and is sometimes known as or called a touch-sensitive display system. Device 100 includes memory 102 (which optionally includes one or more computer readable storage mediums), memory controller 122, one or more processing units (CPU's) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input or control devices 116, and external port 124. Device 100 optionally includes one or more optical sensors 164. Device 100 optionally includes one or more intensity sensors 165 for detecting intensity of contacts on device 100 (e.g., a touch-sensitive surface such as touch-sensitive display system 112 of device 100). Device 100 optionally includes one or more tactile output generators 167 for generating tactile outputs on device 100 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 112 of device 100 or touchpad 355 of device 300). These

components optionally communicate over one or more communication buses or signal lines 103.

[00133] As used in the specification and claims, the term "intensity" of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).

[00134] As used in the specification and claims, the term "tactile output" refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a "down click" or "up click" of a physical actuator button. In some cases, a user will feel a tactile sensation such as an "down click" or "up click" even when there is no movement of a physical actuator

button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as "roughness" of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an "up click," a "down click," "roughness"), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.

[00135] It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in Figure 1A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.

[00136] Memory 102 optionally includes high-speed random access memory and optionally also includes non- volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of device 100, such as CPU 120 and the peripherals interface 118, is, optionally, controlled by memory controller 122.

[00137] Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data.

[00138] In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.

[00139] RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices

via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication optionally uses any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM

Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDM A), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.1 la, IEEE 802.1 lb, IEEE 802.1 lg and/or IEEE 802.1 In), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging

Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including

communication protocols not yet developed as of the filing date of this document.

[00140] Audio circuitry 1 10, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 1 18. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212, Figure 2). The headset jack provides an interface between audio circuitry 110 and

removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).

[00141] I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161 and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208, Figure 2) optionally include an up/down button for volume control of speaker 111 and/or microphone 113. The one or more buttons optionally include a push button (e.g., 206, Figure 2).

[00142] Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed "graphics"). In some embodiments, some or all of the visual output corresponds to user-interface objects.

[00143] Touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.

[00144] Touch screen 112 optionally uses LCD (liquid crystal display) technology,

LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and

display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone®, iPod Touch®, and iPad® from Apple Inc. of Cupertino, California.

[00145] Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.

[00146] In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.

[00147] Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation,

management and distribution of power in portable devices.

[00148] Device 100 optionally also includes one or more optical sensors 164.

Figure 1A shows an optical sensor coupled to optical sensor controller 158 in I/O subsystem 106. Optical sensor 164 optionally includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 164 receives light from the environment, projected through one or more lens, and converts the light to data

representing an image. In conjunction with imaging module 143 (also called a camera module), optical sensor 164 optionally captures still images or video. In some embodiments, an optical sensor is located on the back of device 100, opposite touch screen display 112 on the front of the device, so that the touch screen display is enabled for use as a viewfmder for still and/or video image acquisition. In some embodiments, another optical sensor is located on the front of the device so that the user's image is, optionally, obtained for

videoconferencing while the user views the other video conference participants on the touch screen display.

[00149] Device 100 optionally also includes one or more contact intensity sensors 165.

Figure 1A shows a contact intensity sensor coupled to intensity sensor controller 159 in I/O subsystem 106. Contact intensity sensor 165 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 165 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112). In some embodiments, at least one contact intensity sensor is located on the back of device 100, opposite touch screen display 112 which is located on the front of device 100.

[00150] Device 100 optionally also includes one or more proximity sensors 166.

Figure 1A shows proximity sensor 166 coupled to peripherals interface 118. Alternately, proximity sensor 166 is coupled to input controller 160 in I/O subsystem 106. In some embodiments, the proximity sensor turns off and disables touch screen 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).

[00151] Device 100 optionally also includes one or more tactile output generators 167.

Figure 1A shows a tactile output generator coupled to haptic feedback controller 161 in I/O subsystem 106. Tactile output generator 167 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 165 receives tactile feedback generation instructions from haptic feedback module 133 and generates tactile outputs on device 100 that are capable of being sensed by a user of device 100. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 100) or laterally (e.g., back and forth in the same plane as a surface of device 100). In some embodiments, at least one tactile output generator sensor is located on the back of device 100, opposite touch screen display 112 which is located on the front of device 100.

[00152] Device 100 optionally also includes one or more accelerometers 168. Figure

1A shows accelerometer 168 coupled to peripherals interface 118. Alternately, accelerometer 168 is, optionally, coupled to an input controller 160 in I/O subsystem 106. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.

[00153] In some embodiments, device 100 also includes (or is in communication with) one or more fingerprint sensors 169. Figure 1A shows fingerprint sensor 169 coupled to peripherals interface 118. Alternately, fingerprint sensors 169 are, optionally, coupled to an input controller 160 in I/O subsystem 106. However, in one common embodiment, fingerprint identification operations are performed using secured dedicated computing hardware (e.g., one or more processors, memory and/or communications busses) that has additional security features so as to enhance security of the fingerprint information

determined by the fingerprint sensors. As used herein, a fingerprint sensor is a sensor that is capable of distinguishing fingerprint features (sometimes called "minutia features") of the ridges and valleys of skin such as those found on the fingers and toes of humans. A fingerprint sensor can use any of a variety of techniques to distinguish the fingerprint features, including but not limited to: optical fingerprint imaging, ultrasonic fingerprint imaging, active capacitance fingerprint imaging and passive capacitance fingerprint imaging. In addition to distinguishing fingerprint features in fingerprints, in some embodiments, fingerprint sensor 169 is capable of tracking movement of fingerprint features over time and thereby determining/characterizing movement of the fingerprint over time on the fingerprint sensor. While the fingerprint sensor (e.g., Fingerprint Sensor 169) in Figure 1A is shown as being separate from the touch-sensitive surface (e.g., Touch-Sensitive Display System 112), it should be understood that in some implementations, the touch-sensitive surface (e.g., Touch-Sensitive Display System 112) has a spatial resolution that is high enough to detect fingerprint features formed by individual fingerprint ridges and is used as a fingerprint sensor instead of, or in addition to, a separate fingerprint sensor (e.g., Fingerprint Sensor 169). In some embodiments, device 100 includes a set of one or more orientation sensors that are used to determine an orientation of a finger or hand on or proximate to the device (e.g., an orientation of a finger that is over fingerprint sensor 169). Additionally, in some

embodiments, the set of one or more orientation sensors are used in addition to or instead of a fingerprint sensor to detect rotation of a contact that is interacting with the device (e.g., in one or more of the methods described below, instead of using a fingerprint sensor to detect rotation of a fingerprint/contact, the set of one or more orientation sensors is used to detect rotation of the contact that includes the fingerprint, with or without detecting features of the fingerprint).

[00154] In some embodiments, features of fingerprints and comparisons between features of detected fingerprints and features of stored fingerprints are performed by secured dedicated computing hardware (e.g., one or more processors, memory and/or

communications busses) that are separate from processors 120, so as to improve security of the fingerprint data generated, stored and processed by fingerprint sensor 169. In some embodiments, features of fingerprints and comparisons between features of detected fingerprints and features of stored fingerprints are performed by processors 120 using fingerprint analysis module 131.

[00155] In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, fingerprint analysis module 131, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments memory 102 stores device/global internal state 157, as shown in Figures 1A and 3. Device/global internal state 157 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 112; sensor state, including information obtained from the device's various

sensors and input control devices 116; and location information concerning the device's location and/or attitude.

[00156] Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X,

WINDOWS, or an embedded operating system such as Vx Works) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.

[00157] Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod (trademark of Apple Inc.) devices.

[00158] Contact/motion module 130 optionally detects contact with touch screen 112

(in conjunction with display controller 156) and other touch sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., "multitouch'Vmultiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.

[00159] In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has "clicked" on an icon). In some embodiments at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse "click" threshold of a trackpad or touch screen display can be set to any of a large range of predefined thresholds values without changing the trackpad or touch screen display hardware. Additionally, in some implementations a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click "intensity" parameter).

[00160] Contact/motion module 130 optionally detects a gesture input by a user.

Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (lift off) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (lift off) event.

[00161] Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including

components for changing the visual impact (e.g., brightness, transparency, saturation, contrast or other visual property) of graphics that are displayed. As used herein, the term "graphics" includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.

[00162] In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.

[00163] Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.

[00164] Text input module 134, which is, optionally, a component of graphics module

132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).

[00165] GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing, to camera 143 as picture/video metadata, and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).

[00166] Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:

• contacts module 137 (sometimes called an address book or contact list);

• telephone module 138;

• video conferencing module 139;

• e-mail client module 140;

• instant messaging (IM) module 141;

• workout support module 142;

• camera module 143 for still and/or video images;

• image management module 144;

• browser module 147;

• calendar module 148;

• widget modules 149, which optionally include one or more of: weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149- 4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;

• widget creator module 150 for making user-created widgets 149-6;

• search module 151;

• video and music player module 152, which is, optionally, made up of a video player module and a music player module;

• notes module 153;

• map module 154; and/or

• online video module 155.

[00167] Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.

[00168] In conjunction with touch screen 112, display controller 156, contact module

130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.

[00169] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, telephone module 138 are, optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols and technologies.

[00170] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact module 130, graphics module 132, text input module 134, contact list

137, and telephone module 138, videoconferencing module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.

[00171] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.

[00172] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS). As used herein, "instant messaging" refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).

[00173] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module 146, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals);

communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.

[00174] In conjunction with touch screen 112, display controller 156, optical sensor(s)

164, optical sensor controller 158, contact module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.

[00175] In conjunction with touch screen 112, display controller 156, contact module

130, graphics module 132, text input module 134, and camera module 143, image

management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.

[00176] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.

[00177] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.

[00178] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML

(Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).

[00179] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).

[00180] In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.

[00181] In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).

[00182] In conjunction with touch screen 112, display controller 156, contact module

130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.

[00183] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.

[00184] In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video.

[00185] Each of the above identified modules and applications correspond to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus

various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments. In some embodiments, memory 102 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 102 optionally stores additional modules and data structures not described above.

[00186] In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.

[00187] The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a "menu button" is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.

[00188] Figure IB is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 102 (in Figures 1A) or 370 (Figure 3) includes event sorter 170 (e.g., in operating system 126) and a respective application 136-1 (e.g., any of the aforementioned applications 137-13, 155, 380-390).

[00189] Event sorter 170 receives event information and determines the application

136-1 and application view 191 of application 136-1 to which to deliver the event

information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.

[00190] In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.

[00191] Event monitor 171 receives event information from peripherals interface 118.

Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.

[00192] In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripheral interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).

[00193] In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.

[00194] Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.

[00195] Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.

[00196] Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy

which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (i.e., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.

[00197] Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.

[00198] Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver module 182.

[00199] In some embodiments, operating system 126 includes event sorter 170.

Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.

[00200] In some embodiments, application 136-1 includes a plurality of event handlers

190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177 or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 includes one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.

[00201] A respective event recognizer 180 receives event information (e.g., event data

179) from event sorter 170, and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).

[00202] Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.

[00203] Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187- 2), and others. In some embodiments, sub-events in an event 187 include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first lift-off (touch end) for a predetermined phase, a second touch

(touch begin) on the displayed object for a predetermined phase, and a second lift-off (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and lift-off of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.

[00204] In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.

[00205] In some embodiments, the definition for a respective event 187 also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.

[00206] When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.

[00207] In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.

[00208] In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.

[00209] In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.

[00210] In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module 145. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 176 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.

[00211] In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.

[00212] It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc., on touch-pads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.

[00213] Figure 2 illustrates a portable multifunction device 100 having a touch screen

112 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 200. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure) or one or more styluses 203 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 100. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.

[00214] Device 100 optionally also includes one or more physical buttons, such as

"home" or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112. In some embodiments button 204 includes an integrated fingerprint sensor 169-1 for identifying a fingerprint that is interacting with button 204 and/or detecting movement of the fingerprint on button 204. Device also, optionally, includes one or more other fingerprint sensors 169-2 that are separate from button 204 and are used instead of or in conjunction with a fingerprint sensor 169-1 integrated into button 204 to identify a user interacting with the device and/or detect motion of the fingerprint. Additionally, one or more of the other fingerprint sensors 169-2 are optionally associated with a button (e.g., a pressure sensitive region that is activated by detecting an input with an intensity above an activation intensity threshold or a physical actuator that moves in response force applied by a user). In implementations where the touch-sensitive surface (e.g., Touch Screen 112) has a spatial resolution that is high enough to detect fingerprint features formed by individual fingerprint ridges, the touch-sensitive surface (e.g., Touch Screen 112) is optionally used as a fingerprint sensor instead of, or in addition to, a separate fingerprint sensor (e.g., Fingerprint Sensors 169-1 or 169-2). In some embodiments, device 100 includes a set of one or more orientation sensors that are used to determine an orientation of a hand on device 100.

[00215] In one embodiment, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, Subscriber Identity Module (SIM) card slot 210, head set jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.

[00216] Figure 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 300 need not be portable. In some embodiments, device 300 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 300 typically includes one or more processing units (CPU's) 310, one or more network or other communications interfaces 360, memory 370, and one or more communication buses 320 for interconnecting these components. Communication buses 320 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 300 includes input/output (I/O) interface 330 comprising display 340, which is typically a touch screen display. I/O interface 330 also optionally includes a keyboard and/or mouse (or other pointing device) 350 and touchpad 355, tactile output generator 357 for generating tactile outputs on device 300 (e.g., similar to tactile output generator(s) 167 described above with reference to Figure 1A), sensors 359 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 165 described above with reference to Figure 1A, and/or fingerprint sensors similar to fingerprint sensor(s) 169 described above with reference to Figure 1 A). Additionally, in implementations where the touch-sensitive surface (e.g., Touchpad 355) has a spatial resolution that is high enough to detect fingerprint features formed by individual fingerprint ridges, the touch-sensitive surface (e.g., Touchpad 355) is optionally used as a fingerprint sensor instead of, or in addition to, a separate fingerprint sensor (e.g., one of sensors 359). In some embodiments, device 300 includes a set of one or more orientation sensors that are used to determine an orientation of a finger or hand on or proximate to the device (e.g., an orientation of a finger that is over fingerprint sensor 169). Additionally, in some embodiments, the set of one or more orientation sensors are used in addition to or instead of a fingerprint sensor to detect rotation of a contact that is interacting with the device. For example, in one or more of the methods described below, instead of using a fingerprint sensor to detect rotation of a fingerprint/contact, the set of one or more orientation sensors is used to detect rotation of the contact that includes the fingerprint, with or without detecting features of the fingerprint.

[00217] Memory 370 includes high-speed random access memory, such as DRAM,

SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 370 optionally includes one or more storage devices remotely located from CPU(s) 310. In some embodiments, memory 370 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 102 of portable multifunction device 100 (Figure 1A), or a subset thereof. Furthermore, memory 370 optionally stores additional programs, modules, and data structures not present in memory 102 of portable multifunction device 100. For example, memory 370 of device 300 optionally stores drawing module 380, presentation module 382, word processing module 384, website creation module 386, disk authoring module 388, and/or spreadsheet module 390, while memory 102 of portable multifunction device 100 (Figure 1A) optionally does not store these modules.

[00218] Each of the above identified elements in Figure 3 are, optionally, stored in one or more of the previously mentioned memory devices. Each of the above identified modules corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments. In some embodiments, memory 370 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 370 optionally stores additional modules and data structures not described above.

[00219] Attention is now directed towards embodiments of user interfaces ("UI") that is, optionally, implemented on portable multifunction device 100.

[00220] Figure 4A illustrates an exemplary user interface for a menu of applications on portable multifunction device 100 in accordance with some embodiments. Similar user interfaces are, optionally, implemented on device 300. In some embodiments, user interface 400 includes the following elements, or a subset or superset thereof:

• Signal strength indicator(s) 402 for wireless communication(s), such as

cellular and Wi-Fi signals;

• Time 404;

• Bluetooth indicator 405;

• Battery status indicator 406;

• Tray 408 with icons for frequently used applications, such as:

o Icon 416 for telephone module 138, labeled "Phone," which optionally includes an indicator 414 of the number of missed calls or voicemail messages;

o Icon 418 for e-mail client module 140, labeled "Mail," which

optionally includes an indicator 410 of the number of unread e-mails;

o Icon 420 for browser module 147, labeled "Browser;" and

o Icon 422 for video and music player module 152, also referred to as iPod (trademark of Apple Inc.) module 152, labeled "iPod;" and

• Icons for other applications, such as:

o Icon 424 for IM module 141 , labeled "Text;"

o Icon 426 for calendar module 148, labeled "Calendar;"

o Icon 428 for image management module 144, labeled "Photos;"

o Icon 430 for camera module 143, labeled "Camera;"

o Icon 432 for online video module 155, labeled "Online Video"

o Icon 434 for stocks widget 149-2, labeled "Stocks;"

o Icon 436 for map module 154, labeled "Map;"

o Icon 438 for weather widget 149-1, labeled "Weather;"

o Icon 440 for alarm clock widget 149-4, labeled "Clock;"

o Icon 442 for workout support module 142, labeled "Workout Support;"

o Icon 444 for notes module 153, labeled "Notes;" and

o Icon 446 for a settings application or module, which provides access to settings for device 100 and its various applications 136.

[00221] It should be noted that the icon labels illustrated in Figure 4 A are merely exemplary. For example, icon 422 for video and music player module 152 are labeled "Music" or "Music Player." Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.

[00222] Figure 4B illustrates an exemplary user interface on a device (e.g., device 300,

Figure 3) with a touch-sensitive surface 451 (e.g., a tablet or touchpad 355, Figure 3) that is separate from the display 450 (e.g., touch screen display 112) with an integrated 359-1 (or separate 359-2) fingerprint sensor (e.g., one or more of sensors 359 that operates in an analogous manner to fingerprint sensor 169 in Figure 1A). Additionally, in implementations where the touch-sensitive surface 451 has a spatial resolution that is high enough to detect fingerprint features formed by individual fingerprint ridges, the touch-sensitive surface 451 is optionally used as a fingerprint sensor instead of, or in addition to, a distinct fingerprint sensor (e.g., integrated fingerprint sensor 359-1 or separate fingerprint sensor 359-2). Device 300 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 359-3) for detecting intensity of contacts on touch-sensitive surface 451 and/or one or more tactile output generators 357 for generating tactile outputs for a user of device 300.

[00223] Although some of the examples which follow will be given with reference to inputs on touch screen display 112 (where the touch sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in Figure 4B. In some embodiments the touch sensitive surface (e.g., 451 in Figure 4B) has a primary axis (e.g., 452 in Figure 4B) that corresponds to a primary axis (e.g., 453 in Figure 4B) on the display (e.g., 450). In accordance with these embodiments, the device detects contacts (e.g., 460 and 462 in Figure 4B) with the touch-

sensitive surface 451 at locations that correspond to respective locations on the display (e.g., in Figure 4B, 460 corresponds to 468 and 462 corresponds to 470). In this way, user inputs (e.g., contacts 460 and 462, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 451 in Figure 4B) are used by the device to manipulate the user interface on the display (e.g., 450 in Figure 4B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.

[00224] Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.

[00225] As used herein, the term "focus selector" refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a "focus selector," so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in Figure 3 or touch-sensitive surface 451 in Figure 4B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch-screen display (e.g., touch-sensitive display system 112 in Figure 1 A or touch screen 112 in Figure 4 A) that enables direct interaction with user interface elements on the touch-screen display, a detected contact on the touch-screen acts as a "focus selector," so that when an input (e.g., a press input by the contact) is detected on the touch-screen display at a location of a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations focus is moved from one region of a user interface to another region of the user interface

without corresponding movement of a cursor or movement of a contact on a touch-screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch-screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).

[00226] Figure 4C shows a schematic representation of a two hands with associated fingerprints LP ("left pinky" fingerprint), LR ("left ring" fingerprint), LM ("left middle" fingerprint), LI ("left index" fingerprint), LT ("left thumb" fingerprint), RT ("right thumb" fingerprint), RI ("right index" fingerprint), RM ("right middle" fingerprint), RR ("right ring" fingerprint), RP ("right pinky" fingerprint). These abbreviations will be used with reference to other figures showing examples of interactions with a fingerprint sensor. For some of the methods described herein, one or more fingerprints of a user are registered by collecting information about the fingerprint that would enable the fingerprint to be identified. These registered fingerprints or pre-registered fingerprints are also sometimes referred to as enrolled fingerprints. In many situations described below, fingerprints detected on a fingerprint sensor are compared against previously registered fingerprints (e.g., enrolled fingerprints).

[00227] Figure 4D shows two different types of rotation of a fingerprint on a fingerprint sensor (e.g., fingerprint sensor 169 that is integrated into button 204). On the left side of Figure 4D, is an example of a fingerprint "revolving" around a fingerprint sensor, where a centroid of the fingerprint moves in a looping motion (e.g., a circular-type motion) around a center of the fingerprint sensor. On the right side of Figure 4D, is an example of a fingerprint "twisting" on a fingerprint sensor, where a primary axis of the fingerprint changes orientation relative to the fingerprint sensor. These terms (e.g., "revolving" and "twisting") will be used to described different types of rotation of a fingerprint on a fingerprint sensor with reference to other figures showing examples of interactions with a fingerprint sensor. [00228] As shown in Figure 4D, in some embodiments, the fingerprint sensor is smaller than, or approximately the same size as, an average fingerprint. Thus, in some embodiments, the fingerprint sensor detects movement of the fingerprint (e.g., fingerprint gestures) by detecting movement of fingerprint features of the fingerprint instead of or in addition to detecting movement of edges of the fingerprint. In other words, in some implementations, the fingerprint sensor detects movement of the fingerprint not by determining movement of an outline of the fingerprint (e.g., a "contact") but by detecting movement of ridges (or specific minutia points in the ridges) of the fingerprint over the fingerprint sensor. Without regard to whether the fingerprint sensor is larger or smaller than the fingerprint, detecting movement of a fingerprint (e.g., fingerprint gestures) based on movement of fingerprint features instead of, or in addition to, detecting movement of the fingerprint based on movement of an edge or outline of the fingerprint enables movement of the fingerprint to be tracked in much greater detail and provides the ability to track fingerprint movement even when a fingerprint is covering all or a large portion of the fingerprint sensor.

USER INTERFACES AND ASSOCIATED PROCESSES

Interacting with User Interfaces

[00229] Many electronic devices have graphical user interfaces that allow users to perform a variety of functions and operations associated with the respective user interfaces (e.g., home screen or application launch interfaces with user-selectable icons for selecting applications to be launched; application interfaces associated with applications such as maps for performing navigation operations, calculators for performing computation, photo viewers for viewing digital photographs, search applications, camera applications and the like; system user interfaces associated with various system level functions). While interacting with such interfaces, the user frequently desires to navigate through a given user interface; or to switch from one user interface to another (e.g., from a calculator application interface to a photo viewing application interface; or from a home screen interface to a camera application interface; and the like) or to switch from an application user interface to a system user interface (e.g., to a multi-tasking user interface). Some approaches to navigating through a user interface involve making long sustained swiping gestures across a substantial portion of a touch-sensitive surface (such a touch screen display). Some approaches for switching between application user interfaces (e.g., switching between applications) involve returning to a home screen and then toggling through pages of the home screen to view an icon corresponding to a desired application, and then selecting the icon corresponding to the desired application to launch the desired application. Similarly, some approaches to switching to a multi-tasking user interface involve making multiple concurrent contacts with the home or menu button in order to display a system user interface. These approaches are cumbersome and require the user to either make sustained movements of one or more finger contacts with a touch-sensitive surface or to make multiple sequential contacts with the device, which can take a long time or be difficult for a user to remember.

[00230] The disclosed embodiments provide a convenient and efficient method of interacting with user interfaces (e.g., either navigating through a current user interface or displaying a different user interface) through the use of a single short movement of a fingerprint (e.g., detected on a fingerprint sensor located on the device) in one of two directions. While displaying a first user interface (such as an application user interface), in response to detecting a fingerprint movement on the fingerprint sensor in a first direction (e.g., horizontally, from right to left, or left to right), the device navigates through the first user interface (e.g., translates or scrolls at least a portion of the content in the first user interface) and in response to detecting a fingerprint movement on the fingerprint sensor in a second direction (e.g., a vertical direction, upward), the device displays a second user interface (e.g., a multi-tasking user interface or the user interface corresponding to a most recently used application). As a result, the user has the improved convenience of interacting with one or more user interfaces in two different ways— e.g., either navigating through a first (or current) user interface or displaying a second user interface— simply by performing a gesture that involves the movement of a fingerprint in one of two directions on a fingerprint sensor.

[00231] In some embodiments, the device is an electronic device with a separate display (e.g., display 450) and a separate touch-sensitive surface (e.g., touch-sensitive surface 451). In some embodiments, the device is portable multifunction device 100, the display is touch screen 112, and the touch-sensitive surface includes tactile output generators 167 on the display (Figure 1 A). The device described below with reference to 5A-5N and 6A-6C includes one or more fingerprint sensors 169. In some embodiments, the one or more fingerprint sensors include one or more integrated fingerprint sensors 359-1 (Figure 4B) that are integrated in to the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). In some embodiments, the one or more fingerprint

sensors include separate fingerprint sensors 359-2 (Figure 4B) that are separate from the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). Unless specified otherwise, a fingerprint sensor 169 described below is, optionally, either an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2, depending on the configuration of the hardware and software of the device that includes the fingerprint sensor 169. For convenience of explanation, the embodiments described with reference to Figures 5A-5N and 6A-6C will be discussed with reference to display 450, a separate touch-sensitive surface 451 and a separate fingerprint sensor 359-2, however analogous operations are, optionally, performed on a device with an integrated fingerprint sensor 359-1 in response to detecting the inputs described in Figures 5A-5N on the integrated fingerprint sensor 359-1 while displaying the user interfaces shown in Figures 5A-5N on the display 450. Additionally, analogous operations are, optionally, performed on a device with a touch screen 112 in response to detecting the contacts described in Figures 5A-5N on a fingerprint sensor 169 (e.g., an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2) while displaying the user interfaces shown in Figures 5A-5N on the touch screen 112; in such embodiments, the focus selector is, optionally: a respective contact, a representative point corresponding to a contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch screen 112, in place of cursor 5N.

[00232] Figure 5A illustrates a first user interface (e.g., an application user interface, such as a map application user interface) with content (e.g., a map and navigation

instructions) that is displayed on a display 502 of a portable multi- function device 100. In some embodiments, display 502 is a touch-sensitive display with an array of touch sensors that are responsive to touch. As shown in Figure 5 A, device 100 includes a fingerprint sensor 169. In some embodiments, fingerprint sensor 169 is separate from display 502. Further, as shown in Figure 5 A, in some embodiments, fingerprint sensor 169 is integrated into a physical button (e.g., home button or menu button 204). In some embodiments, the device includes a touch-sensitive surface (e.g., a touch sensitive surface collocated with the display in the form of a touch sensitive display, such as touch sensitive display 502; and/or a touch sensitive surface separate from the display on the device), and the fingerprint sensor is separate from the touch-sensitive surface. In such embodiments, while the fingerprint sensor is responsive to the location, proximity and/or touch of a finger contact (e.g., in the form of a fingerprint), and is optionally responsive to the movement of the finger contact (e.g., in the form of a movement of the fingerprint), the spatial resolution of the fingerprint sensor (e.g., to detect the spatial location and/or movement of the finger) is greater than (e.g., more sensitive than) the resolution of conventional touch-sensitive surfaces; thereby making the fingerprint sensor more sensitive to small-magnitude spatial motion of the finger than conventional touch-sensitive surfaces.

[00233] Figures 5B-5C illustrate, while displaying a first user interface, detecting a movement of a fingerprint on fingerprint sensor 169 in a first direction (e.g., in a lateral or horizontal direction or along a short-axis of the multi-purpose device; from right to left); and in response, navigating through the first user interface. In some embodiments, as shown in Figure 5B, while the first user interface (e.g., the map user interface) is displayed on display 502, a movement of a fingerprint (e.g., fingerprint 510 and associated movement 512), is detected on fingerprint sensor 169. In response to detecting movement 512 of fingerprint 510 on fingerprint sensor 169 (e.g., from a location of fingerprint 510 shown in Figure 5B to a location of fingerprint 510 shown in Figure 5C), the device navigates through the first user interface For example, the device translates at least a portion of the first user interface in the direction of movement of fingerprint 510 (e.g., from right to left) to display additional portions of the first user interface, as shown in Figure 5C, that were not previously displayed in Figure 5B. Thus, in some embodiments, while displaying a first user interface (e.g., corresponding to a first application or to an application launch user interface), in response to detecting a movement of a fingerprint in a first direction (e.g., in a lateral or horizontal direction or along the short-axis of the multi-purpose device; from right to left) on a fingerprint sensor, the device navigates through the first user interface (e.g., translates at least a portion of the content displayed on the first user interface).

[00234] Figures 5D-5E illustrate, while displaying a first user interface, detecting a movement of a fingerprint on fingerprint sensor 169 in a second direction (e.g., in a vertical direction or along the long-axis of the multi-purpose device; upward); and in response, displaying a second user interface different from the first user interface. As shown in Figure 5D, in some embodiments, while displaying the first user interface (e.g., map application), the movement of a fingerprint (e.g., fingerprint 514 and associated movement 516) is detected on fingerprint sensor 169 of device 100, the corresponding movement 516 being in a second direction (e.g., in a vertical direction or along the long-axis of the multi-purpose device; upward, with reference to the orientation of device 100 shown in Figure 5D). In accordance with a determination that movement 516 of fingerprint 514 is in the second

direction (e.g., in a vertical upward direction, from the location of fingerprint 514 shown in Figure 5D to the location of fingerprint 514 shown in Figure 5E), a second user interface (e.g., multi-tasking user interface 517 including user selectable icons corresponding to a set of most-recently used applications, such as a notes application, a camera application, a photo viewer application, and a voice memo recording application; where selection of one of the icons in the multi-tasking user interface 517 will cause the device to run an application corresponding to the selected icon as a currently active application, sometimes called a foreground application) is displayed, as shown in Figure 5E. For example, selection of the "notes" icon will cause the device to run the notes application as a currently active application and selection of the "camera" icon will cause the device to run the camera application as a currently active application.

[00235] Accordingly, in some embodiments, the application user interface (e.g., the map application user interface shown in Figures 5D-5E) is at least partially replaced by the second user interface (e.g., the map application is partially displaced upward and/or at least partially concealed by multi-tasking user interface 517 shown in Figure 5E). In some embodiments, upon displaying the second user interface (e.g., multi-tasking user interface 517, Figure 5E) one or more interactive elements in the application user interface are disabled from user-interaction (e.g., while multi-tasking user interface 517 is displayed, the map application would be disabled from user-interaction and the user would not be able to scroll, navigate through, or otherwise interact with the map application). Thus, in some

embodiments, while displaying a first user interface (e.g., corresponding to a first

application), in response to detecting a movement of a fingerprint in a second direction (e.g., a vertical direction or along the long-axis of the multi-purpose device; upward), the device displays a second system user interface (e.g., a multi-tasking user interface).

[00236] Figures 5F-5G illustrate, while displaying the second user interface, detecting a movement of a fingerprint on fingerprint sensor 169 in a first direction (e.g., in a lateral or horizontal direction or along the short-axis of the multi-purpose device; from right to left); and in response, navigating through the second user interface. In some embodiments, while displaying the second user interface (e.g., multi-tasking user interface 517, Figure 5F), the movement of a fingerprint (e.g., fingerprint 518 and associated movement 520) is detected on fingerprint sensor 169 of device 100, the corresponding movement being in the first direction (e.g., in a lateral or horizontal direction or along the short-axis of the multi-purpose device; from right to left with reference to the orientation of device 100 shown in Figure 5F). In

response to detecting movement 520 of fingerprint 518, the device navigates through the second user interface (e.g., multi-tasking user interface 517, Figures 5F-5G). For example, the device translates at least a portion of the second user interface in the direction of movement 520 of fingerprint 518 to display additional portions of the second user interface (e.g., additional icons for a message application, calendar application, and clock application as shown in Figure 5G, that were not previously displayed in Figure 5F, and the icons for the notes application, the camera application, the photos application and the voice memo recording application that were previously displayed in Figure 5F cease to be displayed in Figure 5G). In some embodiments, in response to detecting movement of the fingerprint from left to right on the fingerprint sensor, the navigation through the second user interface would be reversed, so that the icons for the notes application, the camera application, the photos application and the voice memo recording application that were previously displayed in Figure 5F would be redisplayed.

[00237] Further, Figures 5H-5I illustrate, while displaying the second user interface, detecting a movement of a fingerprint on fingerprint sensor 169 in a third direction (e.g., a vertical direction or along the long-axis of the multi-purpose device; downward; substantially opposite to the second direction); and in response, ceasing to display the second user interface. In some embodiments, as illustrated in Figures 5H-5I, while displaying the second user interface, movement of a fingerprint (e.g., fingerprint 522 and associated movement 524) is detected on fingerprint sensor 169 of device 100, movement 524 being in a third direction (e.g., in a vertical direction downward along the long-axis of the multi-purpose device with reference to the orientation of device 100 shown in Figure 5H; a direction substantially opposite to the second direction described with reference to Figures 5D-5E). In response to detecting movement 524 of fingerprint 522 in the third direction, the device ceases to display the second user interface (e.g., the multi-tasking user interface 517 previously shown in Figure 5H) and redisplays the first user interface or the map application interface (e.g., in its entirety), as shown in Figure 51.

[00238] Figures 5 J-5K illustrate, while displaying the first user interface, detecting a double activation of the physical home button or menu button 204 (e.g., into which fingerprint sensor 169 is, optionally, integrated); and in response, displaying the second user interface. In some embodiments, as illustrated in Figures 5 J-5K, upon detecting a double activation 530 of the physical home button or menu button 204 (e.g., via two successive taps or press inputs occurring in quick succession with less than a predefined interval of time

lapse between the two successive taps, for example with an interval of time less than 500 milliseconds, 300 milliseconds, 150 milliseconds, 50 milliseconds or some other reasonable time interval; with or without a finger lift-off between the two successive taps), the second interface (e.g., the multi-tasking user interface shown previously in Figure 5E with user-selectable icons corresponding to recently used or active applications such as the notepad application, the camera application, the photo viewer application, and the voice memo recording application) is displayed on display 502, as shown in Figure 5K and the first user interface (e.g., the map application user interface) is at least partially concealed or slid off the display 502 and optionally deactivated from user-interaction.

[00239] Figures 5K-5L illustrate, while displaying the second user interface, detecting an activation of the physical home button or menu button 204 (e.g., into which fingerprint sensor 169 is integrated); and in response, ceasing to display the second user interface (e.g., and redisplaying and reactivating the first user interface). In some embodiments, as illustrated in Figures 5K-5L, upon detecting activation 532 of the physical home button or menu button 204 (e.g., via a tap or press input on the physical button 204), the second user interface (e.g., the multi-tasking user interface shown in Figure 5K with user-selectable icons corresponding to recently used or active applications such as the notepad application, the camera

application, the photo viewer application, and the voice memo recording application) is no longer displayed on display 502, as shown in Figure 5L. In some embodiments, the first user interface (e.g., the map application user interface) is redisplayed (e.g., in its entirety) and reactivated for user input (e.g., from its previously deactivated state).

[00240] Figures 5M-5N illustrate, while displaying the first user interface, detecting an activation of the physical home button or menu button 204 (e.g., into which fingerprint sensor 169 is integrated); and in response, replacing the first user interface (e.g., ceasing to display the first user interface) with a predefined user interface (e.g., a home screen or application launch interface associated with the physical home button or menu button 204). In some embodiments, as illustrated in Figures 5M-5N, upon detecting activation 534 of the physical home button or menu button 204 (e.g., via a tap or press input on the physical button 204), the first user interface (e.g., the multi-tasking user interface shown in Figure 5M) is no longer displayed on display 502, as shown in Figure 5N. In some embodiments, the first user interface (e.g., the map application user interface) is replaced (e.g., in its entirety) with a predefined user interface (e.g., a home screen or application launch user interface, as shown

in Figure 5N). In some embodiments, activation of button 204 while the home screen is displayed would cause the device to display a predefined search user interface.

[00241] Figures 6A-6C are flow diagrams illustrating a method 600 of interacting with user interfaces in accordance with movement of a finger on a fingerprint sensor in accordance with some embodiments. The method 600 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1A) with a display and a touch-sensitive surface. In some embodiments, the display is a touch screen display and the touch-sensitive surface is on the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 600 are, optionally, combined and/or the order of some operations is, optionally, changed.

[00242] As described below, the method 600 provides an intuitive way to interact with user interfaces. The method reduces the cognitive burden on a user when interacting with user interfaces, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to interact with user interfaces faster and more efficiently conserves power and increases the time between battery charges.

[00243] The device displays (602), on the display, a first user interface (e.g., an application user interface, such as a map application or navigation application user interface as shown in Figure 5A). While displaying the first user interface on the display, the device detects (604) movement of a fingerprint on the fingerprint sensor (e.g., movement 512 of fingerprint 510, Figure 5B; movement 516 of fingerprint 514, Figure 5D).

[00244] In some embodiments, the fingerprint sensor is (606) separate from (e.g., not co-incident with) the display (e.g., fingerprint sensor 169 is separate from display 502, Figure 5A). The device includes (608) a touch-sensitive surface; and the fingerprint sensor is separate from (e.g., not co-incident with) the touch-sensitive surface.

[00245] In response to detecting (610) movement of the fingerprint on the fingerprint sensor: in accordance with a determination that the movement of the fingerprint is in a first direction (e.g., a primary component of movement of the fingerprint is horizontally rightward, or horizontally leftward as described above with reference to movement 512 of fingerprint 510, Figure 5B), the device navigates through the first user interface (e.g., as described above with reference to navigation through the map interface shown in Figures 5B-5C). In some embodiments, the device navigates back to a previous state, or previous page, or previous webpage, or previous photo (e.g., in response to detecting a rightward movement of the fingerprint) or forward to a next state, or next page, or next webpage, or next photo (e.g., in response to detecting a leftward movement of the fingerprint). In some embodiments the device scrolls the first user interface horizontally in accordance with the direction of movement of the fingerprint on the fingerprint sensor (e.g., the device translates at least a portion of the content on the first user interface, such as the map application user interface, in accordance with a direction of movement of the fingerprint horizontally from right to left, as described above with reference to the movement of fingerprint 510 in Figures 5B-5C).

[00246] In accordance with a determination that the movement of the fingerprint is in a second direction (e.g., a primary component of movement of the fingerprint vertically downward or vertically upward as described above with reference to movement 516 of fingerprint 514, Figure 5D) different from the first direction, the device displays a second user interface different from the first user interface on the display (e.g., as described above with reference to multitasking user interface 517 in Figures 5D-5E). In some embodiments, the device displays a multitasking user interface (e.g., multi-tasking user interface 517, Figure 5E; or a most recently used application). In some embodiments, displaying the second user interface includes replacing the first user interface with the second user interface. In some embodiments, displaying the second user interface includes ceasing to display at least a portion of the first user interface (e.g., the first user interface is at least partially covered with the second user interface or the first user interface slides at least partially off of the display so as to display the second user interface; as shown in Figure 5E, the map application interface is partially displaced off display 502 in order to display multi-tasking user interface 517).

[00247] In some embodiments, the first direction is (612) perpendicular (or

substantially perpendicular) to the second direction. For example, as described above with reference to movement 512 of fingerprint 510 in Figures 5B-5C, the first direction is a lateral or horizontal direction or along the short-axis of the multi-purpose device, from right to left; as described above with reference to movement 516 of fingerprint 514 in Figures 5D-5E, the second direction is a vertical direction or along the long-axis of the multi-purpose device; upward (e.g., perpendicular or substantially perpendicular to the first direction).

[00248] In some embodiments, the first user interface is (614) a user interface of a first application (e.g., map application user interface, Figures 5A-5D); and the second user interface is a multitasking user interface (e.g., multi-tasking user interface 517, Figure 5E) that includes representations (e.g., selectable icons) of a plurality of concurrently open applications (e.g., a "notes" icon corresponding to a notepad application, a "camera" icon

corresponding to a camera application, a "photos" icon corresponding to a photo viewer application, and a "voice memos" icon corresponding to a voice memo recording application, as shown in Figure 5E). In some embodiments, in response to detecting selection of a respective representation of one of the concurrently open applications, the device displays an open application that corresponds to the respective representation. In some embodiments, the multitasking user interface includes representations (e.g., selectable icons) of one or more recently used applications (e.g., applications which were recently open on the device but for which no retained state information is currently stored). As used in the specification and claims, the term "open application" refers to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192). An open application is any one of the following types of applications:

• an active application, which is currently displayed on display 112 (or a corresponding application view is currently displayed on the display);

• a background application (or background process), which is not currently displayed on display 112, but one or more application processes (e.g., instructions) for the corresponding application are being processed by one or more processors 120 (i.e., running);

• a suspended application, which is not currently running, and the application is stored in a volatile memory (e.g., DRAM, SRAM, DDR RAM, or other volatile random access solid state memory device of memory 102); and

• a hibernated application, which is not running, and the application is stored in a nonvolatile memory (e.g., one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non- volatile solid state storage devices of memory 102).

[00249] As used herein, the term "closed application" refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application (e.g., switching from the first application to the second application) does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application, which was an active application when displayed, may become a background application, suspended application, or hibernated

application, but the first application remains an open application while its state information is retained by the device.

[00250] In some embodiments, navigating through the first user interface includes

(616) navigating through the first user interface at a rate determined in accordance with a displacement of the fingerprint on the fingerprint sensor. For example, the device scrolls through or translates at least a portion of content displayed in the first user interface at a rate of 5 millimeters/second for each 1 millimeter of movement by the fingerprint on the fingerprint sensor from a starting position of the fingerprint on the fingerprint sensor. In some embodiments, navigating through the first user interface includes (618) navigating through the first user interface by an amount determined in accordance with a displacement of the fingerprint on the fingerprint sensor. For example, the device scrolls through or translates at least a portion of the content displayed in the first user interface by 5 millimeters for each 1 millimeter of movement by the fingerprint on the fingerprint sensor. In some embodiments, navigating through the first user interface includes (620) navigating through the first user interface in a direction determined in accordance with a direction of movement of the fingerprint on the fingerprint sensor. For example, the device scrolls through or translates at least a portion of the content displayed in the first user interface to the right when the fingerprint moves to the right on the fingerprint sensor and scrolls through or translates at least a portion of the content displayed in the first user interface to the left when the fingerprint moves to the left on the fingerprint sensor (e.g., as described above with reference to Figures 5B-5C).

[00251] In some embodiments, displaying the second user interface includes (622) displaying an animated transition of the second user interface appearing on the display; and the speed of the animated transition is based on a displacement of the fingerprint on the fingerprint sensor. For example, the device displays the first user interface sliding upward on the display to make room for the second user interface that slides onto the display from a bottom of the display.

[00252] In some embodiments, the device includes (624) a button (e.g., a physical button, such as home button or menu button 204, Figure 5A); and the fingerprint sensor is integrated into the button (e.g., fingerprint sensor 169 is integrated into the physical home button 204, Figure 5A). In some embodiments, the physical button is an intensity-sensitive region of the housing of the device that is determined to have been activated by the device when the intensity detected on the button is increased over an activation intensity threshold.

In some embodiments, the physical button is coupled to an electronic switch where movement of the physical button along a first axis (e.g., up and down or left to right) closes the switch and activates the physical button (sometimes resulting in an audible or tactile "click").

[00253] In some embodiments, while the first user interface (e.g., the map application user interface, Figure 5M) is displayed, the device detects (626) activation of the button (e.g., activation 534 of the physical home button or menu button 204 such as a tap input or a press input on the physical button 204, Figure 5M). For example, the device detects a user clicking the button or pressing an intensity-sensitive region corresponding to the button with an intensity above an activation intensity threshold. In response to detecting activation of the button, the device replaces (628) the first user interface (e.g., the map application user interface, Figure 5M) with a predefined user interface (e.g., a home screen or application launch interface as shown in Figure 5N; or a search application user interface) associated with activating the button.

[00254] In some embodiments, while the second user interface (e.g., multi-tasking user interface 517, Figure 5K) is displayed, the device detects (630) activation of the button (e.g., activation 532 of the physical home button or menu button 204 such as, via a tap or press input on the physical button 204, Figure 5K). For example, the device detects a user clicking the button or pressing an intensity-sensitive region corresponding to the button with an intensity above an activation intensity threshold. In response to detecting activation of the button, the device ceases (632) to display the second user interface (e.g., and redisplays or reactivates the first user interface, such as the map application user interface, as described above with reference to Figures 5K-5L).

[00255] In some embodiments, while the first user interface (e.g., the map application user interface, Figure 5 J) is displayed, the device detects (634) a double activation of the button (e.g., double activation 530 of the physical home button or menu button 204 such as, via two successive taps or press inputs occurring in quick succession with less than a predefined interval of time lapse between the two successive taps, for example with an interval of time less than 500 milliseconds, 300 milliseconds, 150 milliseconds, 50 milliseconds or some other reasonable time interval; with or without a finger lift-off between the two successive taps, as described above with reference to Figure 5J). For example, the device detects a user double clicking a button or pressing the intensity-sensitive region corresponding to the button with an intensity above an activation intensity threshold,

reducing the intensity below the activation intensity threshold and then pressing the intensity-sensitive region with an intensity above the activation threshold. In response to detecting double activation of the button, the device displays (636) the second user interface on the display (e.g., displays multitasking user interface 517, as described above with reference to Figures 5J-5K; or a most recently used application).

[00256] In some embodiments, while displaying the second user interface (e.g., multitasking user interface 517, Figure 5F) in accordance with the determination that the movement of the fingerprint is in the second direction, the device detects (638) movement of the fingerprint on the fingerprint sensor in the first direction (e.g., fingerprint 518 and associated movement 520 in a lateral or horizontal direction or along the short-axis of the multi-purpose device; from right to left, Figure 5F). In response to detecting movement of the fingerprint on the fingerprint sensor in the first direction, the device navigates (640) through the second user interface (e.g., the device scrolls through representations of a plurality of recently used or currently open applications in accordance with movement of the fingerprint on the fingerprint sensor). For example, as shown in Figures 5F-5G, the device translates at least a portion of the second user interface (e.g., multi-tasking user interface 517) in the direction of movement 520 of fingerprint 518 to display additional portions of the second user interface (e.g., additional icons including a "messages" icon corresponding to a message application, a "calendar" icon corresponding to a calendar application, and a "clock" icon corresponding to clock application, as shown in Figure 5G, that were not previously displayed in Figure 5F).

[00257] In some embodiments, navigating through the second user interface includes navigating through the second user interface at a rate determined in accordance with a displacement of the fingerprint on the fingerprint sensor. For example, the device scrolls through icons corresponding to the plurality of recently used or currently open applications at a rate of five icons/second for each 1 millimeter of movement by the fingerprint on the fingerprint sensor from a starting position of the fingerprint on the fingerprint sensor. In some embodiments, navigating through the second user interface includes navigating through the second user interface by an amount determined in accordance with a displacement of the fingerprint on the fingerprint sensor. For example, the device scrolls through icons corresponding to the plurality of recently used or currently open applications by one icon for each 1 millimeter of movement by the fingerprint on the fingerprint sensor. In some embodiments, navigating through the second user interface includes navigating through the

second user interface in a direction determined in accordance with a direction of movement of the fingerprint on the fingerprint sensor. For example, the device scrolls the

representations of the plurality of recently used or currently open applications to the right when the fingerprint moves to the right on the fingerprint sensor and scrolls the

representations of the plurality of recently used applications to the left when the fingerprint moves to the left on the fingerprint sensor.

[00258] In some embodiments, while displaying the second user interface (e.g., multitasking user interface 517, Figure 5H) in accordance with the determination that the movement of the fingerprint is in the second direction, the device detects (642) movement of the fingerprint on the fingerprint sensor in a third direction (e.g., a direction that is substantially opposite to the second direction; such as a vertical direction or along the long-axis of the multi-purpose device; downward). For example, movement 516 of fingerprint 514 in Figures 5D-5E (e.g., movement in the first direction) is upward movement in a vertical direction along the long-axis of the multi-purpose device; while movement 524 of fingerprint 522 in Figures 5H-5I (e.g., movement in the third direction) is downward movement in a vertical direction along the long-axis of the multi-purpose device (e.g., substantially opposite to the second direction). In response to detecting movement of the fingerprint on the fingerprint sensor in the third direction, the device ceases (644) to display the second user interface. For example, as shown in Figure 51, the device ceases to display multi-tasking user interface 517 that was previously displayed in Figure 5H and redisplays the first user interface (e.g., the map application user interface), including portions of the first user interface that ceased to be displayed when the second user interface was displayed.

[00259] It should be understood that the particular order in which the operations in

Figures 6A-6C have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., those listed in paragraph [00123]) are also applicable in an analogous manner to method 600 described above with respect to Figures 6A-6C. For example, the fingerprints, user interfaces, animated transitions described above with reference to method 600 optionally have one or more of the characteristics of the fingerprints, user interfaces, animated transitions described herein with reference to other methods described herein (e.g., those listed in paragraph [00123]). For brevity, these details are not repeated here.

[00260] In accordance with some embodiments, Figure 7 shows a functional block diagram of an electronic device 700 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 7 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[00261] As shown in Figure 7, an electronic device 700 includes a display unit 702 configured to display a first user interface, optionally a touch-sensitive surface unit 704, a fingerprint sensor unit 706; and a processing unit 708 coupled to the display unit 702 and the fingerprint sensor unit 706. In some embodiments, the processing unit 708 includes a detecting unit 710, a navigating unit 712, a display enabling unit 714, a replacing unit 716, and a ceasing unit 718.

[00262] The processing unit 708 is configured to: while displaying the first user interface on the display, detect (e.g., with the detecting unit 710) movement of a fingerprint on the fingerprint sensor 706; and in response to detecting movement of the fingerprint on the fingerprint sensor: in accordance with a determination that the movement of the fingerprint is in a first direction, navigate through the first user interface (e.g., with the navigating unit 712); and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, enable display of a second user interface different from the first user interface on the display unit 702 (e.g., with the display enabling unit 714).

[00263] In some embodiments, the first direction is perpendicular to the second direction.

[00264] In some embodiments, the first user interface is a user interface of a first application; and the second user interface is a multitasking user interface that includes representations of a plurality of concurrently open applications.

[00265] In some embodiments, the processing unit 708 is further configured to: while enabling display of the second user interface in accordance with the determination that the movement of the fingerprint is in the second direction, detect movement of the fingerprint on the fingerprint sensor 706 in the first direction (e.g., with the detecting unit 710); and in response to detecting movement of the fingerprint on the fingerprint sensor 706 in the first direction, navigate through the second user interface (e.g., with the navigating unit 712).

[00266] In some embodiments, the processing unit is further configured to: while enabling display of the second user interface in accordance with the determination that the movement of the fingerprint is in the second direction, detect movement of the fingerprint on the fingerprint sensor 706 in a third direction (e.g., with the detecting unit 710); and in response to detecting movement of the fingerprint on the fingerprint sensor 706 in the third direction, cease to enable display of the second user interface (e.g., with the ceasing enabling unit 718).

[00267] In some embodiments, navigating through the first user interface includes navigating through the first user interface at a rate determined in accordance with a displacement of the fingerprint on the fingerprint sensor 706.

[00268] In some embodiments, navigating through the first user interface includes navigating through the first user interface by an amount determined in accordance with a displacement of the fingerprint on the fingerprint sensor 706.

[00269] In some embodiments, navigating through the first user interface includes navigating through the first user interface in a direction determined in accordance with a direction of movement of the fingerprint on the fingerprint sensor 706.

[00270] In some embodiments, enabling display of the second user interface includes enabling display of an animated transition of the second user interface appearing on the display unit 702 (e.g., with the display enabling unit 714); and the speed of the animated transition is based on a displacement of the fingerprint on the fingerprint sensor 706.

[00271] In some embodiments, the fingerprint sensor 706 is separate from the display unit 702.

[00272] In some embodiments, the device includes a touch-sensitive surface unit 704 and the fingerprint sensor 706 is separate from the touch-sensitive surface unit 704.

[00273] In some embodiments, the device includes a button and the fingerprint sensor

706 is integrated into the button.

[00274] In some embodiments, the processing unit 708 is further configured to: while the first user interface is displayed, detect activation of the button (e.g., with the detecting unit 710); and in response to detecting activation of the button, replace the first user interface with a predefined user interface associated with activating the button (e.g., with the replacing unit 716).

[00275] In some embodiments, the processing unit 708 is further configured to: while the second user interface is displayed, detect activation of the button (e.g., with the detecting unit 710); and in response to detecting activation of the button, cease to display the second user interface (e.g., with the ceasing unit 718).

[00276] In some embodiments, the processing unit 708 is further configured to: while the first user interface is displayed, detect a double activation of the button (e.g., with the detecting unit 710); and in response to detecting double activation of the button, enable display of the second user interface on the display unit 702 (e.g., with the display enabling unit 714).

[00277] The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to Figures 1 A and 3) or application specific chips.

[00278] The operations described above with reference to Figures 6A-6C are, optionally, implemented by components depicted in Figures 1 A- IB or Figure 7. For example, display operation 602, detection operation 604, navigating or displaying operation 610 and replacing operation 628 are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 optionally utilizes or calls data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in Figures 1 A-1B.

Allowing Buttons to Serve Multiple Purposes

[00279] Many electronic devices are configured to display a variety of user interfaces.

These user interfaces can include, for example, a home screen, a search screen, and/or user interfaces associated with applications ("apps") stored on the device. Because the home screen is often the most used user interface, it is desirable for such devices to provide the user with a convenient way to quickly navigate to the home screen. For example, with existing methods and devices, a dedicated "home" button is often provided. However, because of the limitations on the size of some devices (e.g., a portable multifunction device such as a smart phone), providing a dedicated home button requires an undesirable amount of space on the housing of such devices. It is therefore desirable to allow buttons on such devices to serve multiple purposes (e.g., a homing purpose and an application dependent purpose) by providing a convenient method to distinguish between which of the two purposes a user desired to activate.

[00280] In the embodiments described below, an improved method for allowing buttons to serve multiple purposes is provided. The buttons in the embodiments described below include integrated fingerprint sensors. When such a button is activated (e.g., pressed) after continuously detecting a fingerprint on an integrated fingerprint sensor for less than a predetermined amount of time (e.g., a quick press of the button), the button performs a first operation (e.g., a home operation). On the other hand, when the button is activated after continuously detecting a fingerprint for more than a predetermined amount of time (e.g., after hovering on the fingerprint sensor), the device performs a second operation (e.g., an application specific operation).

[00281] In some embodiments, the device is an electronic device with a separate display (e.g., display 450) and a separate touch-sensitive surface (e.g., touch-sensitive surface 451). In some embodiments, the device is portable multifunction device 100, the display is touch screen 112, and the touch-sensitive surface includes tactile output generators 167 on the display (Figure 1 A). The device described below with reference to 8A-80 and 9A-9C includes one or more fingerprint sensors 169. In some embodiments, the one or more

fingerprint sensors include one or more integrated fingerprint sensors 359-1 (Figure 4B) that are integrated in to the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). In some embodiments, the one or more fingerprint sensors include separate fingerprint sensors 359-2 (Figure 4B) that are separate from the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). Unless specified otherwise, a fingerprint sensor 169 described below is, optionally, either an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2, depending on the configuration of the hardware and software of the device that includes the fingerprint sensor 169. For convenience of explanation, embodiments described with reference to Figures 8A-80 and 9A-9C will be discussed with reference to device operations that are performed in response to detecting inputs described in Figures 8A-80 on a fingerprint sensor 169 (e.g., an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2) while displaying the user interfaces shown in Figures 8A-80 on touch screen 112. However, analogous operations are, optionally, performed on a device with a display 450, a separate touch-sensitive surface 451 and a separate fingerprint sensor 359-2 with an integrated fingerprint sensor 359-1 in response to detecting the inputs described in Figures 8A-80 on the integrated fingerprint sensor 359-1 while displaying the user interfaces shown in Figures 8A-80 on display 450. In some embodiments, the focus selector is, optionally: a respective contact, a representative point corresponding to a contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch screen 112, in place of a cursor. In some embodiments, the focus selector is a user-controlled pointer that can be used to point to a respective user interface object in a plurality of user interface objects (e.g., an object selected by a "scroll-wheel," as described with reference to Figures 8K-80). In some embodiments, a visual representation of the focus selector is displayed (e.g., a user interface object to which the focus selector is pointing is visually distinguished from the other user interface objects).

[00282] Figures 8A-8D illustrate exemplary user interfaces to be used in conjunction with multi-purpose buttons in accordance with some embodiments. In particular, Figures 8A-8D illustrate an example in which, under certain conditions described herein, activation of a "home button" (e.g., button 204) causes the device to perform a "home" operation (e.g., a first operation), whereupon the device returns to a home screen (e.g., displays an application-launch interface that includes a plurality of icons representing applications that a user may choose from). In this example, button 204 includes an integrated fingerprint sensor 169.

Under other conditions, as described with reference to Figures 8G-8H, activation of the home button causes the device to perform a second, different operation.

[00283] Figure 8A illustrates an example of the device running an archery video game application on portable multifunction device 100.

[00284] Figure 8B illustrates detection of a fingerprint 806 (in this example, corresponding to a user's right thumb) on integrated fingerprint sensor 169. Figure 8B also illustrates, respectively, indications of the length of time that fingerprint 806 is continuously detected on fingerprint sensor as well as the force of fingerprint 806 on the button. The respective indications of length of time and force of fingerprint 806 on the button are not typically shown on the device, but instead are illustrated herein for convenience of explanation. In this example, button 204 is activated when the force of fingerprint 806 exceeds an activation threshold (ATo). In some embodiments, for example when button 204 is a physical or mechanical button, the activation threshold ATo is a function of spring properties of certain mechanical features of button 204 and/or friction between the mechanical features of button 204. That is to say, in some embodiments, there is a minimum force on the button which causes the button to activate. In some embodiments, activation of button 204 occurs on a "down-stroke" (e.g., when the force of fingerprint 806 is continuously detected from below ATo to above ATo). In some embodiments, activation of button 204 occurs on an "up-stroke" (e.g., when the force of fingerprint 806 is continuously detected from above ATo to below ATo). In some other embodiments, for example when button 204 is a virtual button, a specific gesture detected by fingerprint sensor 169 causes activation of the button.

[00285] As shown in Figure 8C-8D, when the device detects activation of button 204

(shown in Figure 8C) prior to continuous detection of fingerprint 806 for an amount of time greater than a predetermined time period PT, the device performs a first operation. In this example, the first operation is a "home operation" (shown in Figure 8D). In some

embodiments, the device performs the first operation when the device detects activation of button 204 prior to continuous detection of fingerprint 806 for an amount of time equal or greater than a predetermined time period PT.

[00286] In some embodiments, as explained below with reference to Figures 8D-8F, the first operation is context dependent. For example, in some embodiments, the first operation depends on (e.g., is associated with) a currently displayed user interface. In the previous example in which the currently displayed user interface included a displayed archery video game, the first operation associated with the archery video game returns the device to a home screen. Figures 8D-8F illustrate an example of the first operation when the home screen is the currently displayed user interface.

[00287] In addition to illustrating an example of a home screen, Figure 8D also illustrates an example of detection of a second fingerprint 808. Detection of fingerprint 808 is analogous to detection of fingerprint 806 described with reference to Figure 8B. In some embodiments, fingerprint 808 is a continuation of fingerprint 806 (e.g., in some

embodiments, after navigating to the home screen shown Figure 8D, the user need not discontinue and reapply contact with fingerprint sensor 169 in order to make use of the functionality described in the example).

[00288] Figures 8E illustrates activation of button 204 prior to a predetermined time period PT elapsing, as previously described with reference to Figures 8C-8D. In this example, because predetermined time period PT has not elapsed, the device performs a first operation associated with a home screen (e.g., a application-launch interface). In this example, the first operation navigates the device to a search screen, as shown in Figure 8F. In some

embodiments, the first operation associated the home screen takes the user to an alternate home screen (e.g., the device navigates through a plurality of home screen pages, the plurality of home screens being required because of a large number of applications on the device).

[00289] Figures 8G-8J illustrate exemplary user interfaces to be used in conjunction with multi-purpose buttons in accordance with some embodiments. In particular, Figures 8G-8 J illustrate an example of the device performing a second, different operation upon activation of button 204 subsequent to continuous detection of a fingerprint 810 for greater than the predetermined time. In Figure 8G, a fingerprint 810 is initially detected. Thus, the indicator showing the length of the continuously detected finger print 810 illustrates that, initially, no time has passed. Figure 8H illustrates movement of fingerprint 810 over fingerprint sensor 169 and corresponding movement of archer 802 (e.g., in the application in this example, fingerprint sensor 169 acts a "joy-stick" controlling the position, or

alternatively the change in position, of archer 802 prior to activation of button 204). In some embodiments, such functionality (e.g., the joystick functionality) becomes operable subsequent to an elapse of the predetermined time, and remains operable until activation of button 204. In some embodiments, such functionality is operable in the application whenever a fingerprint is detected on fingerprint sensor 169 despite repeated activations of button 204 (e.g., a first-person shooter video game in which fingerprint sensor 169 acts as a joy-stick redirecting a player and activation of the button allows the player to fire his or her weapon). Figures 81-8 J illustrate activation of button 204 (shown in Figure 81) and the resulting performance of a second operation (e.g., firing an arrow, as shown in Figures 81 and 8J), which is different from the first operation (e.g., a home operation).

[00290] Figures 8K-80 illustrate exemplary user interfaces to be used in conjunction with multi-purpose buttons in accordance with some embodiments. In particular, Figures 8K-80 illustrate an example in which the user interface includes a plurality of affordances, for example user selectable icons corresponding applications on the home screen (e.g., phone app, browser app, etc.). Figures 8K-80 also illustrate a focus selector corresponding to a currently selected affordance (e.g., the icon representing the phone application in Figure 8K is highlighted, providing a visual cue that the focus selector is "over" the phone application and that the phone application is currently selected, although the device has not yet received a command to run the phone application). Furthermore, Figures 8K-80 illustrate an example of embodiments in which the second operation includes performing an operation associated with application that corresponds to a currently selected affordance of the plurality of affordances.

[00291] Figure 8K illustrates an example in which the focus selector's position is controlled by circumferential movement around fingerprint sensor 169 (e.g., the fingerprint sensor acts as a "scroll-wheel" with exemplary properties illustrated below). In this example, clockwise circumferential movement, as shown, moves the focus selector to the right as shown in Figure 8L (movement of the focus selector over the browser app) and Figure 8M (movement of the focus selector over the mail app). Likewise, although not shown, counterclockwise circumferential movement around fingerprint sensor 169 moves the focus selector in an opposite direction (e.g., to the left). In some embodiments, the plurality of affordances are ordered and circumferential movement of fingerprint 812 increments the focus selector up or down in the order (e.g., movement of the fingerprint circumscribing an arc of a pre-defined angle, such as 90 degrees, increments the focus selector). In some embodiments, when the focus selector reaches the last affordance in the order, further incrementing the focus selector in the same direction returns the focus selector to the first affordance in the order. In some embodiments, the scroll-wheel functionality is available in an accessibility mode of the device different from a normal mode of the device.

[00292] Figure 8N illustrates an example of activation of button 204 when the force of fingerprint 812 exceeds an activation threshold, as described previously. In this example, because fingerprint 812 has been continuously detected for predetermined period of time PT, the device performs the second operation. In this example, the second operation depends on the currently selected affordance. For example, Figure 80 shows that the second operation has launched the mail app, as the device is now displaying an email interface including user interface objects 814-1 through 814-3 corresponding to email messages.

[00293] Figures 9A-9C are flow diagrams illustrating a method 900 of allowing a button to serve multiple purposes, in accordance with some embodiments. The method 900 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1A) with a display and a touch-sensitive surface. In some embodiments, the display is a touch screen display and the touch-sensitive surface is on the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 900 are, optionally, combined and/or the order of some operations is, optionally, changed.

[00294] As described below, the method 900 provides an intuitive way to allow a button to serve multiple purposes. The method reduces the cognitive burden on a user when using buttons, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to perform various device operations faster and more efficiently conserves power and increases the time between battery charges.

[00295] The device detects (902), at an electronic device with a button that includes an integrated fingerprint sensor, a fingerprint on the integrated fingerprint sensor. In some embodiments, the electronic device includes (904) a display. In some embodiments, prior to detecting the fingerprint on the integrated fingerprint sensor, the device displays (906) a first user interface on the display (e.g., the user interface shown in Figure 8 A).

[00296] In some embodiments, prior to detecting activation (908) of the button the device detects (910) the fingerprint on the integrated fingerprint sensor for more than the predetermined period of time. In response to detecting the fingerprint on the integrated fingerprint sensor for more than the predetermined period of time, the device displays (912) a representation of a focus selector on the display (e.g., a focus selector representation that was not displayed just prior to detecting the fingerprint, such as the highlighting of the phone app in Figure 8K).

[00297] While continuing to detect the fingerprint on the integrated fingerprint sensor, the device detects (914) activation of the button (e.g., as shown in Figure 8C). In some

embodiments, the physical button is an intensity-sensitive region of the housing of the device that is determined to have been activated by the device when the intensity detected on the button is increased over an activation intensity threshold. In some embodiments, the physical button is coupled to an electronic switch where movement of the physical button along a first axis (e.g., up and down or left to right) closes the switch and activates the physical button (sometimes resulting in an audible or tactile "click"). In response to detecting activation of the button and in accordance with a determination that the fingerprint was not continuously detected on the integrated fingerprint sensor for more than a predetermined period of time prior to detecting activation of the button (e.g., the fingerprint was not continuously detected on the fingerprint sensor for at least 0.3, 0.5, 1, or 2 seconds immediately prior to detecting activation of the button), the device perform (916) a first operation, where the first operation is a predefined operation associated with activation of the button (e.g., the homing operation described with reference to Figures 8B-8D, or, alternatively, the search screen operation performed with reference to Figures 8D-8F).

[00298] In some embodiments, the first user interface is a user interface of a first application, and the first operation includes (918) ceasing to display the first user interface and displaying an application launch interface (e.g., ceasing to display the archery video game, Figures 8B-8D). In some embodiments, the first user interface is an application launch interface, and the first operation includes (920) ceasing to display the application launch interface (Figure 8E) and displaying a predefined application associated with activation of the button (e.g., the search user interface, Figure 8F).

[00299] In response to detecting activation of the button and in accordance with a determination that the fingerprint was continuously detected on the integrated fingerprint sensor for more than the predetermined period of time prior to detecting activation of the button (e.g., the fingerprint was continuously detected on the fingerprint sensor for at least 0.3, 0.5, l, or 2 seconds immediately prior to detecting activation of the button), the device performs (922) a second operation different from the first operation, where the second operation is an operation associated with a user interface displayed on the display

immediately prior to detecting activation of the button (e.g., the archery fires his or her bow, as shown in Figures 8G-8J).

[00300] In some embodiments, the user interface of the first application includes (924) a plurality of affordances (e.g., menus, controls, hyperlinks and the like) that correspond to respective operations associated with the first application, and the second operation includes performing an operation associated with the first application that corresponds to a currently selected affordance of the plurality of affordances (e.g., the device performs an operation corresponding to an affordance displayed within the application that is currently proximate to or collocated with a focus selector).

[00301] In some embodiments, the first user interface is an application launch interface

(see 920), the application launch interface includes (926) a plurality of application-launch affordances (e.g., application icons, Figure 8K) that correspond to respective applications in a plurality of applications, and the second operation includes launching a respective application that corresponds to a currently selected application-launch affordance of the plurality of application-launch affordances (e.g., the device launches an application corresponding to an application icon that is currently proximate to or collocated with a focus selector).

[00302] In some embodiments, the second operation is dependent (928) on a location of a focus selector in the first user interface (e.g., the second operation is an operation that corresponds to activation of a particular user interface object in the first user interface, such as activation of a hyperlink in a webpage or launching an application corresponding to an application icon in an application launch interface), and the first operation is independent of the location of the focus selector in the first user interface. For example, the first operation includes displaying a home screen or application launch screen, displaying a predefined application, and/or ceasing to display a user interface corresponding to a currently displayed application. In some embodiments, a representation of the focus selector is displayed in the first user interface and is ignored when performing the first operation. In some embodiments, a representation of the focus selector is not displayed in the first user interface.

[00303] In some embodiments, prior to detecting (930) activation of the button, the device displays (932) a representation of a focus selector on the display. The device detects

(934) movement of the fingerprint across the fingerprint sensor on the button. In some embodiments, throughout the movement of the fingerprint across the fingerprint sensor, the fingerprint is continuously detected on the fingerprint sensor. In some embodiments, in response to detecting (942) the movement of the fingerprint on the fingerprint sensor, the device moves the representation of the focus selector on the display in accordance with movement of the fingerprint (e.g., the device scrolls the focus selector through selectable user interface objects in accordance with a swipe or circular gesture performed with the fingerprint without activating the button) . On the other hand, in some embodiments, in response to detecting (936) the movement of the fingerprint, the device performs (936) a third operation (e.g., an option switching operation) in accordance with the movement of the fingerprint. In some embodiments, the third operation includes (938) selecting, as a currently selected option, a respective option from a plurality of options (e.g., selecting an option from a drop down menu or a item from a set of items, and the second operation includes performing an action associated with the currently selected option. In some embodiments, the first operation is independent (940) of the currently selected option (e.g., committing the currently selected option as a choice for a content field, or using/activating the item). As one example, the option switching switches between items or weapons in a game, and the second operation includes using the item or firing the weapon in the game. In this example, the first operation is, optionally, exiting the game and returning to a home screen or application launch screen of the device.

[00304] It should be understood that the particular order in which the operations in

Figures 9A-9C have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., those listed in paragraph [00123]) are also applicable in an analogous manner to method 900 described above with respect to Figures 9A-9C. For example, the fingerprints, gestures, user interface objects, focus selectors, described above with reference to method 900 optionally have one or more of the

characteristics of the fingerprints, contacts, user interface objects, focus selectors, described herein with reference to other methods described herein (e.g., those listed in paragraph

[00123]). For brevity, these details are not repeated here.

[00305] In accordance with some embodiments, Figure 10 shows a functional block diagram of an electronic device 1000 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 10 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[00306] As shown in Figure 10, an electronic device 1000 includes a button unit 1001 with an integrated a fingerprint sensor unit 1002; and a processing unit 1008 coupled to the button unit 1001. The electronic device 1000 optionally includes a display unit 1006 configured to enable the display of one or more user interfaces; and a touch-sensitive surface unit 1004 configured to receive contacts. In some embodiments, the display unit 1006 and the touch-sensitive surface unit 1004 are coupled to the button unit 1001 and/or the processing unit 1008. In some embodiments, the processing unit 1008 includes a detecting unit 1010, a first operation performing unit 1012, a second operation performing unit 1014, and a display enabling unit 1016.

[00307] The processing unit 1008 is configured to: detect (e.g., with detecting unit 1010) a fingerprint on the integrated fingerprint sensor unit 1002. While continuing to detect the fingerprint on the integrated fingerprint sensor unit 1002, the processing unit 1008 is further configured to detect activation of the button unit 1001. In response to detecting activation of the button unit 1001 : in accordance with a determination that the fingerprint was not continuously detected on the integrated fingerprint sensor unit 1002 for more than a predetermined period of time prior to detecting activation of the button unit 1001, the processing unit 1008 is configured to perform a first operation (e.g., with first operation performing unit 1012), wherein the first operation is a predefined operation associated with activation of the button unit 1001. In response to detecting activation of the button unit 1001 : in accordance with a determination that the fingerprint was continuously detected on the integrated fingerprint sensor unit 1002 for more than the predetermined period of time prior to detecting activation of the button unit 1001, the processing unit 1008 is configured to perform a second operation different from the first operation (e.g., with second operation performing unit 1014), wherein the second operation is an operation associated with a user interface displayed on the display unit 1006 immediately prior to detecting activation of the button unit 1001.

[00308] In some embodiments, the display unit 1006 is configured to, prior to detecting the fingerprint on the integrated fingerprint sensor unit 1002, enable the display of a first user interface (e.g., with display enabling unit 1016).

[00309] In some embodiments, the first user interface is a user interface of a first application; and the first operation includes ceasing to enable the display of the first user interface and enabling the display of an application launch interface on the display unit 1006. [00310] In some embodiments, the user interface of the first application includes a plurality of affordances that correspond to respective operations associated with the first application; and the second operation includes performing an operation associated with the first application that corresponds to a currently selected affordance of the plurality of affordances.

[00311] In some embodiments, the first user interface is an application launch interface; and the first operation includes ceasing to enable the display of the application launch interface and enabling the display of a predefined application associated with activation of the button unit 1001.

[00312] In some embodiments, the application launch interface includes a plurality of application-launch affordances that correspond to respective applications in a plurality of applications; and the second operation includes launching a respective application that corresponds to a currently selected application-launch affordance of the plurality of application-launch affordances.

[00313] In some embodiments, the processing unit 1008 is further configured to, prior to detecting activation of the button unit 1001 : detect the fingerprint on the integrated fingerprint sensor unit 1002 for more than the predetermined period of time; and in response to detecting the fingerprint on the integrated fingerprint sensor unit 1002 for more than the predetermined period of time, enable the display of a representation of a focus selector on the display unit 1006.

[00314] In some embodiments, the processing unit 1008 is further configured to, prior to detecting activation of the button unit 1001 : display a representation of a focus selector on the display unit 1006; detect movement of the fingerprint on the fingerprint sensor unit 1008; and in response to detecting the movement of the fingerprint on the fingerprint sensor unit 1002, move the representation of the focus selector on the display unit 1006 in accordance with movement of the fingerprint.

[00315] In some embodiments, the second operation is dependent on a location of a focus selector in the first user interface; and the first operation is independent of the location of the focus selector in the first user interface.

[00316] In some embodiments, the processing unit 1008 is further configured to, prior to detecting activation of the button unit 1001 : detect movement of the fingerprint across the fingerprint sensor unit 1002 on the button unit 1001; and in response to detecting the

movement of the fingerprint, performing a third operation in accordance with the movement of the fingerprint.

[00317] In some embodiments, the third operation includes selecting, as a currently selected option, a respective option from a plurality of options; and the second operation includes performing an action associated with the currently selected option.

[00318] In some embodiments, the first operation is independent of the currently selected option.

[00319] The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to Figures 1 A and 3) or application specific chips.

[00320] The operations described above with reference to Figures 9A-9C are, optionally, implemented by components depicted in Figures 1 A- IB or Figure 10. For example, detecting operation 901, displaying operation 906, and performing operation 916 are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 optionally utilizes or calls data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application.

Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in Figures 1A-1B.

Locking an Orientation of a User Interface

[00321] Many electronic devices have different orientations, such as a portrait orientation and a landscape orientation. When these devices display user interfaces and content, the user interfaces and content is typically displayed in the same orientation as the device orientation. Sometimes, the user may want to have user interfaces and content

displayed in an orientation different from the device orientation. The user can force the device to display user interfaces and content in a particular orientation by activating an option to lock the orientation of the user interfaces and content. In some methods, activating the orientation locking option requires opening menus and sub-menus and/or multiple gestures and button presses. The embodiments described below improve on these methods by allowing a user to lock the orientation with a simpler input. On a device with a fingerprint sensor, the user locks the user interface and content orientation by rotating a fingerprint in one direction on a fingerprint sensor while the user interface or content is displayed in the desired orientation, and unlock the orientation by rotating the fingerprint in the opposite direction on the fingerprint sensor. This makes the orientation locking process more efficient and simple for users.

[00322] In some embodiments, the device is an electronic device with a separate display (e.g., display 450) and a separate touch-sensitive surface (e.g., touch-sensitive surface 451). In some embodiments, the device is portable multifunction device 100, the display is touch screen 112, and the touch-sensitive surface includes tactile output generators 167 on the display (Figure 1A). The device described below with reference to 1 lA-1 IF and 12A-12B includes one or more fingerprint sensors 169. In some embodiments, the one or more fingerprint sensors include one or more integrated fingerprint sensors 359-1 (Figure 4B) that are integrated into the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). In some embodiments, the one or more fingerprint sensors include separate fingerprint sensors 359-2 (Figure 4B) that are separate from the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). Unless specified otherwise, a fingerprint sensor 169 described below is, optionally, either an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2, depending on the configuration of the hardware and software of the device that includes the fingerprint sensor 169. For convenience of explanation, the embodiments described with reference to Figures 1 lA-1 IF and 12A-12B will be discussed with reference to touch screen 112 and fingerprint sensor 169; in such embodiments, the focus selector is, optionally: a respective contact, a representative point corresponding to a contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch screen 112, in place of a cursor. Analogous operations are, optionally, performed on a device with display 450, a separate touch-sensitive surface 451, and an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2 in

response to detecting the inputs described in Figures 11 A- 1 IF on the integrated fingerprint sensor 359-1 or the separate fingerprint sensor 359-2 while displaying the user interfaces shown in Figures 11 A- 1 IF on the display 450.

[00323] Figure 11A illustrates user interface 1102 displayed on touch screen 112 of a device (e.g., device 100). User interface 1102 is a user interface of, for example, an application or an operating system running on device 100. For example, user interface 1102 as shown in Figure 11A is a user interface for a notes application. In Figure 11A, device 100 is oriented such that the vertical height (i.e., the dimension indicated by arrow 1100) of touch screen 112 is longer than the horizontal width (i.e., the dimension indicated by arrow 1101); touch screen 112 is in portrait orientation (e.g., a long axis of touch screen 112 is parallel to an up/down axis indicated by arrow 1100). In Figure 11 A, user interface 1102 is displayed in portrait mode, in accordance with the portrait orientation of touch screen 112. For example, in portrait mode, user interface 1102, right side up, is longer on dimension 1100 than dimension 1101.

[00324] In Figure 1 IB, device 100 is oriented such that the vertical height (i.e., dimension 1100) of touch screen 112 is shorter than the horizontal width (i.e., dimension 1101); touch screen 112 is in landscape orientation (e.g., a long axis of touch screen 112 is parallel to a right/left axis indicated by arrow 1101). In Figure 1 IB, user interface 1102 is displayed in landscape mode, in accordance with the landscape orientation of touch screen 112. For example, in landscape mode, user interface 1102, right side up, is longer on dimension 1101 than dimension 1100.

[00325] It should be appreciated that, in Figures 11 A-l IF, the longer dimension of device 100 and the longer dimension of touch screen 112 are parallel. Thus, touch screen 112 is in portrait orientation (i.e., vertical height longer than horizontal width) when device 100 is in portrait orientation. Analogously, touch screen 112 is in landscape orientation when device 100 is in landscape orientation. In some embodiments, the longer dimension of device 100 is perpendicular to the longer dimension of touch screen 112; touch screen 112 is in portrait orientation when device 100 is in landscape orientation, and vice versa.

[00326] As shown in Figures 1 lA-1 IB, user interface 1102 is displayed in portrait or landscape mode in accordance with the orientation of touch screen 112. When touch screen 112 changes orientation (e.g., by a user rotating device 100 around an axis perpendicular to the surface of touch screen 112) and user interface 1102 is not locked to a particular

orientation-specific mode, user interface 1102 is displayed in a mode in accordance with the new orientation (e.g., based on a sensed direction of gravity from an accelerometer integrated into the device). For example, when device 100 is turned from portrait orientation, as in Figure 11A, to landscape orientation, as in Figure 1 IB, device 100 changes the displayed user interface 1102 from portrait mode, as in Figure 11A, to landscape mode, as in Figure 1 IB. Similarly, when device 100 is turned from landscape orientation, as in Figure 1 IB, to portrait orientation, as in Figure 11A, device 100 changes the displayed user interface 1102 from landscape mode, as in Figure 1 IB, to portrait mode, as in Figure 11 A.

[00327] Figure 11C illustrates device 100 detecting fingerprint 1104 on fingerprint sensor 169. Fingerprint 1104 is placed on fingerprint sensor 169 by, for example, a user making contact on fingerprint sensor 169 with a finger. Figure 1 lC-1 ID illustrates device 100 detecting a rotation of fingerprint 1104 in a clockwise direction around fingerprint sensor 169. The rotation of fingerprint 1104 is detected while user interface 1102 is displayed in portrait mode. In some embodiments, the rotation of fingerprint 1104 is a twisting of fingerprint 1104 on fingerprint sensor 169. In some other embodiments, the rotation of fingerprint 1104 is a revolution of fingerprint 1104 around fingerprint sensor 169.

[00328] In response to detecting the rotation of fingerprint 1104 clockwise around fingerprint sensor 169 while user interface 1102 is displayed in portrait mode, device 100 locks user interface 1102 into portrait mode. In some embodiments, a visual indication (e.g., icon 1106, Figure 1 ID) that user interface 1102 is locked in portrait mode is displayed. While user interface 1102 is locked in portrait mode, user interface 1102 is displayed in portrait mode whether touch screen 112 is in portrait orientation or in landscape orientation. When user interface 1102, locked in portrait mode, is displayed and device 100 is rotated to landscape orientation, user interface 1102 remains in portrait mode; user interface 1102 is displayed as if rotated 90 degrees. For example, Figure 1 IE shows device 100 in landscape orientation while user interface 1102 is locked in portrait mode; user interface 1102 is displayed in portrait mode despite the landscape orientation of device 100.

[00329] While user interface 1102 is locked in portrait mode, the device 100 detects fingerprint 1108 and a rotation of fingerprint 1108 in a counter-clockwise direction around fingerprint sensor 169, as shown in Figures 1 lE-1 IF. In response to detecting the rotation of fingerprint 1108 counterclockwise around fingerprint sensor 169 while user interface 1102 is locked in portrait mode, user interface 1102 is unlocked from portrait mode. If a visual indication (e.g., icon 1106, Figure 1 ID) that user interface 1102 was locked in portrait mode was displayed while user interface 1102 was locked, then the visual indication ceases to be displayed. For example, Figure 1 IF shows icon 1106 ceasing to be displayed in response to device 100 detecting the rotation of fingerprint 1108 counter-clockwise around fingerprint sensor 169. After user interface 1102 is unlocked from portrait mode, the display mode of user interface 1102 again follows the orientation of device 100 (e.g., in accordance with a direction of gravity as detected by the device using an accelerometer or other sensor), as in Figures 1 lA-1 IB. For example, in Figure 1 IF, after user interface 1102 is unlocked from portrait mode, user interface 1102 reverts back to landscape mode, as in Figure 1 IB, in accordance with the landscape orientation of device 100.

[00330] In some embodiments, operations analogous to those described above are performed to lock user interface 1102 into landscape mode. For example, a fingerprint rotation analogous to the rotation of fingerprint 1104 (Figures 1 lC-1 ID) while user interface 1102 is displayed in landscape mode (e.g., in accordance with device 100 being in landscape orientation) locks user interface 1102 into landscape mode. A fingerprint rotation analogous to the rotation of fingerprint 1108 (Figures 1 IE- 1 IF) while user interface 1102 is locked in landscape mode unlocks user interface 1102 from landscape mode.

[00331] In some embodiments, the fingerprint rotation that locks user interface 1102 into a particular orientation mode (i.e., portrait mode or landscape mode) is counterclockwise, and the rotation to unlock is clockwise, as opposed to the vice versa described above.

[00332] Figures 12A-12B are flow diagrams illustrating a method 1200 of locking an orientation of user interface in accordance with some embodiments. The method 1200 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1A) with a display and a touch-sensitive surface. In some embodiments, the display is a touch screen display and the touch-sensitive surface is on the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 1200 are, optionally, combined and/or the order of some operations is, optionally, changed.

[00333] As described below, the method 1200 provides an intuitive way to lock an orientation of user interface. The method reduces the cognitive burden on a user when locking an orientation of user interface, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to lock an orientation of user interface faster and more efficiently conserves power and increases the time between battery charges.

[00334] The device displays (1202) a user interface on the display, where the user interface has a first orientation-specific mode of operation (e.g., portrait mode) associated with a first orientation of the device and a second orientation-specific mode of operation (e.g., landscape mode) that is associated with a second orientation of the device that is different from the first orientation of the device. Figures 11 A-l IB shows, for example, user interface 1 102 displayed on touch screen 112. User interface 1102 is displayed in portrait mode when device 100 is in portrait orientation (Figure 11A), and displayed in landscape mode when device 100 is in landscape orientation (Figure 1 IB).

[00335] In some embodiments, the first orientation-specific mode of operation is a portrait orientation mode of operation, and the second orientation-specific mode of operation is a landscape orientation mode of operation (1204). As shown in Figures 11 A-l IB, user interface 1102 is displayed in portrait mode or landscape mode.

[00336] While the orientation of the user interface is not locked (1206), the device displays (1208) the user interface in the first orientation-specific mode of operation when the device is in the first orientation, and displays (1210) the user interface in the second orientation-specific mode of operation when the device is in the second orientation. Figures 11 A-l IB show user interface 1102 that is not locked in a particular orientation mode. User interface 1102 is displayed in portrait mode when device 100 is in portrait orientation (Figure

I IA) , and displayed in landscape mode when device 100 is in landscape orientation (Figure

I IB) .

[00337] The device detects (1212) a fingerprint on the fingerprint sensor. Figure 11C, for example, shows fingerprint 1104 detected on fingerprint sensor 169. As another example, Figure 1 IE shows fingerprint 1108 detected on fingerprint sensor 169. In some embodiments, the fingerprint sensor is (1214) separate from the display. For example, fingerprint sensor 169 is separate from touch screen 112.

[00338] While the user interface is in the first orientation-specific mode of operation, the device detects (1216) rotation of the fingerprint on the fingerprint sensor (e.g., where an orientation of the fingerprint changes relative to an orientation of the fingerprint sensor) in a first direction (e.g., clockwise). For example, Figure 1 ID shows device 100 detecting rotation (e.g., twisting) of fingerprint 1104 on fingerprint sensor 169 in a clockwise direction. In response to detecting rotation of the fingerprint on the fingerprint sensor in the first direction (1218), the device locks (1220) the user interface in the first orientation-specific mode of operation. In Figure 1 ID, for example, in response to detecting the clockwise rotation of fingerprint 1104 while user interface 1102 is displayed in portrait mode, device 100 locks user interface 1102 into portrait mode (e.g., as shown in Figure 1 IE).

[00339] In some embodiments, in response to detecting rotation of the fingerprint on the fingerprint sensor in the first direction (1218), the device displays (1222) a visual indication that the user interface orientation is locked in the first orientation-specific mode of operation. In Figure 1 ID, for example, in response to detecting the clockwise rotation of fingerprint 1104, in addition to locking user interface 1102 into portrait mode, device 100 displays icon 1106 to indicate that user interface 1102 is locked in portrait mode.

[00340] While the user interface is locked in the first orientation-specific mode of operation (1224), the device detects that the device is in the second orientation and maintains (1226) the user interface in the first orientation-specific mode of operation. For example, Figure 1 ID shows device 100 in portrait orientation and user interface 1102 locked in portrait mode. When device 100 is rotated (e.g., by the user) to landscape orientation, device 100 detects that it is now in landscape orientation and maintains user interface 1102, which was locked in portrait mode, in portrait mode, as shown in Figure 1 IE.

[00341] In some embodiments, while the user interface is in the second orientation-specific mode of operation, the device detects rotation of the fingerprint on the fingerprint sensor (e.g., where an orientation of the fingerprint changes relative to an orientation of the fingerprint sensor) in a first direction (e.g., clockwise); in response to detecting rotation of the fingerprint on the fingerprint sensor in the first direction, the device locks the user interface in the second orientation-specific mode of operation; and while the user interface is locked in the second orientation-specific mode of operation, the device detects that the device is in the first orientation and maintains the user interface in the second orientation-specific mode of operation. Thus, analogously, user interface 1102 is, optionally, locked into landscape mode, and is displayed in landscape mode even when device 100 is in portrait orientation.

[00342] In some embodiments, while the user interface is locked in the first orientation-specific mode of operation (1224), the device detects (1228) rotation of a fingerprint on the fingerprint sensor in a second direction (e.g., counterclockwise) different from the first direction. In response to detecting the rotation of the fingerprint in the second direction, the device unlocks (1230) the user interface from the first orientation- specific mode of operation. For example, Figure 1 IF shows device 100 detecting a counterclockwise rotation (e.g., twisting) of fingerprint 1108 while user interface 1102 is locked in portrait mode. In response to detecting the counterclockwise rotation of fingerprint 1108 while user interface 1102 is locked in portrait mode, user interface 1102 is unlocked from portrait mode.

[00343] It should be understood that the particular order in which the operations in

Figures 12A-12B have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., those listed in paragraph [00123]) are also applicable in an analogous manner to method 1200 described above with respect to Figures 12A-12B. For example, the fingerprints and user interfaces described above with reference to method 1200 optionally have one or more of the characteristics of the fingerprints and user interfaces described herein with reference to other methods described herein (e.g., those listed in paragraph [00123]). For brevity, these details are not repeated here.

[00344] In accordance with some embodiments, Figure 13 shows a functional block diagram of an electronic device 1300 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 13 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[00345] As shown in Figure 13, an electronic device 1300 includes a display unit 1302 configured to display a user interface, where the user interface has a first orientation-specific mode of operation associated with a first orientation of the device 1300 and a second orientation-specific mode of operation that is associated with a second orientation of the device 1300 that is different from the first orientation of the device 1300, optionally, a touch-sensitive surface unit 1304, a fingerprint sensor unit 1306; and a processing unit 1308 coupled to the display unit 1302, the touch-sensitive surface unit 1304 and the fingerprint sensor unit 1306. In some embodiments, the processing unit 1308 includes a display enabling

unit 1310, a detecting unit 1312, a locking unit 1314, a maintaining unit 1316, and an unlocking unit 1318.

[00346] The processing unit 1308 is configured to: while the orientation of the user interface is not locked: enable display of the user interface in the first orientation-specific mode of operation when the device 1300 is in the first orientation (e.g., with the display enabling unit 1310), and enable display of the user interface in the second orientation-specific mode of operation when the device 1300 is in the second orientation (e.g., with the display enabling unit 1310); detect a fingerprint on the fingerprint sensor unit 1306 (e.g., with the detecting unit 1312); while the user interface is in the first orientation-specific mode of operation, detect rotation of the fingerprint on the fingerprint sensor unit 1306 in a first direction (e.g., with the detecting unit 1312); in response to detecting rotation of the fingerprint on the fingerprint sensor unit 1306 in the first direction, lock the user interface in the first orientation-specific mode of operation (e.g., with the locking unit 1314); and while the user interface is locked in the first orientation-specific mode of operation, detect that the device 1300 is in the second orientation (e.g., with the detecting unit 1312) and maintain the user interface in the first orientation-specific mode of operation (e.g., with the maintaining unit 1316).

[00347] In some embodiments, the processing unit 1308 is configured to: while the user interface is locked in the first orientation-specific mode of operation, detect rotation of a fingerprint on the fingerprint sensor unit 1306 in a second direction different from the first direction (e.g., with the detecting unit 1312); and in response to detecting the rotation of the fingerprint in the second direction, unlock the user interface from the first orientation-specific mode of operation (e.g., with the unlocking unit 1318).

[00348] In some embodiments, the processing unit 1308 is configured to: in response to detecting rotation of the fingerprint on the fingerprint sensor unit 1306 in the first direction, enable display of a visual indication that the user interface orientation is locked in the first orientation-specific mode of operation (e.g., with the display enabling unit 1310).

[00349] In some embodiments, the first orientation-specific mode of operation is a portrait orientation mode of operation, and the second orientation-specific mode of operation is a landscape orientation mode of operation.

[00350] In some embodiments, the fingerprint sensor unit 1306 is separate from the display unit 1302.

[00351] The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to Figures 1 A and 3) or application specific chips.

[00352] The operations described above with reference to Figures 12A-12B are, optionally, implemented by components depicted in Figures 1 A- IB or Figure 13. For example, detection operations 1212 and 1216, locking operation 1220, and detecting and maintaining operations 1226 are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 optionally utilizes or calls data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in Figures 1A-1B.

Controlling Noise Reduction in Recorded Audio with a Fingerprint Sensor

[00353] Many electronic devices enable users to record media, including recording audio. While recording, a user typically wishes to reduce/cancel noise coming from sources other than the intended source in the recorded audio. For example, a user may wish to reduce the sound of his breathing in the recorded audio. However, a user may wish to stop or toggle the noise reduction at will. For example, the user may wish to provide commentary during certain parts of recorded media while cancelling inadvertent user sounds during other parts. Existing devices either do not provide the user this functionality or require the user to navigate through various menus and user interfaces. In the embodiments described below, an improved method for controlling noise reduction in recorded audio is achieved by using a fingerprint sensor to allow the user to toggle noise reduction on and off. This method

streamlines the process of controlling noise reduction in recorded audio by doing so in response to a fingerprint sensor on an electronic device.

[00354] In some embodiments, the device is an electronic device with a separate display (e.g., display 450) and a separate touch-sensitive surface (e.g., touch-sensitive surface 451). In some embodiments, the device is portable multifunction device 100, the display is touch screen 112, and the touch-sensitive surface includes tactile output generators 167 on the display (Figure 1A). The device described below with reference to 14A-14D and 15 includes one or more fingerprint sensors 169. In some embodiments, the one or more fingerprint sensors include one or more integrated fingerprint sensors 359-1 (Figure 4B) that are integrated in to the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). In some embodiments, the one or more fingerprint sensors include separate fingerprint sensors 359-2 (Figure 4B) that are separate from the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). Unless specified otherwise, a fingerprint sensor 169 described below is, optionally, either an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2, depending on the configuration of the hardware and software of the device that includes the fingerprint sensor 169. For convenience of explanation, the embodiments described with reference to Figures 14A-14D and 15 will be discussed with reference to display 450, a touch-sensitive surface 451, and an integrated fingerprint sensor 359-1, however analogous operations are, optionally, performed on a device with a separate touch-sensitive surface 451 and a separate fingerprint sensor 359-2 in response to detecting the inputs described in Figures 14A-14D on the integrated fingerprint sensor 359-2 while displaying the user interfaces shown in Figures 14A-14D on the display 450. Additionally, analogous operations are, optionally, performed on a device with a touch screen 112 in response to detecting the contacts described in Figures 14A-14D on a fingerprint sensor 169 (e.g., an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2) while displaying the user interfaces shown in Figures 14A-14D on the touch screen 112; in such embodiments, the focus selector is, optionally: a respective contact, a representative point corresponding to a contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch screen 112.

[00355] Figures 14A-14C illustrate an example of controlling noise reduction in recorded audio with a fingerprint sensor. Figure 14A shows user interface 1402, including media recording interface 1406 with noise reduction status 1408 and video preview 1410,

displayed on display 450 of a device (e.g., portable multifunction device 100). Figure 14A further illustrates touch-sensitive surface 451 with integrated fingerprint sensor 359-1. Figure 14A also shows the device detecting fingerprint 1404 (e.g., a right thumb contact) on touch-sensitive surface 451 away from integrated fingerprint sensor 359-1 and noise reduction status 1408 indicating that noise reduction is on (e.g., active) in the recorded audio. Figure 14B shows the device detecting fingerprint 1404 on touch-sensitive surface 451 over integrated fingerprint sensor 359-1 and noise reduction status 1408 indicating that noise reduction is off (e.g., inactive) in the recorded audio. Figure 14C shows the device detecting that fingerprint 1404 is no longer on integrated fingerprint sensor 359-1 and noise reduction status 1408 indicating that noise reduction is on in the recorded audio.

[00356] Figure 14D illustrates an example of a device with a display, a fingerprint sensor, and a camera sensor for use in controlling noise reduction in recorded audio. Figure 14D shows device 1412 with fingerprint sensor 1418 and display 1422 on first side 1414 and camera sensor 1420 on second side 1416.

[00357] Figure 15 is a flow diagram illustrating a method 1500 of controlling noise reduction in recorded audio with a fingerprint sensor in accordance with some embodiments. The method 1500 is performed at an electronic device (e.g., device 300, Figure 3, or portable multifunction device 100, Figure 1A) with a display and a touch-sensitive surface. In some embodiments, the display is a touch screen display and the touch-sensitive surface is on the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 1500 are, optionally, combined and/or the order of some operations is, optionally, changed.

[00358] As described below, the method 1500 provides an intuitive way to control noise reduction in recorded audio with a fingerprint sensor. The method reduces the cognitive burden on a user when controlling noise reduction in recorded audio, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to control noise reduction in recorded audio faster and more efficiently conserves power and increases the time between battery charges.

[00359] The device records (1502) media, where recording the media includes recording audio. For example, Figure 14A shows a device recording media as indicated by media recording interface 1406.

[00360] While recording the media (1504), the device reduces (1506), in the recorded audio, noise occurring on a first side of the device. For example, in Figure 14A, noise reduction status 1408 indicates that the device is reducing noise in the recorded audio.

[00361] While continuing to record the media (1504), the device detects (1508) a fingerprint on the fingerprint sensor. For example, Figure 14B shows the device detecting fingerprint 1404 (e.g., a right thumb contact) on integrated fingerprint sensor 359-1.

[00362] In some embodiments, the fingerprint sensor is located (1510) on the first side of the device. For example, Figure 14D shows fingerprint sensor 1418 on first side 1414 of device 1412.

[00363] While continuing to record the media (1504) and in response to detecting the fingerprint on the fingerprint sensor, the device ceases (1512) to reduce noise occurring on the first side of the device. For example, Figure 14B shows the device detecting fingerprint 1404 (e.g., a right thumb contact) on integrated fingerprint sensor 359-1 and noise reduction status 1408 indicating that the device has ceased to reduce noise in the recorded audio.

[00364] In some embodiments, after ceasing to reduce the noise occurring on the first side of the device, the device detects (1514) when the fingerprint is no longer on the fingerprint sensor, and, in response to detecting that the fingerprint is no longer on the fingerprint sensor, the device resumes (1516) reduction of noise occurring on the first side of the device in the recorded audio. For example, a device is initially cancelling noise from one side of the device (e.g., so as to avoid recording the breathing or other noises created by a videographer that the videographer does not intend to record) and subsequently, when the device detects a fingerprint on a fingerprint sensor, the device temporarily ceases to reduce/cancel noise on the first side of the camera (e.g., so that a videographer can comment on the video) and then the device resumes noise cancellation for noises on the first side of the device after or in response to ceasing to detect the fingerprint on the fingerprint sensor (e.g., once the videographer has finished commenting on the video). Figure 14C, for example, shows the device no longer detecting fingerprint 1404 on integrated fingerprint sensor 359-1 (e.g., fingerprint 1404 lifted off or moved away from integrated fingerprint sensor 359-1). Figure 14C further shows noise reduction status 1408 indicating that the device has resumed reduction of noise in the recorded audio.

[00365] In some embodiments, recording the media includes recording (1518) video from a camera sensor on a second side of the device that is different (e.g., opposite from) from the first side of the device. For example, the video is recorded using a front-facing camera and noise is reduced/cancelled using acoustic beam forming to cancel audio input from behind the device. For example, Figure 14D shows camera sensor 1420 on second side 1416 of device 1412.

[00366] In some embodiments, recording the media includes displaying (1520) a preview of the video on a display located on the first side of the device (e.g., the side that the user is on). From another viewpoint, the method includes displaying a preview of the video on the display located on the first side of the device. For example, Figure 14A shows video preview 1410 on display 450 of a device.

[00367] In some embodiments, recording the media includes recording sounds occurring on a second side of the device that is different from the first side of the device, and, in response to detecting the fingerprint on the fingerprint sensor, the device reduces (1522), in the recorded audio, noise occurring on the second side of the device. For example, Figure 14B shows the device detecting fingerprint 1404 (e.g., a right thumb contact) on integrated fingerprint sensor 359-1. In this example, and in accordance with these embodiments, the device has ceased to reduce noise occurring on the first side of the device (as indicated by noise reduction status 1408) and is reducing noise occurring on the second side of the device (indication of noise reduction on the second side of the device is not shown in Figure 14B).

[00368] It should be understood that the particular order in which the operations in

Figure 15 have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., those listed in paragraph [00123]) are also applicable in an analogous manner to method 1500 described above with respect to Figure 15. For example, the fingerprints and contacts described above with reference to method 1500 optionally have one or more of the characteristics of the fingerprints and contacts described herein with reference to other methods described herein (e.g., those listed in paragraph

[00123]). For brevity, these details are not repeated here.

[00369] In accordance with some embodiments, Figure 16 shows a functional block diagram of electronic device 1600 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by

hardware, software, or a combination of hardware and software to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in Figure 16 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[00370] As shown in Figure 16, electronic device 1600 includes fingerprint sensor unit

1606 and processing unit 1608 coupled to fingerprint sensor unit 1606. In some

embodiments, electronic device 1600 further includes display unit 1602 and camera sensor unit 1604 coupled to processing unit 1608. In some embodiments, processing unit 1608 includes recording unit 1610, noise reducing unit 1612, detection unit 1614, and display enabling unit 1616.

[00371] Processing unit 1608 is configured to record (e.g., with recording unit 1610) media with the device, where recording the media includes recording audio. Processing unit 1608 is further configured to, while recording the media, reduce (e.g., with noise reducing unit 1612), in the recorded audio, noise occurring on a first side of the device, detect (e.g., with detecting unit 1614) a fingerprint on the fingerprint sensor unit, and, in response to detecting the fingerprint on the fingerprint sensor unit, cease to reduce (e.g., with noise reducing unit 1612) noise occurring on the first side of the device.

[00372] In some embodiments, fingerprint sensor unit 1606 is located on the first side of the device.

[00373] In some embodiments, processing unit 1608 is further configured to, after ceasing to reduce (e.g., with noise reducing unit 1612) the noise occurring on the first side of the device, detect (e.g., with detecting unit 1614) when the fingerprint is no longer on the fingerprint sensor, and, in response to detecting (e.g., with detecting unit 1614) that the fingerprint is no longer on the fingerprint sensor unit, resume reduction (e.g., with noise reducing unit 1612) of noise occurring on the first side of the device in the recorded audio.

[00374] In some embodiments, electronic device 1600 further comprises a camera sensor unit on a second side of the device that is different from the first side of the device and processing unit 1608 is further configured to record (e.g., with recording unit 1610) video from the camera sensor unit.

[00375] In some embodiments, the electronic device further comprises display unit

1602 located on the first side of the device and recording (e.g., with recording unit 1610) the media includes enabling display (e.g., with display enabling unit 1616) of a preview of the video on the display unit.

[00376] In some embodiments, recording the media includes recording (e.g., with recording unit 1610) sounds occurring on a second side of the device that is different from the first side of the device and processing unit 1608 is further configured to, in response to detecting the fingerprint on the fingerprint sensor unit, reduce (e.g., with noise reducing unit 1612), in the recorded audio, noise occurring on the second side of the device.

[00377] The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to Figures 1 A and 3) or application specific chips.

[00378] The operations described above with reference to Figure 15 are, optionally, implemented by components depicted in Figures 1A-1B or Figure 16. For example, recording operation 1402, reducing operation 1506, and detection operation 1508 are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as selection of an object on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 optionally utilizes or calls data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application.

Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in Figures 1A-1B.

Performing Operations Based on a Class-Based Profile

[00379] Many electronic devices have multiple functions and multiple users. Not all functions are suitable for all users, and thus certain function restrictions are implemented for some user. In some situations, user identification at a device is done through a login process, where users identify themselves specifically with a username and password. However, switching between users through a login process is time-consuming and inefficient. Also, the identity of the specific user is not essential for all function restrictions. The embodiments described below improve on these methods by restricting or modifying functions based on user classes identified by fingerprint. When a device detects a fingerprint of a user, the device identifies a one or more user classes based on the detected fingerprint selects profiles associated with the identified user classes as active, including at least one class that is not unique to the user. When the device receives a request to perform one or more operations, the device performs a respective operation based on the request and the active profiles. The respective operation can be in addition to or instead of the requested operation(s). By customizing operations and functions on the device based on user classes that not unique (e.g., are agnostic) to the specific user identity, function restrictions can be implemented on the device for situations where frequent user login and logoff is inefficient (e.g., parent sharing a device with a child) or unfeasible (e.g., public or semi-public devices for use by a broader population than a closed circle of users).

[00380] In some embodiments, the device is an electronic device with a separate display (e.g., display 450) and a separate touch-sensitive surface (e.g., touch-sensitive surface 451). In some embodiments, the device is portable multifunction device 100, the display is touch screen 112, and the touch-sensitive surface includes tactile output generators 167 on the display (Figure 1A). The device described below with reference to 17A-17K and 18A-18B includes one or more fingerprint sensors 169. In some embodiments, the one or more fingerprint sensors include one or more integrated fingerprint sensors 359-1 (Figure 4B) that are integrated in to the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). In some embodiments, the one or more fingerprint sensors include separate fingerprint sensors 359-2 (Figure 4B) that are separate from the touch-sensitive surface (e.g., separate touch-sensitive surface 451 or touch sensitive display system 112). Unless specified otherwise, a fingerprint sensor 169 described below is, optionally, either an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2, depending on the configuration of the hardware and software of the device that includes the fingerprint sensor 169. For convenience of explanation, the embodiments described with reference to Figures 17A-17K and 18A-18B will be discussed with reference to display 450, a separate touch-sensitive surface 451 and a separate fingerprint sensor 359-2, however

analogous operations are, optionally, performed on a device with an integrated fingerprint sensor 359-1 in response to detecting the inputs described in Figures 17A-17K on the integrated fingerprint sensor 359-1 while displaying the user interfaces shown in Figures 17A-17K on the display 450. Additionally, analogous operations are, optionally, performed on a device with a touch screen 112 in response to detecting the contacts described in Figures 17A-17K on a fingerprint sensor 169 (e.g., an integrated fingerprint sensor 359-1 or a separate fingerprint sensor 359-2) while displaying the user interfaces shown in Figures 17A-17K on the touch screen 112; in such embodiments, the focus selector is, optionally: a respective contact, a representative point corresponding to a contact (e.g., a centroid of a respective contact or a point associated with a respective contact), or a centroid of two or more contacts detected on the touch screen 112, in place of a cursor.

[00381] Figure 17A illustrates a device with display 450, touch-sensitive surface 451, and integrated fingerprint sensor 359-1. User interface 1700 is displayed on display 450. As shown in Figure 17A, user interface 1700 is, for example, a desktop graphical user interface, a home screen or menu, or the like. User interface 1700 is, optionally, another type of user interface, such as a user interface for an application. User interface 1700 optionally includes one or more application icons, such as "Settings" icon 1704 and application icons similar to the application icons displayed in user interface 400 (Figure 4A). A user can interact with user interface 1700 and make requests for one or more operations to be performed by the device using a respective input element, such as touch-sensitive surface 451 , a button, a mouse, or a keyboard. For example, a user can activate a user interface for adjusting device settings (e.g., settings user interface 1708, Figure 17C) by activating "Settings" icon 1704 using, for example, touch-sensitive surface 451 (e.g., performing a tap gesture on touch-sensitive surface 451 associated with a focus selector such as cursor 1705 that is at a location on the display corresponding to "Settings" icon 1704) .

[00382] In some embodiments, the device is associated with multiple profiles. The multiple profiles include one or more user-specific profiles and one or more class-based profiles. In some embodiments, each user-specific profile corresponds to a respective user. In some embodiments, each of the class-based profiles, which are distinct from the user-specific profiles, corresponds to a respective class of users. In some embodiments, one or more of the class-based profiles correspond to age-based user classes. Examples of age-based class-based profiles include a class-based profile corresponding to adults (e.g., users 18 years or older), a class-based profile corresponding to non-adults or children (e.g., users under 18 years old), and a class-based profile corresponding to seniors (e.g., users older than 65 years old). In some embodiments, the profiles are retrieved from the memory of the device (e.g., memory 102 or 370). In some other embodiments, the profiles are received from a remote computer system. The profiles are retrieved or received in response to one or more particular operations (e.g., detection of a fingerprint on fingerprint sensor 359) or as part of a predefined routine.

[00383] The device also includes data regarding one or more fingerprints that have been previously registered at the device. Each registered fingerprint corresponds to a respective user-specific profile. In some embodiments, the registered fingerprints are stored in, and retrieved from, the memory (e.g., memory 102 or 370) of the device.

[00384] While a user interface (e.g., user interface 1700) is displayed on display 450, a fingerprint is detected on integrated fingerprint sensor 359-1. Figures 17A-17B illustrate fingerprints of different sizes detected on integrated fingerprint sensor 359-1. Figure 17A illustrates fingerprint 1702 being detected on integrated fingerprint sensor 359-1, and Figure 17B illustrates fingerprint 1706 being detected on integrated fingerprint sensor 359-1 instead of fingerprint 1702. Fingerprint 1702 and fingerprint 1706 are fingerprints from two different users who respectively belong to different classes of users. For example, fingerprint 1702 is determined to belong to a user in a class of adult users, and fingerprint 1706, which is smaller than fingerprint 1702 and determined by the device to be about the size of a child's fingerprint, is determined to belong to a user in a class of child users.

[00385] Based on the detected fingerprint, the device selects one or more class-based profiles, from class-based profiles associated with the device, as active profiles that correspond to the detected fingerprint. For example, for fingerprint 1702, the device selects an "Adults" profile as an active profile, as well as any other class-based profile for which the device determines that the user to which fingerprint 1702 belongs fits. For fingerprint 1706, the device selects a "Children" profile, as well as any other class-based profile for which the device determines that the user to which fingerprint 1706 belongs fits. It should be appreciated that a user can be associated with multiple classes. Thus, for a given detected fingerprint, multiple class-based profiles can be selected as active (e.g., a fingerprint could be associated with the "adults" class of users and the "male" class of users or the "children" class of users and the "female" class of users).

[00386] In some embodiments, the class-based profiles are selected without regard to authentication of the detected fingerprint. For example, selection of class-based profiles does not require comparison of the detected fingerprint to previously registered fingerprints associated with the device. In some embodiments, the selection of class-based profiles is based on the characteristics and features of the detected fingerprint. For example, the "Adults" profile is selected for fingerprint 1702 and the "Children" profile is selected for fingerprint 1706 based on the sizes of these respective fingerprints; fingerprint 1706 is determined to be a child's fingerprint based on its size, and fingerprint 1702 is determined to be an adult's fingerprint based on its size.

[00387] In some embodiments, the class-based profiles are selected in addition to selection of a user-specific profile based on a comparison of the detected fingerprint to previously registered fingerprints at the device. In some embodiments, identification or selection of a user-specific profile aids in the selection of class-based profiles. For example, one or more class-based profiles are, optionally, selected based on a comparison of the user-specific profile to characteristics of the classes based on which the respective class-based profiles are defined.

[00388] After the device selects one or more class-based profiles as active profiles for the device, the device receives an input, with the respective input element, corresponding to a request to perform one or more operations at a device. For example, the device receives an input to activate "Settings" icon 1704 (or "Settings" icon 446) (e.g., a gesture on touch-sensitive surface 451 while a focus selector such as cursor 1705 is located over "Settings" icon 1704), which corresponds to a request to display settings user interface 1708 (Figure 17C). Depending on the active class-based profiles, settings user interface 1708 is displayed or an error message is displayed instead. For example, on the device as shown in Figures 17A-17B, settings user interface 1708 is not displayed if the "Children" profile is active. Thus, for example, if the detected fingerprint is fingerprint 1702 (Figure 17A), and thus the "Adults" profile, but not the "Children" profile, is selected as active, settings user interface 1708 is displayed, as shown in Figure 17C; the operation of displaying settings user interface 1708 is performed based on the request and the active "Adults" profile.

[00389] On the other hand, if the detected fingerprint is fingerprint 1706 (Figure 17B), and thus the "Children" profile, but not the "Adults" profile, is selected as active, then settings user interface 1708 is not displayed. Instead, an error message or the like (e.g., error message 1710) indicating that settings user interface 1708 is not accessible is displayed, as shown in Figure 17D; the operation of displaying error message 1710 is performed based on the request and the active "Children" profile.

[00390] Another example of an input corresponding to a request to perform one or more operations at a device is a request to open a video application. For example, the user performs a gesture (e.g., a tap or double tap gesture) on touch-surface surface 451 while a focus selector is located over online video icon 432 (Figure 4A) to open an online video application (e.g., online video module 155, Figure 1A). As another example, the user performs a gesture (e.g., a tap or double tap gesture) on touch-sensitive surface 451 while a focus selector (e.g., a contact detected on touchscreen 112 or a cursor displayed on display 450) is located over a media or video application icon (e.g., icon 422, Figure 4A) in user interface 400 to open an application (e.g., video and music player module 152, Figure 1A) for viewing videos stored at the device. For convenience, both the application for viewing online videos and the application for viewing videos stored at the device are, hereinafter, both referred to as video application(s).

[00391] When a video application is opened, a user interface corresponding to the video
This document is too large, please check out its pdf version from the Documents tab!